REVIEW ARTICLE

A Review on the Potential of Biased Agonism in the GPCR Signalosome for Therapeutic Efficacy

Nagur Raju Chintakayala*

PG Scholar, Department of Pharmacology, School of Pharmacy, Godavari Global University, Rajamahendravaram, Andhra Pradesh, India

Publication history: Received on 29th July 2025; Revised on 9th September 2025; Accepted on 14th September 2025

Article DOI: 10.69613/vn401w15

Abstract: G protein-coupled receptors (GPCRs) represent the largest class of membrane proteins and the most common target of approved pharmaceuticals. Classical pharmacology categorizes ligands based on a linear model of efficacy, yet this fails to account for the pluri-dimensional nature of GPCR signaling. These receptors do not function as simple monoliths but as allosteric machines capable of activating multiple, distinct downstream pathways, primarily mediated by heterotrimeric G proteins or β -arrestins. Biased agonism, or functional selectivity, describes the ability of a ligand to stabilize a specific receptor conformation that preferentially engages one signaling pathway over others. This selectivity is not inherent to the receptor alone but is dictated by the dynamic, spatio-temporal assembly of a macromolecular complex known as the signalosome. This complex, composed of the receptor, transducers, scaffolding proteins, kinases, and effectors, translates the ligand-receptor interaction into a specific cellular phenotype. Biased agonists offer a promising strategy for developing a new generation of medicines by selectively activating pathways associated with therapeutic benefit while avoiding those linked to adverse effects such as G protein-mediated analgesia over β -arrestin-mediated respiratory depression at the μ -opioid receptor. This approach requires a sophisticated knowledge of signalosome composition and the structural basis of ligand-receptor-transducer interactions to rationally design therapeutics with superior efficacy and improved safety profiles.

Keywords: G Protein-Coupled Receptors (GPCRs); Biased Agonism; Signalosome; Functional Selectivity; Drug Discovery

1. Introduction

G protein-coupled receptors (GPCRs) form the largest superfamily of cell-surface receptors encoded by the human genome. They are the principal transducers of extracellular signals, sensing a vast array of stimuli, from photons and small molecules to peptides and large proteins [1]. Given their ubiquitous expression and critical role in regulating virtually all physiological processes, it is logical that they constitute the single largest class of targets for modern pharmacotherapeutics, accounting for approximately 35% of all FDA-approved drugs [2].

For decades, drug discovery was guided by a classical, two-state pharmacological model. In this view, a receptor exists in equilibrium between an inactive (R) and an active (R*) state. Ligands were classified along a linear spectrum: agonists (full or partial) stabilize the active state, antagonists block agonist binding, and inverse agonists stabilize the inactive state [3]. This model implicitly assumes that a ligand's intrinsic efficacy is monolithic; that is, its effect (e.g., 60% of the maximal response) is consistent across all signaling pathways coupled to that receptor. However, this simplified model has been increasingly challenged by observations of "functional selectivity," now more commonly termed biased agonism [4].

Biased agonism describes the phenomenon whereby different agonists, binding to the same receptor, can stabilize distinct active conformations. These distinct conformations, in turn, exhibit preferential coupling to a specific subset of the receptor's available intracellular signaling partners [5]. This observation reframed the GPCR from a simple binary switch into a complex, allosteric machine capable of producing a "pluri-dimensional" or "biased" signaling output, which is entirely dependent on the chemical structure of the bound ligand [6].

The most extensively characterized axis of biased signaling involves the divergent pathways mediated by heterotrimeric G proteins and β -arrestins. Upon agonist binding, the "classical" GPCR signaling cascade is initiated. The activated receptor conformation acts as a guanine nucleotide exchange factor (GEF), catalyzing the exchange of GDP for GTP on the α -subunit of its cognate heterotrimeric G protein (e.g., Gs, Gi, Gq). This leads to the dissociation of the G α -GTP and G γ subunits, which then go on to modulate the activity of primary effectors [7]. These effectors include adenylyl cyclase (regulated by Gs and Gi) and phospholipase

^{*} Corresponding author: Nagur Raju Chintakayala

C-β (regulated by Gq), which generate the diffusible second messengers cAMP, inositol trisphosphate (IP3), and diacylglycerol (DAG), respectively. This wave of G protein signaling is typically rapid and transient, originating from the plasma membrane [8].

The termination of G protein signaling, or desensitization, is also initiated by the active receptor conformation. Agonist-occupied receptors are phosphorylated on their C-terminal tail and/or intracellular loops by G protein-coupled receptor kinases (GRKs) [9]. This phosphorylation dramatically increases the receptor's binding affinity for β -arrestin 1 (β -arr1) and β -arrestin 2 (β -arr2). Initially, β -arrestins were known only for their role in desensitization; they sterically hinder G protein coupling and act as adaptors for clathrin-mediated endocytosis, effectively removing the receptor from the cell surface [10].

A paradigm shift occurred with the discovery that β-arrestins are not merely passive terminators but active signal transducers in their own right. Upon binding to the phosphorylated receptor, β-arrestins undergo a conformational change that enables them to scaffold a host of signaling proteins, most notably components of the mitogen-activated protein kinase (MAPK) cascades (e.g., ERK1/2, JNK, p38) [11, 12]. This "second wave" of signaling is often initiated during the process of endocytosis and can persist from endosomal compartments, resulting in a signal that is spatio-temporally distinct from the initial G protein-mediated wave [13].

The selective activation of either G protein or β -arrestin pathways is not governed by the receptor in isolation. Rather, the signaling outcome is orchestrated by a highly organized, dynamic, and context-dependent macromolecular complex termed the signalosome [14]. This complex includes the receptor, its primary transducers (G proteins, β -arrestins), regulatory proteins (GRKs, RGS proteins), scaffolding proteins (e.g., A-kinase anchoring proteins (AKAPs), caveolin), and downstream effectors (kinases, phosphatases) [15].

The composition of the signalosome is not static; it is defined by the specific cellular environment, the receptor's localization (e.g., plasma membrane lipid rafts versus endosomes), and the complement of proteins expressed in a given cell type [13]. A biased ligand, therefore, is one that stabilizes a receptor conformation that preferentially assembles one functional signalosome over another. For instance, a "G protein-biased" ligand may stabilize a conformation that is a poor substrate for GRKs, thereby preventing β -arrestin recruitment and subsequent internalization and MAPK signaling, leading to sustained G protein activity from the cell surface [16]. Conversely, a " β -arrestin-biased" ligand may promote a conformation that is rapidly phosphorylated and internalized, favoring endosomal MAPK signaling with minimal G protein activation [11].

The discovery of biased agonism provides a compelling hypothesis for rational drug design. Many of the sought-after therapeutic actions of a GPCR-targeting drug may be mediated by one signaling pathway, while the undesirable side effects, toxicities, and tolerance development may be driven by a divergent pathway [17].

The canonical example is the μ -opioid receptor (MOR). For decades, it has been hypothesized that the profound analgesia provided by opioids like morphine is mediated by G protein signaling (specifically Gai) [18]. Conversely, the life-threatening side effects of respiratory depression, as well as constipation, tolerance, and dependence, are thought to be strongly linked to the recruitment of β -arrestin 2 [19, 20]. This hypothesis suggests that a G protein-biased MOR agonist, which activates the analgesic G protein pathway while failing to recruit β -arrestin, could function as a potent analgesic with a vastly improved therapeutic window. This specific line of inquiry has progressed from a pharmacological concept to clinical reality, validating the potential of biased agonism as a transformative drug discovery strategy [21].

This review will explain the molecular and structural mechanisms that encode bias within the GPCR signalosome, discuss the pharmacological methods used to quantify functional selectivity, and focus on the main therapeutic areas where this approach is being actively applied to develop safer and more effective medicines

2. Molecular Mechanisms of Biased Agonism

The capacity of a GPCR to adopt multiple, ligand-specific active conformations is the molecular basis of biased agonism. This conformational flexibility allows the receptor to differentially engage intracellular binding partners. The resulting signal bias is not a simple on/off switch but a nuanced outcome determined by a series of events, from the initial ligand-receptor interaction to the complex assembly of the signalosome, modulated by post-translational modifications.

2.1. Ligand-Specific Receptor Conformations

At the heart of functional selectivity is the receptor's ability to exist in an ensemble of conformational states [22]. Ligands do not "activate" the receptor in a singular sense; instead, they bind to and stabilize a specific subset of conformations from this pre-existing dynamic repertoire [23]. A full agonist, for example, may be adept at stabilizing a conformation that efficiently couples to both G

proteins and GRKs. A G protein-biased agonist, in contrast, would stabilize a conformation that is competent for G protein coupling but is a poor substrate for the GRKs required for β-arrestin recruitment [16].

Recent breakthroughs in structural biology, particularly cryo-electron microscopy (cryo-EM), have provided unprecedented, highresolution snapshots of these distinct, active-state complexes. Structures of the same receptor (e.g., the MOR or \(\beta \)-adrenergic receptor) bound to a G protein versus β-arrestin have revealed substantial differences [24, 25]. For example, in the β-arrestin-bound structure, the receptor's transmembrane helices (TMs) 5, 6, and 7 exhibit a more pronounced outward displacement at the intracellular face compared to the G protein-bound state. This differential rearrangement creates a unique binding cavity that is selectively recognized by the transducer. The ligand, situated deep in the orthosteric pocket, allosterically dictates which of these transducer-specific conformations is favored [26].

G Protein-Mediated Signaling β-Arrestin-Mediated Signaling Feature Initiation Agonist-receptor binding induces conformational Receptor phosphorylation by GRKs following agonist binding. change. Primary Heterotrimeric G proteins (e.g., Gs, Gi, Gq). β-Arrestin 1 and β-Arrestin 2. Transducer Signaling Primarily at the plasma membrane. Plasma membrane and endosomal compartments. Location **Typical** Rapid and transient (seconds to minutes). Can be sustained (minutes to hours). Duration **Key Effectors** Adenylyl Cyclase, Phospholipase C (PLC) MAP kinases (e.g., ERK1/2, JNK), Akt. Generation of second messengers (cAMP, IP3, Classical Receptor desensitization, internalization, and signal **Function** transduction/scaffolding.

Table 1. Comparison of Canonical G Protein and β-Arrestin Signaling Pathways

2.2. The Role of Receptor Phosphorylation Codes

DAG) to trigger acute cellular response.

For the vast majority of GPCRs, β-arrestin recruitment is not a direct consequence of agonist binding. It is a subsequent event that is critically dependent on receptor phosphorylation by GRKs [9]. Agonist-induced receptor conformations expose serine (Ser) and threonine (Thr) residues, primarily in the C-terminal tail and intracellular loops (ICLs), to GRK-mediated phosphorylation.

This phosphorylation is not a stochastic event; it creates a specific "barcode" that is "read" by β-arrestin [27]. Different GRK isoforms may phosphorylate distinct sites, and different ligands can induce receptor conformations that show differential preference for GRK isoforms or present different phosphorylation sites [28]. This multi-site phosphorylation pattern, in turn, dictates the affinity, kinetics, and conformation of the subsequent β-arrestin interaction.

Pathway	Assay	Example(s)	Principle
Measured			
G Protein Activation	Second Messenger	cAMP accumulation (for	Measures the downstream product of adenylyl cyclase.
		Gs/Gi)	
		Ca ²⁺ mobilization / IP1	Measures PLC-mediated calcium release or its
		(for Gq)	metabolite.
	Transducer	35SGTP\γS Binding	Measures Gα protein activation via binding of a non-
	Engagement		hydrolyzable GTP analog.
	Transducer	G Protein BRET/FRET	Measures conformational change or subunit dissociation
	Engagement		(e.g., G α -Gβγ split).
β-Arrestin	Transducer	β-Arrestin BRET/FRET	Measures proximity of β-arrestin (acceptor) to the
	Recruitment		receptor (donor).
	Transducer	Tango / EFC Assays	Enzyme fragment complementation upon β-arrestin
	Recruitment		recruitment.
	Downstream	p-ERK Immunoassay	Measures phosphorylation of ERK kinase, a common
	Signaling		downstream target.
	Cellular Process	Receptor Internalization	Measures loss of surface receptors via microscopy or
		_	ELISA.

Table 2. Common Methodologies for Quantifying Biased Agonism

For example, a ligand that induces a rapid, multi-site phosphorylation barcode may promote a stable, "coupled" interaction with β -arrestin, leading to robust receptor internalization and β -arrestin-mediated signaling. In contrast, a ligand that promotes phosphorylation at only a single site may engage β -arrestin only transiently, sufficient for G protein desensitization but insufficient to initiate the full internalization and signaling program [27, 29]. Therefore, a ligand can be "biased" simply by being a poor substrate for the relevant GRK, effectively uncoupling the G protein activation phase from the β -arrestin desensitization phase.

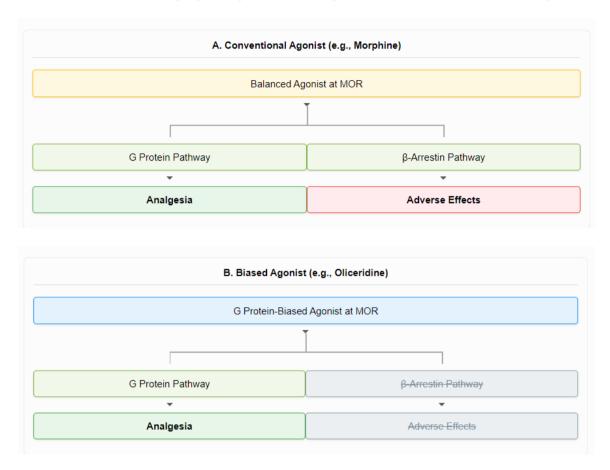


Figure 1. Therapeutic Rationale for Biased Agonism at the μ-Opioid Receptor (MOR)

2.3. The Signalosome as an Allosteric Modulator

The signaling complex is far more intricate than just the receptor and its primary transducer. The local membrane environment and the presence of associated scaffolding and regulatory proteins profoundly influence the signaling outcome [15].

2.3.1. Spatio-Temporal Compartmentation

Signaling is not uniformly distributed throughout the cell. G protein signaling is largely restricted to the plasma membrane, whereas β -arrestin-mediated signaling, particularly for the MAPK pathway, can be initiated at the plasma membrane but is sustained and amplified from endosomal compartments following receptor internalization [13, 30]. A ligand's bias can thus be expressed temporally. A "G protein-biased" agonist that poorly recruits β -arrestin (e.g., Oliceridine) causes less receptor internalization, leading to more sustained signaling from the plasma membrane compared to a traditional agonist like morphine, which promotes internalization [21]. This spatio-temporal segregation allows two pathways originating from the same receptor to have distinct downstream cellular consequences.

2.3.2. Scaffolding Proteins and Accessory Partners

The signalosome is physically organized by a network of scaffolding proteins. For instance, AKAPs can assemble "microsignalosomes" containing the β_2 -adrenergic receptor, Gs, adenylyl cyclase, and protein kinase A (PKA) [31]. This pre-assembly can kinetically favor the G protein pathway. Similarly, proteins like APPL1 can link internalized receptors in endosomes to downstream effectors like AKT [13].

Moreover, proteins that interact directly with the receptor, such as Receptor Activity-Modifying Proteins (RAMPs) for the calcitonin receptor-like receptor (CLR), can fundamentally alter the receptor's pharmacology and signaling preference [32]. Regulators of G protein Signaling (RGS) proteins act as GTPase-accelerating proteins (GAPs) that terminate G protein signaling, adding another layer of control [33]. The specific G protein α -subunits (e.g., $G\alpha_{i1}$ vs. $G\alpha_{i2}$) or $G\beta\gamma$ dimers expressed in a cell can also exhibit different coupling efficiencies, further tuning the signal output [34].

In this context, a biased ligand is a tool that selects a specific pathway, but the pathway itself is constructed and constrained by the cell's unique protein expression profile and subcellular architecture. This indicates a significant challenge: a ligand's observed bias can be highly cell-type dependent, complicating the translation from *In vitro* assays to *in vivo* therapeutic efficacy [35].

3. Pharmacological Quantification of Biased Agonism

The translation of the biased agonism concept from a theoretical framework to a practical drug discovery tool hinges on its robust and meaningful quantification. Measuring bias is inherently complex because it is not an absolute property of a ligand. Instead, it is a relative measure that can only be defined by comparing the activity of a ligand across at least two distinct signaling pathways, and often relative to a standard reference compound [36]. A simple comparison of potency (EC_{50}) or maximal effect (E_{max}) between two different assays (e.g., a cAMP assay and a β -arrestin recruitment assay) is insufficient and often misleading, as these parameters are heavily influenced by assay-specific factors like signal amplification and transducer expression levels [37].

3.1. In vitro Assay Methodologies

To quantify bias, a suite of assays must be employed to selectively measure the outputs of different signaling branches. These assays are typically performed in engineered cell lines (like HEK-293 or CHO cells) that stably express the receptor of interest and the necessary biosensors.

3.1.1. Measuring G Protein-Dependent Pathways

Quantification of G protein pathway activation is most commonly achieved by measuring the production of downstream second messengers or the direct engagement of the G protein itself.

- Second Messenger Assays: For Gs- and Gi-coupled receptors, the measurement of intracellular cyclic AMP (cAMP) levels is the gold standard, typically using luminescence- or fluorescence-based reporter systems [38]. For Gq-coupled receptors, the preferred readouts are the mobilization of intracellular calcium (Ca²⁺) via fluorescent dyes or the production of inositol monophosphate (IP1), a stable metabolite of IP3 [39].
- **GTPγS Binding Assays:** This is a classical functional assay performed on cell membranes. It measures the binding of a non-hydrolyzable GTP analog, 35SGTPγS, to Gα subunits upon receptor activation. The amount of bound radiolabel is a direct proxy for G protein activation [40].

Table 2	Thomas	tia Tarante	for Rice	ed Agonism
Table 5.	. i nerabeu	HIC TAIPER	s ioi bias	seu agomsm

Receptor	Therapeutic	Desired	Rationale for Bias (Desired vs.	Example Ligand(s)
	Area	Bias	Undesired Pathway)	
γ-Opioid Receptor	Pain	G Protein	Desired (G protein): Analgesia.	Oliceridine (TRV130)
(MOR)	Management		Undesired (β-arr 2): Respiratory depression,	
			constipation, tolerance.	
Angiotensin II Type	Cardiovascular	β-Arrestin	Desired (β-arr): Cardioprotection,	TRV027 (Sarcosine-
1 (AT1R)			vasodilation.	AngII)
			Undesired (Gq): Vasoconstriction,	
			hypertension.	
Dopamine D2	Schizophrenia	β-Arrestin	Desired (β-arr): Potential antipsychotic	Aripiprazole (partial
Receptor (D2R)			effects with low motor side effects.	agonist with bias)
			Undesired (G protein): Extrapyramidal	
			symptoms (EPS).	
Serotonin 5-HT _{2A}	Depression	β-Arrestin	Desired (β-arr): Potential rapid	(Various preclinical
Receptor	ptor antidepressant effects. con		compounds)	
			Undesired (Gq): Hallucinogenic activity.	

• **Biophysical and Resonance-Based Assays:** Modern techniques using Bioluminescence Resonance Energy Transfer (BRET) or Fluorescence Resonance Energy Transfer (FRET) have enabled the real-time measurement of protein-protein interactions within living cells. BRET-based sensors can be configured to measure the dissociation of the Gα and Gβγ subunits, or the direct interaction between the activated receptor and the G protein, providing a proximal and dynamic readout of activation [41].

3.1.2. Measuring β-Arrestin-Dependent Pathways

Assays for the β -arrestin pathway are typically designed to measure either the physical recruitment of β -arrestin to the receptor or the activation of downstream signaling cascades.

- β-Arrestin Recruitment Assays: BRET and FRET are the most widely used methods. In a common BRET configuration, the receptor is fused to a bioluminescent donor (e.g., Renilla luciferase) and β-arrestin is fused to a fluorescent acceptor (e.g., YFP). Agonist-induced recruitment of β-arrestin brings the donor and acceptor into close proximity, resulting in a quantifiable BRET signal [42]. Enzyme-fragment complementation (EFC) assays, such as the Tango assay, have also been widely adopted for high-throughput screening [43].
- **Downstream Kinase Activation:** As β-arrestins scaffold MAPK pathways, measuring the phosphorylation of effector kinases like ERK1/2 (p-ERK) is a common downstream readout. This is typically quantified using ELISA or similar immunoassay techniques [11].
- Receptor Internalization: While often mediated by β-arrestin, receptor internalization is a distinct cellular event. It can be monitored using antibody-based labeling of cell-surface receptors, microscopy, or receptor-fused fluorescent proteins [10].

3.2. Analytical Models for Bias Calculation

Once dose-response data have been generated for at least two pathways, a mathematical framework is required to normalize the data and calculate a bias factor. The operational model, first described by Black and Leff, is the most accepted method for this purpose [44].

This model fits the entire dose-response curve (rather than just using EC_{50} and E_{max} to an equation that describes the agonist-receptor interaction K_A , the equilibrium dissociation constant) and the subsequent stimulus-response coupling $tau(\tau)$, the transduction coefficient). The τ value represents the operational efficacy of the agonist-receptor complex for a *specific* pathway within that *specific* cellular system. It amalgamates factors like receptor density, transducer density, and the intrinsic efficacy of the ligand into a single term [37].

To quantify bias, the "transduction coefficient" $\log \tau / K_A$ is calculated for the test ligand L_A and a reference ligand L_B across the two pathways of interest (e.g., G protein and β -arrestin). The reference ligand is ideally a well-characterized compound that is assumed to be "balanced," or is at least a relevant clinical standard (e.g., morphine for the MOR).

The bias calculation is a relative comparison of these relative efficacies, expressed as a $\Delta \log \tau / K_A$ or "bias factor" [45]:

$$\Delta \log \tau / K_A = \Delta \log (\tau / K_A) G_{protein}$$
 - $\log (\tau / K_A) \beta_{arrestin}$

Bias Factor =
$$\Delta \log \tau / K_{A~Test~Ligand}$$
 - $\Delta \log \tau / K_{A~Reference~Ligand}$

A positive bias factor indicates that the test ligand is biased towards the G protein pathway relative to the reference ligand. A negative value indicates bias towards the β -arrestin pathway. A value of zero suggests the test ligand has the same relative bias as the reference [45].

3.3. Challenges and Context-Dependency

The quantification of bias is not without significant challenges. The calculated bias factor is highly sensitive to the choice of reference ligand [36]. Moreover, the observed bias is critically dependent on the cellular context. A ligand's bias factor can differ substantially between a recombinant HEK-293 cell line and a physiologically relevant cell type, such as a primary neuron [35]. This discrepancy arises from cell-specific differences in the expression levels and stoichiometry of the signalosome components, including receptor density, G protein isoforms, GRK isoforms, and β-arrestin levels [34, 46]. This "system bias" complicates the direct translation of *In vitro* bias factors to *in vivo* physiological effects, remaining a key hurdle in the field.

4. Therapeutic Applications

The primary impetus for investigating biased agonism is the potential to rationally design therapeutics with superior efficacy and diminished adverse effects. The central hypothesis is that for many GPCRs, the desired therapeutic effects are mediated by one signaling arm (e.g., G protein), while the undesired side effects, tolerance, or dependence are driven by another (e.g., β -arrestin). A new generation of drugs could achieve a significantly wider therapeutic index by selectively modulating these pathways,

4.1. The μ -Opioid Receptor (MOR): The Prototypical Example

The most advanced and clinically validated application of biased agonism is at the μ -opioid receptor (MOR) [18]. For decades, opioid agonists like morphine have been the gold standard for treating severe pain. Their profound analgesic properties are mediated by Gai protein signaling, which inhibits adenylyl cyclase and neuronal excitability [19]. However, their clinical utility is severely limited by a constellation of life-threatening side effects, including respiratory depression, constipation, profound sedation, and the development of tolerance and opioid use disorder.

A large body of preclinical evidence strongly suggests that while G protein signaling drives analgesia, the recruitment of β -arrestin 2 is a key driver of these adverse effects [20]. β -Arrestin 2 recruitment promotes MOR internalization, which is linked to the development of tolerance. More critically, β -arrestin 2-mediated signaling cascades are implicated in initiating respiratory depression and constipation [19, 47].

This hypothesis spurred the development of G protein-biased MOR agonists, designed to preferentially activate G protein signaling with minimal β-arrestin 2 recruitment. The lead compound in this effort, Oliceridine (TRV130), was systematically optimized for G protein bias relative to morphine [21]. In preclinical models, Oliceridine provided potent analgesia comparable to morphine but with significantly reduced respiratory depression and constipation, and a slower development of tolerance [48]. These findings were substantially translated in human clinical trials, where Oliceridine demonstrated effective analgesia with a more favorable safety profile concerning respiratory and gastrointestinal adverse events compared to equianalgesic doses of morphine. This effort culminated in the 2020 FDA approval of Oliceridine for the management of acute pain, serving as the first-in-class biased ligand to achieve clinical use and validating the entire therapeutic concept [49].

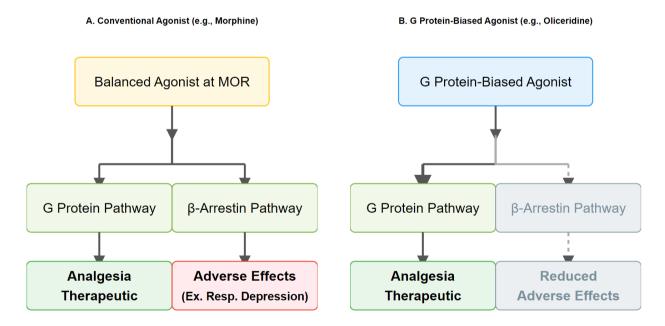


Figure 2. Therapeutic Rationale at the μ-Opioid Receptor (MOR)

4.2. Angiotensin II Type 1 Receptor (AT1R)

The AT1R is another classic model for biased agonism, central to cardiovascular regulation. The AT1R is activated by the octapeptide Angiotensin II (AngII), and its canonical signaling occurs through the Gq protein pathway, leading to vasoconstriction, aldosterone release, and sodium retention, all of which contribute to hypertension [50]. Consequently, angiotensin receptor blockers (ARBs) are cornerstone therapies for hypertension.

However, the AT1R also signals via β-arrestin, and this pathway is hypothesized to be cardioprotective. β-Arrestin-mediated signaling from the AT1R can activate pro-survival kinases (like ERK and Akt) and promote vasodilation, opposing the Gq-mediated effects [51, 52]. This discovery led to the hypothesis that an ideal AT1R ligand might not be a simple antagonist (like traditional ARBs) but rather a "biased agonist" that blocks the Gq pathway while simultaneously *promoting* the beneficial β-arrestin pathway.

Several ARBs, known as "sartans," were retrospectively found to exhibit varying degrees of β-arrestin bias [53]. Moreover, novel biased ligands, such as TRV027 (sarcosine-AngII), were designed to be potent β-arrestin-biased agonists. In preclinical models of acute heart failure, TRV027 demonstrated beneficial cardiovascular effects, such as increasing cardiac contractility and output without increasing blood pressure, by selectively engaging this β-arrestin-mediated, G protein-independent pathway [51]. While TRV027 did not meet its primary endpoints in a large Phase IIb trial for acute heart failure, the underlying principle of leveraging biased agonism at the AT1R for cardiovascular disease remains an active area of investigation [54].

4.3. Dopamine and Serotonin Receptors in Neuropsychiatry

The GPCRs of the central nervous system, particularly dopamine and serotonin receptors, represent a major frontier for biased agonism. Current treatments for disorders like schizophrenia and depression are often hampered by severe side effects or delayed onset of action.

4.3.1. Dopamine D2 Receptor (D2R)

Antipsychotic drugs primarily function by antagonizing the dopamine D2 receptor (D2R). Their therapeutic efficacy in mitigating the positive symptoms of schizophrenia (e.g., hallucinations) is linked to blocking Gai signaling in the mesolimbic pathway [55]. However, their concurrent blockade of D2R signaling in the nigrostriatal pathway leads to debilitating extrapyramidal symptoms (EPS) and motor side effects, such as parkinsonism and tardive dyskinesia [56].

Interestingly, β -arrestin 2 recruitment at the D2R has been proposed to mediate a separate signaling cascade, potentially related to the efficacy of "atypical" or second-generation antipsychotics, which generally have a lower incidence of EPS. Several atypical antipsychotics, such as aripiprazole and clozapine, exhibit distinct profiles of β -arrestin recruitment compared to older, "typical" antipsychotics like haloperidol [57]. This has fueled the search for D2R ligands that are biased *towards* β -arrestin signaling, with the hypothesis that such compounds could act as functional antagonists of G protein signaling (treating psychosis) while simultaneously engaging a beneficial β -arrestin-dependent pathway, potentially avoiding motor side effects [58].

4.3.2. Serotonin 5-HT_{2A} Receptor

The serotonin 5-HT_{2A} receptor is another target of immense interest. It is the primary target for psychedelic compounds (e.g., psilocybin, LSD), which are potent Gq-biased agonists [59]. It is also a target for atypical antipsychotics. There is growing evidence that the therapeutic effects of psychedelics for treating depression and anxiety may be separable from their profound hallucinogenic effects. The hallucinogenic activity is strongly correlated with Gq protein activation, whereas β-arrestin signaling at the 5-HT_{2A} receptor may be non-hallucinogenic and potentially even contribute to antidepressant effects [60]. This has led to the development of non-hallucinogenic, β-arrestin-biased 5-HT_{2A} agonists as novel, rapid-acting antidepressants, representing a paradigm shift from traditional serotonergic drugs [61].

5. Challenges and Future Perspectives

While the principle of biased agonism has moved from a pharmacological curiosity to a clinically validated strategy, several significant hurdles and complex questions remain. The future progression of this field depends on addressing the challenges of translation, expanding the known signaling repertoire, and leveraging new technologies for rational design.

5.1. The Challenge of Translational Fidelity and System Bias

A significant hurdle impeding the clinical progress of biased ligands is the issue of translational fidelity. The quantitative bias factor, meticulously measured in recombinant cell lines (such as HEK-293), often fails to accurately predict the physiological response in native tissues or *in vivo* [35]. This discrepancy is largely attributed to system bias, which arises from the distinct cellular contexts [46].

The stoichiometric expression levels and subcellular localization of signalosome components such as receptor density, G protein isoforms, GRK subtypes (e.g., GRK2 vs. GRK5), and β-arrestin levels can vary dramatically between a heterologous expression system and a primary neuron, hepatocyte, or cardiomyocyte [62]. For example, a cell expressing low levels of GRKs and high levels of G protein may make all agonists appear G protein-biased. Consequently, a ligand identified as G protein-biased in a standardized

assay system may exhibit a balanced or even β -arrestin-biased profile in the target tissue, complicating preclinical development and candidate selection. Overcoming this requires a shift towards more complex and physiologically relevant assay systems, such as primary human cells or iPSC-derived tissue models [35].

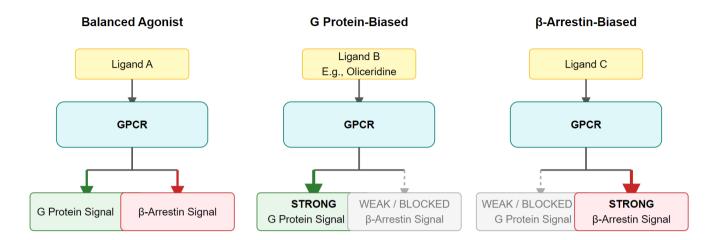


Figure 3. Mechanism of Balanced vs. Biased Agonism

Table 4. Challenges in Biased Agonism

Challenge	Description	Current Trends
System Bias	A ligand's measured bias (e.g., in HEK-293 cells) does not	Development of assays in more physiologically
	translate to native tissues due to different signalosome	relevant systems (e.g., primary cells, iPSC-derived
	components.	neurons).
Multi-	The G/ β -arrestin dichotomy is an oversimplification; bias	Broader signaling panels to create a
dimensional	exists between G protein subtypes (e.g., Gq vs. G12) and	comprehensive "signaling signature" for each
Bias	β-arrestin scaffolds.	ligand.
Spatio-	The location (e.g., plasma membrane vs. endosome) and	Advanced live-cell imaging and kinetic modeling
temporal Bias	kinetics (duration) of signaling are critical, not just the	to integrate time and location into the bias model.
	pathway choice.	
Rational	Moving from discovery (screening) to de novo design of	Using high-resolution cryo-EM structures of
Design	biased ligands has been difficult.	transducer-bound complexes for structure-based
_		drug design (SBDD).

5.2. Expanding the Signaling Repertoire Beyond G/β-arrestin

The prevalent focus on the G protein versus β-arrestin axis, while foundational, represents an oversimplification of the GPCR signaling network. Functional selectivity can, and does, exist across a much wider array of pathways.

5.2.1. Intra-G Protein and Intra-Arrestin Bias

Receptors that couple to multiple G protein families (e.g., Gq and G12/13) may be biased by ligands to preferentially activate one G protein family over another [63]. Even within the G α i family, ligands may show preference for G α i1 over G α i2. Similarly, β -arrestin itself is not a monolithic transducer; it scaffolds multiple, distinct signaling pathways (e.g., ERK, JNK, p38, Akt). Ligands may exhibit "scaffold bias" by preferentially directing β -arrestin to activate one kinase cascade over another, each with unique cellular consequences [64].

5.2.2. Gby Subunit Signaling

The $G\beta\gamma$ dimer, released upon G protein activation, is a potent signaling entity in its own right, regulating effectors such as inwardly-rectifying potassium channels (GIRKs) and ion channels [7]. It is plausible that ligands could stabilize receptor conformations that differentially promote $G\beta\gamma$ -mediated signaling independent of the $G\alpha$ -subunit's activity, adding another dimension of potential bias.

Future work must characterize this higher-dimensional bias to fully map the signaling potential of a ligand. This requires the development of more comprehensive assay panels that can simultaneously read out multiple, distinct signaling events.

5.3. Structure-Based Rational Design

The advent of high-resolution cryo-electron microscopy (cryo-EM) has provided unprecedented, atomic-level snapshots of GPCRs captured in complex with their specific transducers, such as a G protein or β -arrestin [24, 25]. These structures reveal the distinct conformational rearrangements in the receptor's transmembrane core and intracellular loops that confer transducer selectivity.

For example, structures of the MOR bound to a G protein-biased agonist (like oliceridine) versus a balanced agonist (like DAMGO) highlight subtle but critical differences in the orthosteric and allosteric pockets that are allosterically transmitted to the intracellular transducer-binding site [65]. This structural knowledge is shifting the discovery paradigm from empirical high-throughput screening of large chemical libraries to a more rational, **structure-based drug design (SBDD)**. Computational methods, including molecular dynamics simulations and machine learning, are now being employed to prospectively design novel chemical entities that are "locked" into these specific, transducer-biased conformations [66].

5.4. Integration of Signaling Kinetics and Location (Spatio-Temporal Bias)

Increasing evidence suggests that the *location* and *duration* of signaling are just as critical as the initial pathway choice. This is the concept of spatio-temporal bias [13]. As previously noted, G protein signaling is predominantly rapid and membrane-delimited, while β-arrestin signaling can be sustained for long periods from endosomal compartments following receptor internalization [30].

A ligand's bias may, therefore, be expressed kinetically; for instance, by promoting a G protein signal that is rapid and transient versus one that is sustained due to poor desensitization. This "kinetic bias" may be a key determinant of the ultimate physiological effect [67]. Future pharmacological models must evolve to integrate these kinetic and compartmental parameters, moving beyond simple endpoint measurements at an arbitrary time point to capture the full, dynamic profile of a ligand's action

6. Conclusion

Biased agonism has fundamentally altered the pharmacology around G protein-coupled receptors, supplanting the classical two-state model with a more sophisticated, pluri-dimensional view of receptor function. This concept repositions the GPCR as a complex allosteric machine capable of adopting a spectrum of active conformations. The specific conformation stabilized by a ligand, in concert with the cell-specific architecture of the signalosome, dictates the activation of distinct downstream signaling cascades. This functional selectivity provides a powerful rationale for drug design: the separation of desired therapeutic mechanisms from pathways that mediate adverse events. The successful development and regulatory approval of Oliceridine, a G protein-biased MOR agonist, has provided clinical validation for this strategy, offering a pathway to potent analgesia with a wider safety margin. This principle is now being actively applied across numerous other receptor systems, including the AT1R for cardiovascular disease and various monoamine receptors for neuropsychiatric disorders, where current treatments are frequently limited by side effects. Significant challenges remain, particularly in overcoming the context-dependency of system bias to ensure translational fidelity from the bench to the clinic. Moreover, the field must broaden its perspective to characterize the full, multi-dimensional signaling network beyond the G protein/β-arrestin dichotomy. This approach holds immense promise for developing a new class of safer, more effective, and highly selective therapeutics

References

- [1] Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009 May 21;459(7245):356–63.
- [2] Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017 Dec;16(12):829–42.
- [3] Kenakin T. A pharmacology primer: theory, receptor identification, and molecular binding. 4th ed. Academic Press; 2014.
- [4] Kenakin T. Functional selectivity; a brief history and a cascade model. J Recept Signal Transduct Res. 2002 Feb-Nov;22(1-4):15–29.
- [5] Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, et al. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther. 2007 Jan;320(1):1–13.

- [6] Smith JS, Lefkowitz RJ, Rajagopal S. Biased agonism: a new paradigm in G protein-coupled receptor drug discovery. Mol Pharmacol. 2018 May;93(5):545–53.
- [7] Gilman AG. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–49.
- [8] Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol Rev. 2005 Oct;85(4):1159–204.
- [9] Benovic JL, Bouvier M, Caron MG, Lefkowitz RJ. Regulation of adenylate cyclase-coupled beta-adrenergic receptors. Annu Rev Cell Biol. 1988:4:405–28.
- [10] Luttrell LM, Lefkowitz RJ. The role of β -arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci. 2002 Apr 15;115(Pt 8):1581–7.
- [11] Luttrell LM, Ferguson SSG, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, et al. β-Arrestin-dependent formation of signaling complexes with protein kinases maps to a common sequence in G protein-coupled receptors. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3695–700.
- [12] McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, et al. β-Arrestin 2: a receptor-regulated scaffold for binding JNK3. Science. 2000 Sep 1;290(5490):1574–7.
- [13] Irannejad R, Tsvetanova NG, Kaoud TS, Zastrow M von. Spatiotemporal signaling in control of cell physiology. Cell. 2015 Feb 26;160(5):827–37.
- [14] Bockaert J, Perroy J, Bécamel C, Marin P, Fagni L. GPCR interacting proteins (GIPs) in signal transduction: the GIPs for G protein-coupled receptors, a new mechanism of signaling regulation. Ann N Y Acad Sci. 2004 Dec;1031:167–85.
- [15] Hall RA, Lefkowitz RJ. Regulation of G protein-coupled receptor signaling by scaffolding proteins. Circ Res. 2002 May 17;90(9):947–54.
- [16] Kelly E, Bailey CP, Henderson G. Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol. 2008 Jul;154(7):1367–79.
- [17] Whalen EJ, Rajagopal S, Lefkowitz RJ. Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol Med. 2011 Mar;17(3):138–47.
- [18] Pasternak GW. Multiple opiate receptors: deja vu. Br J Pharmacol. 2004 Jan;141(2):232–40.
- [19] Bohn LM, Lefkowitz RJ, Caron MG. Differential β-arrestin-2 requirement for recovery from morphine-induced analgesia and tolerance. J Neurosci. 2002 Sep 15;22(18):8151–6.
- [20] Raehal KM, Walker JKL, Bohn LM. Morphine side effects in β-arrestin 2 knockout mice. J Pharmacol Exp Ther. 2005 Sep;314(3):1195–201.
- [21] DeWire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL, Graczyk TM, et al. A G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction. J Pharmacol Exp Ther. 2013 Apr;345(1):76–85.
- [22] Kobilka BK, Deupi X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci. 2007 Sep;28(9):449–56.
- [23] Lefkowitz RJ, Whalen EJ. β-arrestins: a new paradigm in G protein-coupled receptor signaling. J Am Coll Cardiol. 2004 Mar 17;43(6):925–30.
- [24] Koehl A, Hu H, Maeda S, Zhang Y, Qu Q, Paggi JM, et al. Structure of the μ-opioid receptor-G protein complex. Nature. 2018 Jun;558(7711):547–52.
- [25] Zhuang Y, Chen X, He B, Tao Y, He Y, Liu S, et al. Cryo-EM structure of the human μ-opioid receptor bound to a G protein-biased agonist. Nat Struct Mol Biol. 2020 Jan;27(1):40–7.
- [26] Latorraca NR, Venkatakrishnan AJ, Dror RO. GPCR dynamics: structures in motion. Chem Rev. 2017 Jan 11;117(1):139–55.
- [27] Nobles KN, Xiao K, Ahn S, Shukla AK, Lam CM, Rajagopal S, et al. Distinct phosphorylation sites on the β2-adrenergic receptor establish a signaling pathway balance. Cell. 2011 Jul 22;146(2):312–25.
- [28] Tobin AB. G-protein-coupled receptor phosphorylation: a fundamental mechanism of signalling and regulation. Nat Rev Mol Cell Biol. 2008 Feb;9(2):169–79.
- [29] Yang F, Yu X, Liu C, Qu C, Gong Z, Liu H, et al. 'Phospho-barcodes' in GPCR signalling. FEBS J. 2015 Nov;282(21):4009–22.

- [30] Tsvetanova NG, Irannejad R, Zastrow M von. G protein-coupled receptor (GPCR) signaling via endosomes. Annu Rev Physiol. 2015;77:451–73.
- [31] Welch EJ, Jones BW, Scott JD. Networking with A-kinase anchoring proteins. Mol Interv. 2010 Apr;10(2):80–91.
- [32] Sexton PM, Poyner DR. Receptor activity-modifying proteins (RAMPs). Trends Pharmacol Sci. 2007 May;28(5):233–8.
- [33] Hollinger S, Hepler JR. Cellular regulation of RGS proteins: modulators of G protein signaling. Pharmacol Rev. 2002 Sep;54(3):527–59.
- [34] Avet C, Féral B, Côté F, Debaigt C, Chafey P, Casenave M, et al. Cell-type-specific adaptor protein expression profile determines the G protein-coupled receptor's signaling and trafficking properties. Mol Pharmacol. 2015 Mar;87(3):524–36.
- [35] Grundmann M, Merten N, Malfacini D, Inoue A, Preis P, Simon K, et al. Lack of considerable basal G protein activity of μ-opioid receptors in membranes from human embryonic kidney 293 cells and native tissue. Mol Pharmacol. 2018 May;93(5):494–502.
- [36] Kenakin T. Biased receptor signaling in drug discovery. Pharmacol Rev. 2019 Jan;71(1):103–46.
- [37] Ehlert FJ. The operational model of agonism. J Pharmacol Exp Ther. 2008 Aug;326(2):354–64.
- [38] Scholler P, Klahn P, Gkountelias K, Heimgärtner C, Bähner M, Gmeiner P, et al. A generic BRET-based sensor for combined quantification of G protein-coupled receptor-G protein interactions and G protein activation. Br J Pharmacol. 2017 Aug;174(16):2705–17.
- [39] Trinquet E, Bouvier C, D'Alayer J, Pin JP. Homogeneous fluorescence resonance energy transfer assays for G-protein-coupled receptors. Methods Mol Biol. 2011;756:141–57.
- [40] Harrison C, Traynor JR. The 35GTPγS binding assay: a measure of G protein activation by G protein-coupled receptors. Methods Mol Biol. 2003;237:117–31.
- [41] Olsen R, Wensel TG. BRET sensors for measuring GPCR-G protein activation. Methods Cell Biol. 2021;166:81–101.
- [42] Hamdan FF, Percherancier Y, Breton B, Bouvier M. Monitoring protein-protein interactions in living cells by BRET. Curr Protoc Neurosci. 2006 May; Chapter 5:Unit 5.23.
- [43] Southern C, Szekeres PG. High-throughput screening of G protein-coupled receptors: a case study using the Tango β-arrestin recruitment technology. Methods Mol Biol. 2013;958:197–210.
- [44] Black JW, Leff P. Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci. 1983 Oct 22;220(1219):141–62
- [45] Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S. A simple method for quantifying functional selectivity and agonist bias. ACS Chem Neurosci. 2012 Mar 21;3(3):193–203.
- [46] Grundmann M, Gomeza J, Gkountelias K, Merten N, Wu D, Inoue A, et al. Cell-type-specific signaling of the μ-opioid receptor by synthetic opioids. Angew Chem Int Ed Engl. 2021 Mar 1;60(10):5149–57.
- [47] Bohn LM, Dykstra LA, Lefkowitz RJ. β-arrestin 2 is a key regulator of morphine-induced analgesia and tolerance. Cell. 2000 Jul 7;102(1):35–44.
- [48] Soergel DG, Subach J, Burnham N, Lark M, James IE, Sadler BM, et al. Oliceridine (TRV130), a G protein-biased μ-opioid receptor agonist: phase 1, single ascending dose study in healthy volunteers. J Clin Pharmacol. 2014 Apr;54(4):445–52.
- [49] Singla N, Viscusi ER, Webster L, Kuss M, Zampogna G, O'Brien C, et al. A randomized, open-label, multicenter study of oliceridine (TRV130), a G protein-biased μ-opioid receptor agonist, for the management of moderate to severe acute pain following bunionectomy. J Pain Res. 2017 Sep 25;10:2411–21.
- [50] de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 2000 Jun;52(2):287–306.
- [51] Violin JD, DeWire SM, Yamashita D, Rominger DH, Nguyen K, Schiller K, et al. Biased ligands at the angiotensin II type 1 receptor: a new class of antihypertensive agents? J Pharmacol Exp Ther. 2010 Sep;334(3):753–62.
- [52] Kim J, Grotegut S, Wisler JW, Mao L, Rockman HA, Lefkowitz RJ. β-Arrestin 2 is required for angiotensin II type 1a receptor-mediated global cardiac remodeling. Circ Res. 2008 Feb 15;102(3):346–53.
- [53] Saulière A, Bellot M, Paris H, Denis C, Finana F, Hansen JT, et al. Deciphering signaling bias sequence in angiotensin II type 1 receptor. Mol Pharmacol. 2012 Sep;82(3):473–84.
- [54] Felker GM, Butler J, Collins SP, Cotter G, Davison BA, Ezekowitz JA, et al. Heart failure therapeutics on the basis of principles of functional selectivity. J Am Coll Cardiol. 2017 Oct 10;70(15):1884–93.

- [55] Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011 Mar;63(1):182–217.
- [56] Seeman P. Dopamine receptors and psychosis. Sci Med. 1995 Sep-Oct;2(5):28–37.
- [57] Allen JA, Yost JM, Setola V, Chen X, Sassano MF, Chen M, et al. Discovery of β-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):18488–93.
- [58] Masri B, Salahpour A, Li S, Priolo L, N'Guyen T, Gainetdinov RR, et al. Antipsychotic-like effects of β-arrestin 2-biased dopamine D2 receptor agonists. Biol Psychiatry. 2008 Apr 15;63(8):745–52.
- [59] González-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, et al. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron. 2007 Feb 15;53(4):539–52.
- [60] Wacker D, Wang S, McCorvy JD, Betz RM, Venkatakrishnan AJ, Levit A, et al. Crystal structure of an agonist-bound G protein-coupled receptor. Cell. 2017 Jan 26;168(3):428–37.e12.
- [61] Cameron LP, Olson DE. Dark classics in chemical neuroscience: psilocybin. ACS Chem Neurosci. 2018 Oct 17;9(10):2343–57.
- [62] Gomeza J, Grundmann M, Gkountelias K, Merten N, Wu D, Inoue A, et al. System bias in G protein-coupled receptor signaling. Trends Pharmacol Sci. 2020 Jan;41(1):51–64.
- [63] Olsen RHJ, DiBerto JF, English JG, Glaudin AM, Krumm BE, Slocum ST, et al. TRV027, a G protein-biased ligand at the AT1R, reveals a new dimension of biased agonism. Nat Chem Biol. 2020 Jul;16(7):736–43.
- [64] Whalen EJ, Reiter E, Lango J, Lefkowitz RJ. Distinct conformations of β-arrestin 1 differentially engage ERK and JNK signaling pathways. J Biol Chem. 2007 Jul 13;282(28):20589-99.
- [65] Wingler LM, El-Samad H, Lefkowitz RJ, Tomchick DR. Conformational basis of β-arrestin-biased signaling at the μ-opioid receptor. Structure. 2019 Jan 2;27(1):153–60.e4.
- [66] Dror RO, Shaw DE. Molecular dynamics simulations of G protein-coupled receptors. Annu Rev Biophys. 2014;43:261–82.
- [67] Vilardaga JP, Jean-Alphonse FG, Gardella TJ. Endosomal generation of cAMP in GPCR signaling. Nat Chem Biol. 2014 Jul;10(7):524–8.