REVIEW ARTICLE

A Review on *Helicobacter Pylori* and Its Impact on Gut Health and Carcinoma

Saira Bhanu Shaik*1, Durga Bhavani Dasari², Harthika Shaharin Shaik², Malathi M², Haveela V², Krishna Murthy V²

¹ Assistant Professor, Department of Pharmaceutical Analysis, Koringa College of Pharmacy, Korangi, Tallarevu, Kakinada, Andhra Pradesh, India ² UG Scholar, Department of Pharmaceutical Analysis, Koringa College of Pharmacy, Korangi, Tallarevu, Kakinada, Andhra Pradesh, India

Publication history: Received on 28th July 2025; Revised on 8th September 2025; Accepted on 12th September 2025

Article DOI: 10.69613/r1ea8k87

Abstract: *Helicobacter pylori*, a spiral-shaped, Gram-negative bacterium, colonizes the human gastric mucosa, affecting nearly half the global population. While many infections are asymptomatic, persistent colonization is a primary etiological factor for significant gastroduodenal diseases. This persistence is mediated by a sophisticated arsenal of virulence factors, including urease for acid neutralization, flagella for motility, and adhesins for epithelial attachment. Pathogenic strains, particularly those expressing the cytotoxin-associated gene A (CagA) and the vacuolating cytotoxin A (VacA), induce chronic inflammation, epithelial damage, and host immune modulation. The clinical spectrum of *H. pylori* infection ranges from chronic gastritis to peptic ulcer disease (PUD). *H. pylori* is classified as a Class I carcinogen and is the strongest identified risk factor for gastric adenocarcinoma, acting as the primary initiator of the Correa cascade. It is also causally linked to gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Diagnosis relies on both invasive (endoscopy with biopsy, rapid urease testing, histology, culture) and non-invasive (urea breath test, stool antigen test) methods. Treatment is centered on antibiotic-based eradication regimens, typically involving a proton pump inhibitor and multiple antibiotics. However, the efficacy of these therapies is increasingly compromised by the rise in antimicrobial resistance, necessitating new treatments for management and prevention.

Keywords: Helicobacter pylori; Gastric Cancer; Peptic Ulcer Disease; Virulence Factors; Antibiotic Resistance

1. Introduction

The discovery and isolation of *Helicobacter pylori* by Barry Marshall and Robin Warren in 1984 fundamentally laid out new light on gastroduodenal pathophysiology, identifying a microbial cause for diseases previously attributed to stress and lifestyle [1]. This Gram-negative, microaerophilic, spiral-shaped bacterium is a masterful colonizer of the human stomach, a niche long considered too harsh and acidic for microbial survival. It has uniquely co-evolved with its human host for millennia, establishing a persistent, often lifelong, infection within the gastric mucus layer adjacent to the epithelial cells. This colonization is remarkably widespread; global prevalence is estimated to affect over 50% of the world's population. However, this figure masks significant regional disparities, with prevalence rates exceeding 80% in many developing nations and falling markedly in industrialized regions, a pattern strongly linked to socioeconomic conditions and intrafamilial transmission [2].

Despite this high prevalence, the majority of colonized individuals remain clinically asymptomatic. This observation, however, belies the bacterium's pathogenic potential, as *H. pylori* infection is not a benign commensal relationship. It is the principal etiological agent of chronic active gastritis in virtually all infected individuals. This persistent inflammation is the precursor to more severe pathologies, most notably peptic ulcer disease (PUD). *H. pylori* is responsible for the vast majority of duodenal ulcers and a significant proportion of gastric ulcers, fundamentally altering the gastric acid homeostasis that leads to mucosal injury [3]. More critically, this chronic inflammatory state establishes *H. pylori* as the most potent identified risk factor for gastric neoplasms.

Recognizing this causal link, the International Agency for Research on Cancer (IARC), a branch of the World Health Organization (WHO), classified *H. pylori* as a Class I carcinogen in 1994. This classification is based on its direct causal role in the development of two distinct malignancies: gastric adenocarcinoma (primarily non-cardia) and gastric mucosa-associated lymphoid tissue (MALT) lymphoma [4]. The specific clinical trajectory of an infection ranging from asymptomatic gastritis to peptic ulcers or malignancy is determined by a complex and dynamic interplay between specific bacterial virulence factors, the host's genetic susceptibility (particularly polymorphisms in inflammatory response genes), and environmental co-factors such as diet and smoking.

^{*} Corresponding author: Saira Bhanu Shaik

2. Pathophysiology

H. pylori's ability to establish lifelong infection in the stomach is a testament to its specialized adaptive mechanisms.

2.1. Bacterial Characteristics

The bacterium's spiral shape and polar flagella provide motility, allowing it to corkscrew through the viscous gastric mucus layer to reach the more neutral-pH environment of the epithelial surface [5].

Survival in the highly acidic gastric lumen is initiated by the potent activity of its urease enzyme. *H. pylori* expresses large quantities of urease, which catalyzes the hydrolysis of urea into ammonia and carbon dioxide [6]. The ammonia (NH₃) buffers gastric acid (H⁺), creating a neutral microenvironment around the bacterium and allowing it to survive transit to the mucus layer.

Once at the epithelial surface, the bacterium employs a suite of adhesins to bind firmly to gastric epithelial cells. Key adhesins include the blood group antigen-binding adhesin (BabA), which binds to the Lewis b antigen on host cells, and the sialic acid-binding adhesin (SabA), which recognizes sialyl-Lewis x antigens often expressed on inflamed gastric tissue [7, 8]. This tight adherence is a prerequisite for chronic colonization and the effective delivery of bacterial toxins.

2.2. Virulence Factors and Host Interactions

Strains of *H. pylori* vary in their pathogenic potential, largely defined by the presence of specific virulence factors. The most-studied are encoded within the *cag* pathogenicity island (cagPAI) and the gene for VacA.

2.2.1. The cag Pathogenicity Island (cagPAI) and CagA

The cagPAI is a 40-kilobase genomic region present in more pathogenic *H. pylori* strains. It encodes a Type IV Secretion System (T4SS), a molecular syringe-like structure that injects bacterial effector proteins directly into the cytoplasm of gastric epithelial cells [9]. The primary effector protein injected by the T4SS is the cytotoxin-associated gene A (CagA) protein. Once inside the host cell, CagA is phosphorylated by host cell kinases, such as Src and Abl [10]. Phosphorylated CagA functions as a scaffold protein, binding to and dysregulating numerous host signaling pathways. A key target is the phosphatase SHP-2, which leads to activation of the MAPK signaling cascade. This results in cytoskeletal rearrangements (the "hummingbird phenotype"), loss of cell polarity, and altered cell proliferation and apoptosis [11]. Furthermore, the T4SS apparatus itself is recognized by host cell sensors, triggering a potent pro-inflammatory response via the activation of NF-xB and the subsequent secretion of cytokines, most notably Interleukin-8 (IL-8), which recruits neutrophils and perpetuates inflammation [12].

Table 1. Virulence Factors of Helicobacter pylori and Their Functions

Virulence Factor	Gene / System	Primary Function(s)	Associated Pathogenesis
Urease	ureA, ureB	Neutralizes gastric acid by hydrolyzing urea into ammonia (NH ₃) and CO ₂ .	Essential for initial colonization and survival in the acidic stomach.
Flagella	flaA, flaB	Provide motility, allowing the bacterium to move through the viscous mucus layer.	Essential for reaching the gastric epithelial surface.
CagA	cagA (part of cagPAI)	Injected into host cells via T4SS. Dysregulates signaling pathways (e.g., binds SHP-2), disrupts cell polarity, and promotes proliferation.	Strongly associated with increased inflammation and gastric cancer risk.
VacA	vacA	Secreted toxin that forms pores in cell and mitochondrial membranes. Causes vacuolation, induces apoptosis, and inhibits T-cell activation.	Contributes to epithelial damage and immune evasion.
T4SS	cag Pathogenicity Island (cagPAI)	Type IV Secretion System (T4SS). A molecular syringe that injects CagA and other effectors into host cells.	Induces a strong pro- inflammatory response (IL-8 secretion).
BabA	babA	Adhesin that binds to Lewis b blood group antigens on epithelial cells.	Facilitates tight adherence to the gastric mucosa.
SabA	sabA	Adhesin that binds to sialyl-Lewis x antigens, which are often expressed on inflamed tissue.	Promotes colonization and persistence in inflamed areas.

2.2.2. The Vacuolating Cytotoxin A (VacA)

Unlike CagA, the *vacA* gene is present in nearly all *H. pylori* strains, but variations in its structure (particularly in the s- and m-regions) dictate its toxicity. The VacA toxin is secreted by the bacterium and inserts into host cell membranes, including the plasma membrane and mitochondrial membranes, to form anion-selective channels [13].

This channel activity leads to the eponymous effect of vacuolation the formation of large, acidic vacuoles within the cell cytoplasm. Beyond this, VacA has profound immunomodulatory effects. It can induce host cell apoptosis by targeting mitochondria and, critically, it impairs the host immune response by inhibiting the activation and proliferation of T-lymphocytes [14]. This immune suppression is a key strategy for bacterial persistence.

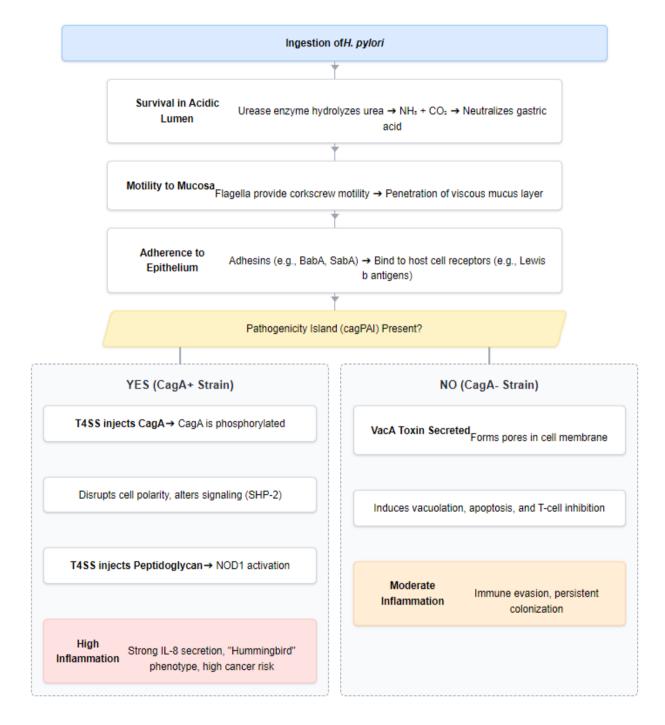


Figure 1. Virulence Mechanisms of *H. pylori* Colonization and Pathogenesis

2.2.3. Other Virulence Factors

H. pylori also modifies its lipopolysaccharide (LPS) structure to mimic human Lewis blood group antigens [15]. This molecular mimicry allows the bacterium to evade host immune detection. Other outer membrane proteins, such as the outer inflammatory protein (OipA), also contribute to inflammation and adherence.

3. Clinical Sequelae of H. pylori Infection

The chronic inflammation induced by *H. pylori* is the foundation for its associated pathologies, which range from PUD to malignancy.

3.1. Gastritis and Peptic Ulcer Disease

Infection invariably causes chronic gastritis. The specific location of the gastritis often dictates the clinical outcome.

3.1.1. Antral-predominant gastritis

It leads to inflammation in the stomach antrum, which causes an increase in gastrin production. This, in turn, stimulates parietal cells in the corpus (body) to produce more acid. This hyperchlorhydric state is strongly associated with the formation of duodenal ulcers [16].

Table 2. Clinical Sequelae and Outcomes of Persistent H. pylori Infection

Clinical Outcome Estimated		Pathophysiological Basis	Characteristics
Prevalence in			
	Infected Individuals		
Asymptomatic	70-80%	Successful host-pathogen equilibrium; low-grade	No discernible symptoms.
Colonization		inflammation without significant tissue damage.	
Chronic Gastritis	Chronic Gastritis 100% Persistent inflammatory response (neutroph		Foundation for all other H.
		and lymphocyte infiltration) in the gastric	pylori-associated diseases.
		mucosa.	
Peptic Ulcer	10-20%	Chronic inflammation (antral-predominant for	Ulcers in the stomach or,
Disease (PUD)		duodenal ulcers; corpus-predominant for gastric	more commonly, the
		ulcers) disrupts mucosal integrity.	duodenum.
Gastric 1-3%		The Correa cascade: progression from chronic	Malignant tumor, typically in
Adenocarcinoma		gastritis -> atrophic gastritis -> intestinal	the distal stomach; high
		metaplasia -> dysplasia -> carcinoma.	mortality.
		Chronic antigenic stimulation by H. pylori drives	A low-grade B-cell
		the clonal proliferation of B-lymphocytes in the	lymphoma; often regresses
		gastric lining.	after antibiotic eradication.

3.1.2. Corpus-predominant gastritis (or pangastritis)

It involves inflammation of the acid-producing corpus. This leads to atrophy of the gastric glands, resulting in reduced acid secretion (hypochlorhydria). This atrophic gastritis environment is a major risk factor for the development of gastric ulcers and gastric adenocarcinoma [17].

3.2. Gastric Carcinogenesis

H. pylori is the primary etiological agent for two distinct forms of gastric cancer.

3.2.1. Gastric Adenocarcinoma

Chronic infection with *H. pylori* is responsible for the majority of non-cardia gastric adenocarcinomas [18]. The infection initiates a multi-step process of carcinogenesis known as the Correa cascade. This cascade describes a temporal progression from chronic gastritis to atrophic gastritis, followed by intestinal metaplasia, dysplasia, and finally, invasive carcinoma [19]. *H. pylori*, particularly

CagA-positive strains, drives this progression by inducing chronic inflammation, promoting epithelial cell proliferation, reducing apoptosis, and causing genetic instability through the production of reactive oxygen species [17].

Figure 2. Pathogenesis and Clinical Sequelae of *H. pylori* Infection (Correa Cascade)

3.2.2. MALT Lymphoma

H. pylori is also the causative agent of gastric MALT lymphoma, a low-grade B-cell lymphoma. This malignancy is a rare outcome of the chronic immune response to the infection. The persistent antigenic stimulation by H. pylori drives the clonal proliferation of B-lymphocytes within the gastric mucosa, which normally lacks organized lymphoid tissue [20]. In the early stages, this B-cell proliferation is antigen-dependent. Consequently, eradication of the H. pylori infection with antibiotics removes the driving stimulus and leads to complete remission of the lymphoma in a majority of cases [21].

4. Diagnosis

Diagnosis of *H. pylori* infection is critical for management. Methods are broadly divided into invasive (requiring upper endoscopy) and non-invasive.

4.1. Invasive Tests

These tests are performed on biopsy samples obtained during an endoscopy.

4.1.1. Rapid Urease Test (RUT)

A biopsy sample is placed in a medium containing urea and a pH indicator. The potent urease activity of *H. pylori* rapidly cleaves urea, producing ammonia and raising the pH, which causes a color change [22].

4.1.2. Histology

Microscopic examination of biopsy samples, often with special stains (e.g., Giemsa, Warthin-Starry), can visualize the bacteria and, importantly, assess the degree of inflammation, atrophy, metaplasia, or dysplasia [23].

4.1.3. Bacterial Culture

This allows for the definitive identification of the organism and is the gold standard for determining antibiotic susceptibility, which is crucial in cases of treatment failure [24].

Table 3. Comparison of Primary Diagnostic Modalities for H. pylori Infection

Test	Category	Sample Required	Detects	Advantage(s)	Limitation(s)
Rapid Urease Test (RUT)	Invasive	Endoscopic biopsy	Active infection (urease activity)	Fast (results within 1-24h), low cost, widely available.	Requires endoscopy; false negatives with recent PPI/antibiotic use.
Histology	Invasive	Endoscopic biopsy	Active infection (visualization), inflammation, atrophy, metaplasia	"Gold standard" for diagnosis; provides information on gastric mucosal health (e.g., cancer precursors).	Requires endoscopy; higher cost; results are not immediate.
Bacterial Culture	Invasive	Endoscopic biopsy	Active infection (live bacteria)	The <i>only</i> method to determine specific antibiotic susceptibility.	Requires endoscopy; technically demanding; slow (5-10 days).
Urea Breath Test (UBT)	Non- Invasive	Breath sample	Active infection (urease activity)	High accuracy (sensitivity & specificity >95%); excellent for diagnosis and confirming eradication.	More expensive than SAT; false negatives with recent PPI/antibiotic use.
Stool Antigen Test (SAT)	Non- Invasive	Stool sample	Active infection (bacterial antigens)	High accuracy (using monoclonal assays); cost-effective; excellent for diagnosis and confirming eradication.	Aesthetically displeasing for patients; potential for false negatives.
Serology (Blood Test)	Non- Invasive	Blood sample	H. pylori antibodies (IgG)	Inexpensive and simple; useful for epidemiological studies or initial screening.	Cannot distinguish between active and past infection; not for confirming eradication.

4.2. Non-Invasive Tests

These methods are preferred for initial diagnosis in younger patients without alarm symptoms or for confirming eradication post-treatment.

4.2.1. Urea Breath Test (UBT)

The patient ingests urea labeled with a non-radioactive (13 C) or radioactive (14 C) carbon isotope. If *H. pylori* is present, its urease will cleave the urea, and the labeled CO_2 is absorbed into the bloodstream and exhaled. The detection of labeled CO_2 in the breath confirms active infection [25].

4.2.2. Stool Antigen Test (SAT)

This test uses monoclonal antibodies to detect specific *H. pylori* antigens in a stool sample. Modern SATs are highly accurate for detecting active infection and are, along with the UBT, the recommended non-invasive tests for confirming eradication [26].

4.2.3. Serology

These blood tests detect circulating IgG antibodies against *H. pylori*. While useful for epidemiological studies, serology cannot distinguish between an active and a past infection, as antibodies can persist for years after eradication. Therefore, it is not recommended for confirming successful treatment [27].

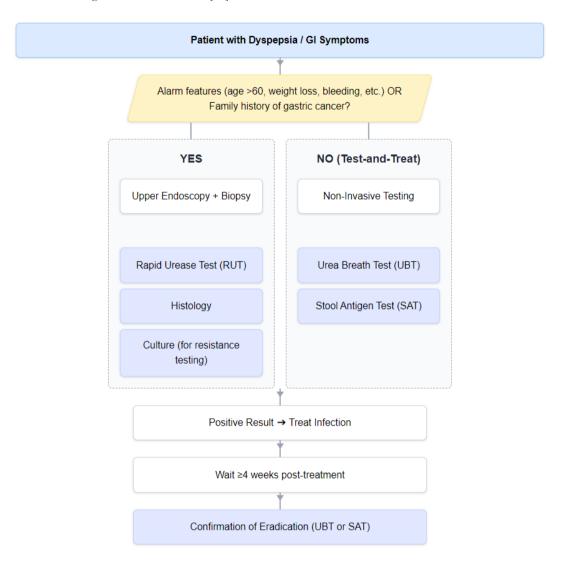


Figure 3. Diagnosis for H. pylori Infection

5. Treatment Regimens

The primary goal of therapy is the complete eradication of the bacterium to heal ulcers, resolve gastritis, and prevent the progression to cancer.

5.1. Standard Eradication Regimens

Treatment relies on multi-drug regimens that combine an acid-suppressing agent with two or more antibiotics.

5.1.1. Standard Triple Therapy

This regimen consists of a proton pump inhibitor (PPI) plus two antibiotics, typically clarithromycin and amoxicillin (or metronidazole for penicillin-allergic patients), taken for 10-14 days [28].

5.1.2. Bismuth Quadruple Therapy (BQT)

Due to rising resistance, this regimen is often used as a first-line treatment. It includes a PPI, bismuth subsalicylate, tetracycline, and metronidazole [28].

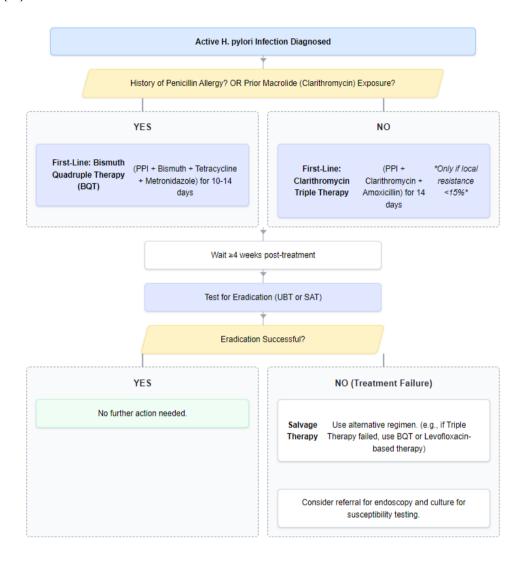


Figure 4. Treatment and Management of H.pylori

5.1.3. Other Regimens

Concomitant (PPI, amoxicillin, clarithromycin, and metronidazole all taken together) and sequential (a 5-day course of a PPI and amoxicillin, followed by a 5-day course of a PPI, clarithromycin, and metronidazole) therapies have also been developed to improve eradication rates [29].

5.2. The Challenge of Antibiotic Resistance

The foremost challenge in *H. pylori* management is the global increase in antibiotic resistance. Resistance to clarithromycin, resulting from point mutations in the 23S rRNA gene, is particularly problematic and is the primary cause of triple therapy failure [30]. Resistance to metronidazole and, increasingly, levofloxacin is also widespread [31]. Treatment failure rates are high in regions where clarithromycin resistance exceeds 15-20% [32]. This has led to recommendations for susceptibility-guided therapy, where antibiotics are chosen based on culture results, or the empirical use of bismuth quadruple therapy in high-resistance areas [28].

Table 4. Standard First-Line Eradication Regimens for H. pylori

Regimen	Duration	Components	Important Considerations
	(Days)		
Standard Triple	10-14	1. Proton Pump	Recommended only in areas with known low clarithromycin
Therapy		Inhibitor (PPI)	resistance (<15%).
		2. Clarithromycin	
		3. Amoxicillin (or	
		Metronidazole)	
Bismuth Quadruple	10-14	1. PPI	Preferred first-line regimen in most regions, especially with
Therapy (BQT)		2. Bismuth	high clarithromycin resistance or recent macrolide exposure.
		Subsalicylate	
		3. Metronidazole	
		4. Tetracycline	
Concomitant Therapy	10-14	1. PPI	A non-bismuth quadruple therapy. Highly effective but
		2. Amoxicillin	involves a high pill burden.
		3. Clarithromycin	
		4. Metronidazole	

Table 5. Mechanisms of Clinically Relevant Antibiotic Resistance in H. pylori

Antibiotic	Primary Mechanism of Resistance	Effect of Resistance
Clarithromycin	Point mutations in the 23S rRNA gene (most	Prevents the antibiotic from binding to the bacterial
	commonly A2143G and A2142G).	ribosome, rendering it ineffective.
Metronidazole	Mutations in genes encoding oxygen-insensitive	Prevents the "activation" of the metronidazole prodrug
	nitroreductases (e.g., rdxA, frxA).	into its active, toxic form within the bacterium.
Levofloxacin	Point mutations in the <i>gyrA</i> gene, which encodes	Alters the antibiotic's target (DNA gyrase), preventing it
	a subunit of DNA gyrase.	from inhibiting DNA replication.
Amoxicillin	Mutations in penicillin-binding proteins (PBPs),	Rare, but alters the target site to reduce antibiotic binding.
	primarily PBP1.	Resistance remains very low globally.

5.3. Vaccine Development

Despite decades of research, no vaccine for *H. pylori* is currently licensed for human use. Development has been challenging for several reasons. Natural infection does not confer protective immunity, and the bacterium is adept at immune evasion (e.g., via VacA and LPS modification) [33]. Research continues to focus on identifying optimal antigens (such as UreB, CagA, VacA) and effective mucosal adjuvants that can elicit a durable and protective T-cell-mediated immune response [34].

6. Conclusion

Helicobacter pylori uniquely adapted to the harsh environment of the human stomach. Its persistence is the primary factor for a spectrum of gastroduodenal pathologies, from benign peptic ulcers to malignant transformations into adenocarcinoma and MALT lymphoma. The identification of its main virulence mechanisms, particularly the effector proteins CagA and VacA, has provided a clearer picture of its interaction with the host, explaining its ability to induce chronic inflammation, modulate the immune system, and disrupt epithelial cell homeostasis. While eradication regimens are effective, their utility is critically threatened by the rapid emergence of antimicrobial resistance. This therapeutic challenge indicates the urgent need for improved diagnostic stewardship, development of susceptibility-guided treatment protocols, and continued pursuit of a prophylactic vaccine to mitigate the substantial morbidity and mortality associated with this persistent infection.

References

- [1] Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984 Jun 16;1(8390):1311-5.
- [2] Hooi JKY, Lai WY, Ng WK, Suen MMY, Underwood FE, Tanyingoh D, et al. Global Prevalence of *Helicobacter pylori* Infection: Systematic Review and Meta-Analysis. Gastroenterology. 2017 Aug;153(2):420-9.
- [3] Kusters JG, van Vliet AHM, Kuipers EJ. Pathogenesis of *Helicobacter pylori* infection. Clin Microbiol Rev. 2006 Jul;19(3):449-90.

- [4] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Schistosomes, liver flukes and *Helicobacter pylori*. IARC Monogr Eval Carcinog Risks Hum. 1994;61:177-240.
- [5] Howitt MR, Lee JY, Lertsethtakarn P, Vogelmann R, Joubert LM, Ottemann KM. *Helicobacter pylori* corkscrews to penetrate the viscous gastric mucus. mBio. 2011 Nov 22;2(6):e00262-11.
- [6] Stingl K, De Reuse H. Staying alive in a deadly environment: the *Helicobacter pylori* acid resistance mechanisms. Int J Med Microbiol. 2005 May;295(1):1-14.
- [7] Borén T, Falk P, Roth KA, Larson G, Normark S. Attachment of *Helicobacter pylori* to human gastric epithelium mediated by blood group antigens. Science. 1993 Nov 19;262(5141):1892-5.
- [8] Mahdavi J, Sondén B, Hurtig M, Olfat F, Forsberg L, Roche N, et al. *Helicobacter pylori* SabA adhesin in persistent infection and chronic inflammation. Science. 2002 Jul 5;297(5580):407-11.
- [9] Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, et al. *cag*, a pathogenicity island of *Helicobacter pylori*, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9857-62.
- [10] Higashi H, Tsutsumi R, Muto S, Ezaki T, Moss SF, Azuma T, et al. SHP-2 tyrosine phosphatase as an intracellular target of *Helicobacter pylori* CagA protein. Science. 2002 Jan 4;295(5552):116-20.
- [11] Segal ED, Cha J, Lo J, Falkow S, Tompkins LS. Altered states: involvement of phosphorylated CagA in the induction of host cellular gene expression by *Helicobacter pylori*. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1579-84.
- [12] Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP, et al. Nod1 responds to peptidoglycan delivered by the *Helicobacter pylori* cag pathogenicity island. Nat Immunol. 2004 Nov;5(11):1166-74.
- [13] Szabò I, Brutsche S, Tombola F, Moschioni M, Satin B, Telford JL, et al. Formation of anion-selective channels in the cell membrane by the toxin VacA of *Helicobacter pylori* is not dependent on its vacuolating activity. EMBO J. 1999 Jul 1;18(13):3566-77.
- [14] Gebert B, Fischer W, Weiss E, Hoffmann R, Haas R. *Helicobacter pylori* vacuolating cytotoxin inhibits T lymphocyte activation. Science. 2003 Aug 29;301(5637):1231-5.
- [15] Appelmelk BJ, Simoons-Smit I, Negrini R, Moran AP, Aspinall GO, van der Meer JWM, et al. Potential role of molecular mimicry between *Helicobacter pylori* lipopolysaccharide and host Lewis blood group antigens in autoimmunity. Infect Immun. 1996 Oct;64(10):4064-71.
- [16] El-Omar EM, Oien K, El-Nujumi A, Gillen D, Wirz A, Dahill S, et al. Helicobacter pylori infection and chronic gastric acid hyposecretion. Gastroenterology. 1997 Jan;112(1):15-24.
- [17] Correa P, Houghton J. Carcinogenesis of Helicobacter pylori. Gastroenterology. 2007 May;132(5):1959-73.
- [18] Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, et al. *Helicobacter pylori* infection and the development of gastric cancer. N Engl J Med. 2001 Sep 13;345(11):784-9.
- [19] Correa P. Human gastric carcinogenesis: a multistep and multifactorial process--First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992 Dec 15;52(24):6735-40.
- [20] Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG. *Helicobacter pylori*-associated gastritis and primary B-cell gastric lymphoma. Lancet. 1991 Oct 5;338(8771):894-5.
- [21] Fischbach W, Goebeler-Kolve ME, Dragosics B, Greiner A, Stolte M. Long-term outcome of patients with gastric MALT lymphoma after *Helicobacter pylori* eradication. Gut. 2004 Mar;53(3):341-6.
- [22] Midolo P, Marshall BJ. Accurate diagnosis of *Helicobacter pylori*. Urease tests. Gastroenterol Clin North Am. 2000 Mar;29(2):871-8.
- [23] Genta RM, Graham DY. Comparison of biopsy sites for the histopathologic diagnosis of *Helicobacter pylori*: a topographic study of H. pylori density and distribution. Gastrointest Endosc. 1994 May-Jun;40(3):342-5.
- [24] Mégraud F, Lehours P. Helicobacter pylori detection and antimicrobial susceptibility testing. Clin Microbiol Rev. 2007 Apr;20(2):280-322.
- [25] Graham DY, Klein PD, Evans DJ Jr, Evans DG, Alpert LC, Opekun AR, et al. *Campylobacter pylori* detected noninvasively by the 13C-urea breath test. Lancet. 1987 May 23;1(8543):1174-7.
- [26] Vaira D, Malfertheiner P, Mégraud F, Axon ATR, Deltenre M, Gasbarrini G, et al. Diagnosis of *Helicobacter pylori* infection with a new non-invasive antigen-based assay. Lancet. 1999 Jul 3;354(9172):30-3.
- [27] Cutler AF, Prasad VM. Long-term follow-up of *Helicobacter pylori* serology after successful eradication. Am J Gastroenterol. 1996 Jan;91(1):99-102.

- [28] Malfertheiner P, Mégraud F, O'Morain CA, Gisbert JP, Kuipers EJ, Axon AT, et al. Management of *Helicobacter pylori* infection--the Maastricht V/Florence Consensus Report. Gut. 2017 Jan;66(1):6-30.
- [29] Zullo A, De Francesco V, Hassan C, Morini S, Vaira D. The sequential therapy regimen for *Helicobacter pylori* eradication: a pooled-data analysis. Gut. 2007 Oct;56(10):1353-7.
- [30] Taylor DE, Ge Z, Purych D, Lo T, Hiratsuka K. Cloning and sequence analysis of a 23S rRNA gene from *Helicobacter pylori* and association of A2143G and A2144G point mutations with clarithromycin resistance. Antimicrob Agents Chemother. 1997 Dec;41(12):2621-8.
- [31] Thung I, Aramin H, Vavinskaya V, Gupta S, Park JY, Crowe SE, et al. Review article: the global emergence of *Helicobacter pylori* antibiotic resistance. Aliment Pharmacol Ther. 2016 Mar;43(5):592-608.
- [32] Graham DY, Fischbach L. *Helicobacter pylori* treatment in the era of increasing antibiotic resistance. Gut. 2010 Aug;59(8):1143-53.
- [33] Czinn SJ, Blanchard T. Vaccinating against Helicobacter pylori. Nat Biotechnol. 2011 May;29(5):409-10.
- [34] Sutton P, Boag JM. Status of vaccine research and development for Helicobacter pylori. Gut Microbes. 2018;9(5):405-10.