

REVIEW ARTICLE

Emerging Gene-Based and Targeted Therapies for Hemophilia A and B and its Impact on Hemostasis, Quality of Life, and Cost

Chanda Hemaliya^{1*}, Arun Kumar Singh², Anju Bharti³, Ajeet Kumar⁴, Lalit Prashant Meena⁵

¹PhD Scholar, Department of Medicine, Institute of Medical Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India

²Associate Professor, Department of General Medicine, Institute of Medical Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India

³Associate Professor, Department of Pathology, Institute of Medical Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India

⁴Scientist C, Department of Pathology, All India Institute of Medical Sciences, Patna, Uttar Pradesh, India

⁵Professor, Department of General Medicine, Institute of Medical Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India

Publication history: Received on 29th October 2025; Revised on 14th November 2025; Accepted on 20th November 2025

Article DOI: 10.69613/a7ebbm24

Abstract: Hemophilia A and B are X-linked congenital bleeding disorders characterized by functional deficiencies in coagulation factor VIII (FVIII) and factor IX (FIX) that disrupt the intrinsic "tenase" complex, leading to impaired thrombin generation and defective fibrin clot formation. Although management has advanced from plasma-derived proteins to recombinant and extended half-life products, the formation of neutralizing alloantibodies (inhibitors) remains a major complication, precipitating therapeutic failure. The molecular pathology of the F8 and F9 genes, particularly structural variants like Intron 22 inversions, dictates clinical severity and predisposes patients to inhibitor development. Recent therapeutic paradigms have shifted towards non-factor replacement strategies, such as the bispecific antibody emicizumab, which restores hemostasis but complicates laboratory monitoring by altering the standard coagulation assays. Moreover, adeno-associated virus (AAV)-mediated gene transfer represents a transformative approach, offering sustained endogenous factor expression. The current knowledge of molecular genetics, inhibitor mechanisms, and these emerging biotechnological interventions is essential for optimizing clinical outcomes in the modern era of hemophilia care.

Keywords: Hemophilia; Coagulation Cascade; Factor VIII Gene; Alloantibodies; Molecular Diagnostics

1. Introduction

Hemophilia A and B represent the quintessential X-linked recessive coagulopathies, resulting from mutations in the F8 and F9 genes, respectively. The hallmark of hemostatic failure in hemophilia is the inability to form the intrinsic "tenase" complex (FVIIa-FIXa), which is the rate-limiting step in factor X activation on the activated platelet surface. Without sufficient tenase activity, the "thrombin burst" required for stable fibrin polymerization is absent, leading to clots that are friable and susceptible to premature fibrinolysis [1]. Epidemiologically, Hemophilia A is the more prevalent form, affecting approximately 1 in 5,000 male births, whereas Hemophilia B occurs in roughly 1 in 25,000 male births globally [2]. The burden of disease is not distributed equally in terms of clinical outcomes; in developing nations, including India, diagnostic delays and limited access to clotting factor concentrates (CFCs) contribute to severe morbidity. It is estimated that a significant number of patients in resource-limited settings suffer from severe hemophilic arthropathy and disabilities that are largely preventable with early prophylactic treatment [3].

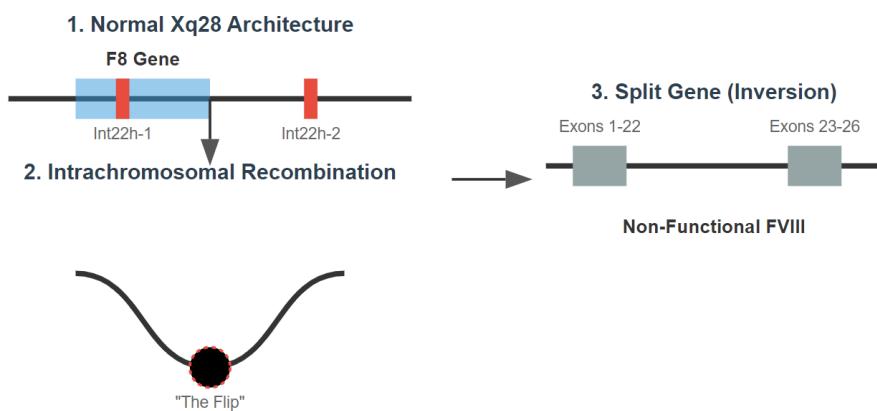
The management of hemophilia has undergone a dramatic evolution over the last century. Treatment progressed from the use of whole blood and fresh frozen plasma to cryoprecipitate in the mid-20th century, which improved survival but carried high volumes and variability. The 1970s saw the introduction of lyophilized plasma-derived concentrates, which revolutionized home therapy but tragically led to the transmission of HIV and Hepatitis C. This crisis spurred the development of recombinant DNA technology in the 1990s, producing safer, virus-free recombinant FVIII and FIX products [4].

Current standards of care in developed nations emphasize prophylaxis the regular administration of factor concentrates to maintain trough levels >1% (and increasingly >3-5%) to prevent spontaneous bleeding and preserve joint health. The recent introduction of Extended Half-Life (EHL) factors, utilizing Fc-fusion or PEGylation technologies, has reduced infusion frequency. However, the most significant recent leap is the advent of non-factor replacement therapies and gene therapy, which promise to decouple patients from the burden of frequent intravenous injections [5].

* Corresponding author: Chanda Hemaliya

2. Molecular Genetics and Genotype-Phenotype Correlations

2.1. The F8 Gene and Hemophilia A


The F8 gene is one of the largest genes in the human genome, spanning 186 kilobases (kb) at the distal end of the long arm of the X chromosome (Xq28). It consists of 26 exons that encode a mature protein of 2,332 amino acids. The intricate architecture of the F8 gene makes it prone to a variety of mutational mechanisms.

2.1.1. Intron 22 and Intron 1 Inversions

The most common molecular defect in severe Hemophilia A, accounting for approximately 45-50% of cases, is the Intron 22 inversion. This mutation arises from an intrachromosomal homologous recombination event between a 9.5 kb region within Intron 22 (Int22h-1) and one of two extragenic homologs (Int22h-2 or Int22h-3) located telomeric to the F8 gene. This inversion completely disrupts the gene, preventing the transcription of a full-length protein, thereby resulting in a severe phenotype with <1% factor activity [6]. Similarly, inversions involving Intron 1 occur in 2-5% of severe cases. These gross genetic rearrangements are critical diagnostic markers and are strongly associated with a high risk of inhibitor development because the patient's immune system has never been exposed to the FVIII protein [7].

2.1.2. Point Mutations and Other Variants

In contrast to inversions, point mutations (missense, nonsense, and splice-site mutations) and small deletions/insertions account for the remaining cases of Hemophilia A and the majority of mild-to-moderate phenotypes. Missense mutations often result in the production of a dysfunctional protein or a protein with reduced secretion, leading to the presence of Cross-Reactive Material (CRM) in plasma. Patients with CRM-positive mutations generally have a lower risk of developing inhibitors compared to those with null mutations (large deletions, nonsense mutations) that result in a complete absence of antigen [8].

Figure 1. Mechanism of Intron 22 Inversion.

(1) The F8 gene contains a homologous region (Int22h-1) within Intron 22, which has duplicate copies (Int22h-2/3) located distally on the X chromosome. (2) During meiosis, the chromosome loops, aligning Int22h-1 with a distal homolog. (3) Homologous recombination occurs, causing the gene segment to "flip" or invert. This splits the F8 gene into two separated parts (Exons 1-22 and Exons 23-26), preventing the transcription of a full-length, functional protein.

Table 1. Comparative Epidemiological and Genetic Profile of Hemophilia A and B

Feature	Hemophilia A	Hemophilia B
Deficient Factor	Factor VIII (FVIII)	Factor IX (FIX)
Chromosomal Locus	Xq28 (Distal long arm)	Xq27.1 (Long arm)
Gene Size	~186 kb (26 exons)	~34 kb (8 exons)
Prevalence (Male Births)	~1 in 5,000	~1 in 25,000
Most Common Severe Mutation	Intron 22 Inversion (~45-50%)	Missense/Nonsense mutations (Inversions rare)
Inhibitor Incidence (Severe)	High (25–30%)	Low (1–5%)
Anaphylaxis Risk with Inhibitors	Rare	Common (associated with large deletions)

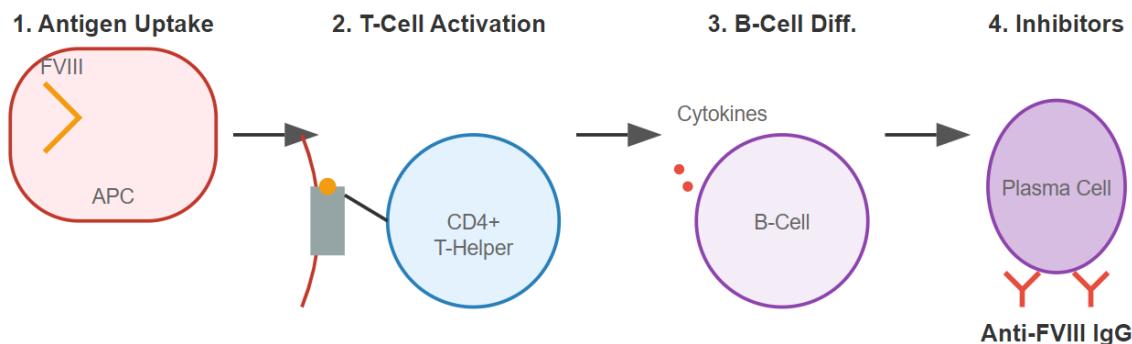
2.2. The F9 Gene and Hemophilia B

The F9 gene is significantly smaller, spanning 34 kb at Xq27.1 and containing 8 exons. Unlike Hemophilia A, identifying a recurrent inversion is rare in Hemophilia B. Instead, the mutation spectrum is dominated by point mutations and deletions. An intriguing phenotypic variant is Hemophilia B Leyden, characterized by severe factor IX deficiency in childhood that spontaneously resolves after puberty due to androgen-responsive promoter elements driving gene expression [9]. Understanding these specific genotypes allows for precise genetic counseling and prognosis.

3. Diagnostic Challenges and Carrier Screening

3.1. Coagulation Assays and Discrepancies

The diagnosis of hemophilia is established through Activated Partial Thromboplastin Time (APTT)-based one-stage clotting assays, which measure the time to fibrin clot formation in patient plasma mixed with factor-deficient plasma. While robust for severe disease, the one-stage assay can be prone to discrepancies, particularly in mild Hemophilia A. Approximately 30% of patients with mild hemophilia A may show normal levels in one-stage assays but reduced levels in chromogenic assays (or vice versa), depending on the specific mutation affecting the FVIII molecule's stability or cofactor function [10].


3.2. Carrier Detection

Identifying female carriers is a crucial component of comprehensive care. Reliance solely on factor activity levels is notoriously unreliable due to the phenomenon of Lyonization (X-inactivation). A carrier female may have random inactivation of the healthy X chromosome in the majority of her hepatocytes, leading to low factor levels (symptomatic carrier), or inactivation of the affected X chromosome, resulting in normal levels. Consequently, definitive carrier testing requires molecular genetic analysis. Techniques such as Linkage Analysis (using intragenic polymorphisms) or direct DNA sequencing (Sanger or Next-Generation Sequencing) are employed to identify the familial mutation with high accuracy [11].

4. The Challenge of Inhibitors

4.1. Pathophysiology of Alloantibody Formation

The development of inhibitors is the most severe complication of replacement therapy, occurring in 20-30% of severe Hemophilia A patients. These are high-affinity IgG alloantibodies, primarily IgG4 and IgG1 subclasses, that bind to functional epitopes on the infused factor (typically the A2 and C2 domains of FVIII), neutralizing its procoagulant activity. The mechanism involves the endocytosis of the exogenous factor by antigen-presenting cells (APCs), processing into peptides, and presentation via MHC Class II molecules to CD4+ T helper cells. These T cells then drive the differentiation of specific B cells into plasma cells that secrete anti-drug antibodies [12].

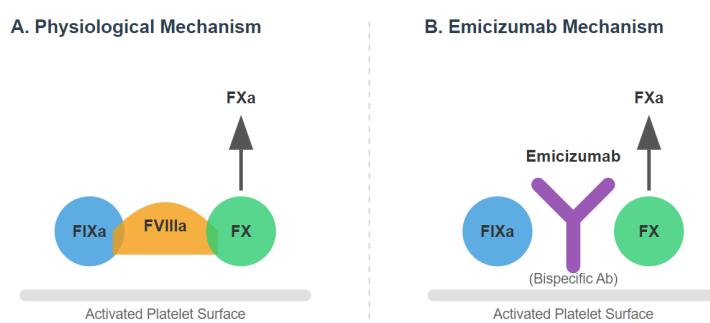
Figure 2. Immunopathogenesis of Factor VIII Inhibitor Formation.

Exogenous Factor VIII is endocytosed by Antigen Presenting Cells (APCs) and processed into peptides presented via MHC Class II molecules. Specific T-Cell Receptors (TCR) on CD4+ T-Helper cells recognize these peptides, triggering cytokine release that stimulates B-cells. These B-cells differentiate into Plasma cells, which secrete high-affinity IgG alloantibodies (inhibitors) that neutralize the infused factor

4.2. Risk Factors

Inhibitor risk is multifactorial. Genetic risks include the underlying mutation (large deletions and inversions confer highest risk), family history of inhibitors, and ethnicity (higher rates observed in African American and Hispanic populations). Non-genetic risks involve the intensity of treatment at first exposure (e.g., high-dose continuous infusion during surgery promotes immunogenicity) and the presence of danger signals (infection, inflammation) during factor administration [13].

Table 2. Risk Factors Influencing Inhibitor Development in Hemophilia


Category	Risk Factor	Mechanism/Comment
Genetic (Non-modifiable)	Genotype	Null mutations (Large deletions, Nonsense, Intron 22 Inversion) confer highest risk due to lack of immune tolerance.
	Family History	Strong concordance among siblings suggests shared genetic susceptibility (e.g., HLA type).
	Ethnicity	Higher incidence observed in African American and Hispanic populations compared to Caucasians.
	HLA Genotype	Specific HLA Class II alleles (e.g., DRB115, DQB106) facilitate antigen presentation of FVIII peptides.
Treatment-Related (Modifiable)	Intensity of Treatment	High-dose intensive treatment (e.g., >5 consecutive days) at first exposure increases risk.
	Age at First Exposure	Controversy exists, but early exposure (<6 months) may carry higher risk in some cohorts.
	Context of Exposure	Treatment during "danger signals" (surgery, active infection, inflammation) promotes immune priming.

5. Novel Non-Factor Therapies

5.1. Mechanism of Action

The therapy for Hemophilia A has been revolutionized by the introduction of emicizumab, a recombinant, humanized, bispecific monoclonal antibody. Unlike traditional replacement therapies that supply the missing protein, emicizumab functions as a cofactor mimetic. It possesses dual specificity, binding simultaneously to the epidermal growth factor-like domain of activated factor IX (FIXa) and the epidermal growth factor-like domain of factor X (FX). By physically bridging these two enzymatic components, emicizumab restores the function of the tenase complex, facilitating the proteolytic activation of FX to FXa in the absence of FVIII [14].

This mechanism confers several distinct clinical advantages. First, because emicizumab shares no structural homology with FVIII, it is not recognized by anti-FVIII alloantibodies, making it an ideal prophylactic agent for patients with high-titer inhibitors. Second, its pharmacokinetic profile is superior to that of clotting factor concentrates; with a half-life of approximately 28 days, it allows for subcutaneous administration at weekly, biweekly, or monthly intervals [15]. Clinical data from the HAVEN trials have demonstrated that emicizumab prophylaxis results in a statistically significant reduction in annualized bleeding rates compared to both on-demand and prophylactic use of bypassing agents, fundamentally altering the standard of care for inhibitor patients.

Figure 3. Comparison of Physiological Coagulation vs. Emicizumab Action

(A) In a healthy state, FVIIIa acts as a cofactor on the platelet surface, binding both FIXa and FX to facilitate the activation of FX to FXa. (B) Emicizumab is a bispecific antibody that mimics this cofactor activity by binding one arm to FIXa and the other to FX, enabling spatial proximity and activation of FX, even in the absence of FVIII.

Table 3. Comparison of Replacement vs. Non-Factor vs. Gene Therapy

Parameter	Standard Life Factors	Half-Life (SHL)	Extended Half-Life (EHL) Factors	Non-Factor Therapy (Emicizumab)	Gene Therapy (AAV)
Mechanism	Replaces missing protein		Replaces protein; modified (Fc fusion/PEG) to delay clearance	Mimics FVIII cofactor activity (Bispecific antibody)	Endogenous production of factor via transgene
Route of Administration	Intravenous (IV)		Intravenous (IV)	Subcutaneous (SC)	One-time Intravenous Infusion
Frequency	2-3 times/week (Prophylaxis)		1-2 times/week (varies by product)	Weekly, Biweekly, or Monthly	Single dose (One-and-done)
Inhibitor Risk	Yes		Yes (though potentially lower immunogenicity)	No (Not a substrate for FVIII inhibitors)	Capsid immunity (exclusion criterion); CTL response
"Trough" Levels	Peaks and troughs; vulnerable tail		Higher troughs; fewer infusions	Steady-state (equivalent to ~15% FVIII activity)	Constant expression (aims for normal range)

5.2. Laboratory Monitoring Challenges with Emicizumab

The widespread adoption of emicizumab has necessitated a paradigm shift in coagulation laboratory practice. Because the antibody remains present in plasma for months and is active in phospholipid-dependent assays, it interferes with routine hemostatic testing.

5.2.1. Interference with APTT-based Assays

Emicizumab potently shortens the Activated Partial Thromboplastin Time (APTT). This effect is observed even at sub-therapeutic plasma concentrations because the antibody effectively bypasses the intrinsic pathway activation steps that the APTT is designed to measure. Consequently, a normal or shortened APTT in a patient receiving emicizumab does not correlate with hemostatic efficacy, nor does it rule out the presence of anti-drug antibodies. Furthermore, standard one-stage FVIII clotting assays, which rely on APTT reagents, will yield artificially elevated FVIII activity levels (often >150%), rendering them useless for monitoring breakthrough bleeding treatment [16].

5.2.2. Techniques for Accurate Monitoring

To accurately assess hemostasis in patients treated with emicizumab, laboratories must utilize assays that are insensitive to the antibody's presence. Bovine chromogenic FVIII assays are the gold standard in this context; emicizumab does not bind to bovine FIXa or FX, allowing these assays to selectively measure endogenous or infused human FVIII activity without interference. Conversely, if the clinical goal is to measure the concentration of emicizumab itself, modified human-based chromogenic assays calibrated with specific emicizumab standards must be employed [17].

Table 4. Interference of Emicizumab in Common Coagulation Laboratory Assays

Assay Type	Emicizumab Effect	Clinical Interpretation/Action
APTT (Activated Partial Thromboplastin Time)	Shortened (Normal range or lower)	Unreliable. Does not correlate with hemostatic efficacy. Cannot define bleed severity.
One-Stage FVIII Clotting Assay	Artificially Elevated (>150%)	Do not use. Overestimates FVIII activity drastically.
Bethesda Assay (Nijmegen mod.)	False Negative (if FVIII deficient plasma is used)	Must use Bovine Chromogenic Bethesda Assay to measure inhibitors in patients on Emicizumab.
Chromogenic FVIII Assay (Human Reagents)	Detects Emicizumab	Can be used to measure Emicizumab drug levels (if calibrated).
Chromogenic FVIII Assay (Bovine Reagents)	No Interference	Gold Standard. Use to measure endogenous FVIII or infused recombinant FVIII activity during surgery/bleeds.
Thrombin Time (TT) / Fibrinogen	No Effect	Reliable for assessing fibrinogen status.

6. Gene Therapy

6.1. Adeno-Associated Virus (AAV) Vector Technology

Gene therapy represents the frontier of curative medicine in hemophilia. The predominant strategy utilizes Adeno-Associated Virus (AAV) vectors to deliver a functional copy of the F8 or F9 gene to host hepatocytes. AAVs are non-pathogenic parvoviruses that, in their recombinant form, are stripped of viral coding sequences, leaving only the therapeutic transgene flanked by inverted terminal repeats (ITRs). Upon transduction, the viral genome largely persists as an episome (circular, extrachromosomal DNA) within the hepatocyte nucleus, providing long-term expression without significant integration into the host genome [18].

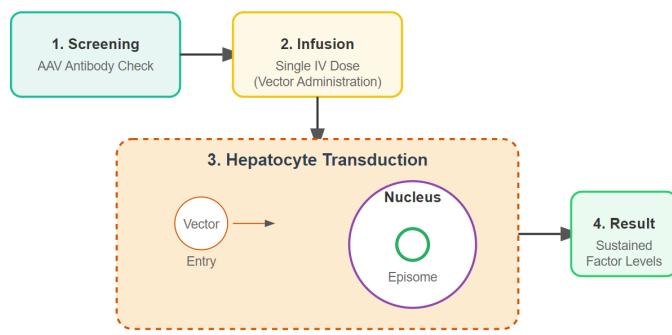
6.2. Clinical Success in Hemophilia B

Hemophilia B has proven to be an ideal candidate for gene transfer. The F9 coding sequence is small (~1.4 kb), easily fitting within the packaging capacity of AAV vectors. A pivotal advancement was the discovery of the "Padua" variant (F9-R338L), a naturally occurring hyper-functional mutation that exhibits approximately 8-fold higher specific activity than wild-type FIX. By incorporating this variant into gene therapy vectors, researchers have achieved therapeutic factor levels with significantly lower vector doses, thereby minimizing dose-dependent immune toxicity. Recent clinical trials have reported sustained FIX activity levels in the mild-to-normal range for over a decade in some cohorts, effectively liberating patients from chronic prophylaxis [19].

6.3. The Challenge of Hemophilia A Gene Transfer

Gene therapy for Hemophilia A faces unique biophysical hurdles. The F8 coding sequence is large (~7 kb), exceeding the ~4.7 kb packaging limit of AAV. To overcome this, scientists utilize B-domain deleted (BDD) F8 constructs, which retain procoagulant function while fitting within the vector. While initial efficacy in trials such as those for valoctocogene roxaparvovec has been promising, achieving normal FVIII levels, long-term durability remains a concern. Follow-up data indicate a slow, steady decline in FVIII expression over several years, likely due to hepatocyte turnover and the loss of non-integrating episomal vectors [20].

6.4. Immunity and Genotoxicity


The widespread application of gene therapy is currently limited by pre-existing immunity; 30-60% of the population carries neutralizing antibodies against AAV capsids due to natural exposure, rendering them ineligible for treatment. Additionally, the cellular immune response (CD8+ T-cells) against transduced hepatocytes can lead to transaminitis and loss of transgene expression, often requiring prophylactic or reactive immunosuppression with corticosteroids. Although the risk of insertional mutagenesis with AAV is considered low, long-term surveillance for genotoxicity and hepatocellular carcinoma remains a mandatory component of post-marketing registries [21].

6.5. Gene Editing and Next-Generation Techniques

To address the limitations of episomal gene therapy, particularly in pediatric patients where liver growth would dilute non-integrating vectors, genome editing technologies are under investigation. CRISPR/Cas9 and Zinc Finger Nucleases (ZFNs) offer the potential to permanently correct the endogenous mutation or insert a therapeutic gene into a "safe harbor" locus, such as the albumin gene. These approaches could theoretically provide a permanent cure that persists through cell division, though off-target effects and delivery efficiency remain significant hurdles to clinical translation [22].

Table 5. Challenges of AAV Gene Therapy in Hemophilia A vs. Hemophilia B

Parameter	Hemophilia A (F8)	Hemophilia B (F9)
Gene Size (cDNA)	Large (~7.0 kb)	Small (~1.4 kb)
AAV Packaging	Difficult; requires B-Domain Deleted (BDD) construct to fit limit (~4.7 kb).	Easy; fits comfortably with liver-specific promoters.
Protein Secretion	Inefficient; prone to misfolding and ER stress.	Efficient secretion.
Specific Activity	Standard.	Enhanced variants available (e.g., FIX-Padua; ~8x wild-type activity).
Dose Requirement	Often requires higher vector doses (10^{13} - 10^{14} vg/kg).	Lower doses feasible due to Padua variant efficacy.
Durability of Expression	Declines over time (years); mechanism under investigation.	Sustained, stable expression observed for >10 years.

Figure 4. Clinical Pathway of AAV-Mediated Gene Therapy.

7. Quality of Life and Socioeconomic Impact

7.1. The Burden of Hemophilic Arthropathy and Chronic Pain

Despite therapeutic advances, the legacy of delayed treatment in older cohorts and the limitations of current prophylaxis in preventing all micro-bleeds mean that hemophilic arthropathy remains a major burden. Recurrent intra-articular bleeding induces a vicious cycle of iron-mediated synovial inflammation, cartilage apoptosis, and subchondral bone cyst formation. This results in debilitating chronic pain and functional impairment. For patients with inhibitors, who historically lacked effective prophylaxis, the orthopedic burden is significantly higher, often necessitating early joint replacement surgeries and chronic pain management strategies that must carefully balance analgesia with the risk of opioid dependence [23].

7.2. Psychosocial Dimensions

Hemophilia imposes a profound psychosocial toll. The unpredictability of bleeds, the burden of regular infusions, and the restriction on physical activities can lead to anxiety, depression, and social isolation. The transition to adolescence is particularly fraught, as adherence to prophylaxis often wanes. The advent of subcutaneous therapies and gene therapy has demonstrated a positive impact on Health-Related Quality of Life (HRQoL) scores, primarily by reducing the "treatment burden" and allowing for greater spontaneity in daily life [24].

7.3. Economic Implications

The economic footprint of hemophilia is substantial. Lifelong treatment with clotting factor concentrates accounts for over 90% of the direct healthcare costs associated with the disease. While novel therapies like gene therapy carry high upfront costs (often exceeding \$2-3 million per dose), health economic models suggest they may be cost-effective over a lifetime by eliminating the need for continuous factor replacement. However, these models rely on assumptions of long-term durability that are yet to be fully proven. In developing nations, the cost disparity creates a significant ethical challenge, widening the gap between the global north and south in terms of access to state-of-the-art care [24].

8. Conclusion

The management of Hemophilia A and B is undergoing a historic transformation. We are moving from an era of palliative replacement therapy to one of functional cures and simplified non-factor prophylaxis. Emicizumab has set a new standard for inhibitor management, while AAV-mediated gene therapy offers the tantalizing possibility of freedom from continuous medicalisation. Research must prioritize three key areas: (1) Immunology: Developing strategies to circumvent pre-existing AAV immunity (e.g., plasmapheresis, capsid engineering) to expand patient eligibility. (2) Durability: Enhancing the longevity of transgene expression in Hemophilia A to ensure that gene therapy is truly a "one-and-done" solution. (3) Equity: Establishing global pricing models and supply chains that allow patients in resource-constrained settings to benefit from scientific progress. Ultimately, the goal of modern hemophilia care is not merely the prevention of bleeding, but the normalization of life expectancy and quality of life.

References

- [1] Peyvandi F, Garagiola I, Young G. The past and future of haemophilia: diagnosis, treatments, and its complications. *The Lancet*. 2016;388(10040):187–97.
- [2] Srivastava A, Santagostino E, Dougall A, Kitchen S, Sutherland M, Pipe SW, et al. WFH Guidelines for the Management of Hemophilia, 3rd edition. *Haemophilia*. 2020;26(Suppl 6):1–158.
- [3] Ghosh K. Management of haemophilia in developing countries: challenges and options. *Indian J Hematol Blood Transfus*. 2011;27(3):123–8.
- [4] Mannucci PM. Hemophilia therapy: the years of fragility. *Blood*. 2008;111(4):1756–63.
- [5] Mancuso ME, Mahlangu JN, Pipe SW. The changing treatment landscape in haemophilia: from standard half-life clotting factor concentrates to gene therapy. *The Lancet*. 2021;397(10274):630–40.
- [6] Lakich D, Kazazian HH Jr, Antonarakis SE, Gitschier J. Inversions disrupting the factor VIII gene are a common cause of severe hemophilia A. *Nat Genet*. 1993;5(3):236–41.
- [7] Bagnall RD, Waseem N, Green PM, Giannelli F. Recurrent inversion breaking intron 1 of the factor VIII gene is a frequent cause of severe hemophilia A. *Blood*. 2002;99(1):168–74.
- [8] Oldenburg J, Pavlova A. Genetic risk factors for inhibitors to factors VIII and IX. *Haemophilia*. 2006;12(Suppl 6):15–22.
- [9] Crossley M, Ludwig M, Stowell KM, De Vos P, Olek K, Brownlee GG. Recovery from hemophilia B Leyden: an androgen-responsive element in the factor IX promoter. *Science*. 1992;257(5068):377–9.
- [10] Pavlova A, Delev D, Pezeshkpoor B, Müller J, Oldenburg J. Haemophilia A mutations in patients with non-severe phenotype associated with a discrepancy between one-stage and chromogenic factor VIII activity assays. *Thromb Haemost*. 2014;111(5):851–61.
- [11] Keeney S, Mitchell M, Goodeve A. Practice guidelines for the molecular diagnosis of haemophilia A. *Int J Lab Hematol*. 2010;32(4):371–7.
- [12] Astermark J. FVIII inhibitors: pathogenesis and avoidance. *Blood*. 2015;125(13):2045–51.
- [13] Gouw SC, van der Bom JG, Ljung R, Escuriola C, Kurnik K, van den Berg HM, et al. Factor VIII products and inhibitor development in severe hemophilia A. *N Engl J Med*. 2013;368(3):231–9.
- [14] Kitazawa T, Igawa T, Sampei Z, Murata T, Kojima T, Soeda T, et al. A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model. *Nat Med*. 2012;18(10):1570–4.
- [15] Oldenburg J, Mahlangu JN, Kim B, Schmitt C, Callaghan MU, Young G, et al. Emicizumab Prophylaxis in Hemophilia A with Inhibitors. *N Engl J Med*. 2017;377(9):809–18.
- [16] Adamkiewicz JI, Chen DC, Paz-Priel I. Effects and interferences of emicizumab, a humanized bispecific antibody mimicking activated factor VIII cofactor function, on coagulation assays. *Thromb Haemost*. 2019;119(7):1084–93.
- [17] Jenkins PV, Bowyer AE, Burgess C, Kitchen S, Van Veen JJ, Maclean R, et al. Laboratory coagulation testing in the era of emicizumab. *J Thromb Haemost*. 2020;18(8):1803–8.
- [18] High KA, Anguela XM. Adeno-associated viral vectors for the treatment of hemophilia. *Hum Mol Genet*. 2016;25(R1):R26–R31.
- [19] George LA, Sullivan SK, Giermasz A, Rasko JEJ, Samelson-Jones BJ, Ducore J, et al. Hemophilia B Gene Therapy with a High-Specific-Activity Factor IX Variant. *N Engl J Med*. 2017;377(23):2215–27.
- [20] Pasi KJ, Rangarajan S, Mitchell N, Lester W, Symington E, Madan B, et al. Multiyear Follow-up of AAV5-hFVIII-SQ Gene Therapy for Hemophilia A. *N Engl J Med*. 2020;382(1):29–40.
- [21] Nguyen GN, Everett JK, Kafle S, Roche AM, Raymond HE, Leiby J, et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. *Nat Biotechnol*. 2021;39(1):47–55.
- [22] Sharma R, Anguela XM, Doyon Y, Wechsler T, DeKelver RC, Sproul S, et al. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. *Blood*. 2015;126(15):1777–84.
- [23] Walsh CE, Jiménez-Yuste V, Auerswald G, Grigg A, Pasi KJ, et al. The burden of inhibitors in haemophilia A: a systematic literature review. *Haemophilia*. 2016;22(5):e402–e414.
- [24] Skinner MW. Assessing the value of haemophilia care: quality of life, health economics and patient perspectives. *Haemophilia*. 2018;24(Suppl 6):22–6.