REVIEW ARTICLE

A Review on the Positron Emission Tomography Radiotracers

Saira Bhanu Shaik*1, Malathi Mulaparthi2, Haveela V2, Harthika Shaharin Sk2, Durga Bhavani D2, Krishna Murthy V2

¹ Assistant Professor, Department of Pharmaceutical Analysis, Koringa College of Pharmacy, Korangi, Tallarevu, Kakinada, Andhra Pradesh, India ² UG Scholar, Department of Pharmaceutical Analysis, Koringa College of Pharmacy, Korangi, Tallarevu, Kakinada, Andhra Pradesh, India

Publication history: Received on 22nd July 2025; Revised on 1st September 2025; Accepted on 7th September 2025

Article DOI: 10.69613/jr10kv57

Abstract: Positron Emission Tomography (PET) is a non-invasive, quantitative molecular imaging modality that provides functional insights into in vivo biological and biochemical processes. The technology relies on the administration of radiotracers, which are biologically active molecules labeled with a short-lived positron-emitting radionuclide. Following systemic distribution, the tracer accumulates in target tissues based on specific physiological or pathological pathways. The radionuclide's decay produces a positron, which annihilates with a local electron, releasing two collinear 511 keV gamma photons. These photons are detected by the PET scanner, allowing for the three-dimensional reconstruction of the tracer's concentration. This technique has profoundly impacted clinical practice and research. In oncology, [18F]Fluorodeoxyglucose ([18F]FDG) remains the cornerstone for staging, restaging, and monitoring therapeutic response by mapping glucose metabolism. In neurology, specific radioligands permit the quantification of neurotransmitter receptor densities, protein aggregates, and metabolic dysfunction in disorders like schizophrenia and Alzheimer's disease. For cardiology, PET assesses myocardial perfusion and, critically, metabolic viability. Moreover, PET is an indispensable tool in pharmaceutical sciences, enabling *in vivo* characterization of drug pharmacokinetics, target engagement, and pharmacodynamic effects in early-phase clinical trials. The continued development of novel tracers targeting specific molecular events propels its utility in precision medicine.

Keywords: Positron Emission Tomography (PET); Radiotracer; Molecular Imaging; [18F]FDG; Drug Development

1. Introduction

Positron Emission Tomography (PET) is a non-invasive molecular imaging modality that provides quantitative visualization of physiological and biochemical processes at the cellular level. This capability fundamentally distinguishes it from anatomical imaging techniques like Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), which primarily delineate morphology and structure. PET visualizes function such as metabolic rate, blood flow, neurotransmitter receptor density, or cellular proliferation. This is accomplished by employing the "tracer principle," which posits that a biologically active molecule labeled with a radionuclide (a radiotracer) can be administered in sub-pharmacological, "tracer"-level doses to probe a specific biological pathway without perturbing it. The radiotracer, or radiopharmaceutical, acts as a molecular probe, and the PET scanner serves as a highly sensitive external detector to map its *in vivo* fate [1].

While PET provides unparalleled functional data, its resulting images have inherently low spatial resolution and lack detailed anatomical context. This limitation led to the development of hybrid scanners, which are now the clinical standard. By integrating PET with CT (PET/CT) or, more recently, MRI (PET/MRI), functional data is acquired simultaneously and automatically coregistered with high-resolution anatomical data. This hardware fusion is critical for accurately localizing metabolic activity. For instance, it allows a clinician to definitively determine whether a "hot spot" of tracer accumulation is within a lymph node (suggesting metastatic disease) or in an adjacent, structurally distinct tissue like muscle or brown adipose tissue (representing physiological uptake).

The physical basis of PET imaging begins with the radiotracer's decay. The attached radionuclide is an unstable, proton-rich isotope. It achieves stability by converting a proton in its nucleus into a neutron, a process that releases a positron (the antimatter counterpart of an electron) and a neutrino [2]. This newly created positron is ejected from the nucleus with significant kinetic energy. It then travels a short, finite distance within the surrounding tissue, undergoing scattering interactions until it loses most of its kinetic energy. This travel distance, known as the "positron range," varies depending on the radionuclide's decay energy (e.g., ¹⁸F has a shorter range than ⁶⁸Ga) and the tissue density. This positron range represents one of the fundamental physical limits on the spatial resolution of the final PET image.

^{*} Corresponding author: Saira Bhanu Shaik

Once at near-rest, the positron annihilates with a nearby electron. This matter-antimatter interaction converts their combined mass into energy, as defined by E=mc², resulting in the emission of two high-energy, 511 keV gamma photons [3]. To conserve momentum, these two photons are emitted in almost exactly opposite directions (180° apart). A PET scanner is engineered as a ring of dense scintillator detectors that surround the patient. A "valid" event is recorded only when two opposing detectors register a 511 keV photon simultaneously, within a very narrow time frame known as the "coincidence window" (typically a few nanoseconds). This principle of "electronic collimation" is a key advantage of PET, as it does not require the physical lead collimators used in Single-Photon Emission Computed Tomography (SPECT), resulting in dramatically higher sensitivity.

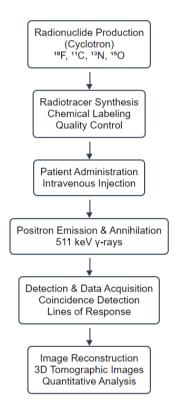


Figure 1. Principle Involved in PET Imaging Process

The line connecting the two detectors that registered the coincident photons is termed a "line of response" (LOR). The scanner hardware records millions of these LORs from all possible angles around the patient. This vast dataset, known as a sinogram, is then processed by sophisticated computational algorithms (such as filtered back-projection or, more commonly, iterative reconstruction methods) [4]. The output is a 3D tomographic image that represents the spatial distribution and concentration of the radionuclide within the field of view. This data is inherently quantitative and can be expressed in absolute units (e.g., Becquerels per milliliter, Bq/mL) or, more commonly, as a semi-quantitative Standardized Uptake Value (SUV), which normalizes the tracer concentration to the injected dose and patient body weight. This quantification is what allows PET to not only detect disease but also to measure its metabolic activity and response to therapy. This review will discuss the development of these essential radiotracers and their applications across major fields of medicine and research.

2. Development of Radiopharmaceuticals

The utility of PET is defined by the specificity of its radiotracers. The development of these probes is a sophisticated process involving radionuclide production, rapid chemical synthesis, and stringent quality control.

2.1. Common Positron-Emitting Radionuclides

The choice of radionuclide is critical and is dictated by its half-life, decay characteristics, and chemical properties. The most commonly employed short-lived radionuclides are produced in a cyclotron. These include carbon-11 (11 C; $t_1/_2 \approx 20.4$ min), nitrogen-13 (13 N; $t_1/_2 \approx 10$ min), oxygen-15 (15 O; $t_1/_2 \approx 2$ min), and fluorine-18 (18 F; $t_1/_2 \approx 109.8$ min) [5].

The short 20.4-minute half-life of ¹¹C is particularly advantageous for labeling pharmaceuticals, as a carbon atom in the parent drug can often be directly replaced with ¹¹C (isotopic substitution) without altering its pharmacological properties [6]. This allows for the direct study of a drug's behavior. The 2-minute half-life of ¹⁵O makes it ideal for tracers like [¹⁵O] water, which is used for measuring cerebral or myocardial blood flow due to its rapid clearance and potential for repeated studies [7]. Similarly, [¹³N]ammonia is frequently used to assess myocardial perfusion [8].

Conversely, the longer 109.8-minute half-life of ¹⁸F provides significant logistical advantages. It allows for more complex and time-consuming radiosyntheses and permits centralized production and distribution of radiotracers to imaging sites without an on-site cyclotron. The most prominent example is 2-deoxy-2-[¹⁸F]fluoro-D-glucose ([¹⁸F]FDG) [9].

Radionuclide	Half-life (t ₁ / ₂)	Max. Positron Energy (Εβ+ max)	Approx. Positron Range (in water)	Common Chemical Form / Precursor
Fluorine-18 (18F)	109.8	0.63 MeV	~2.4 mm	[18F]Fluo r ide
	minutes			
Carbon-11 (11C)	20.4 minutes	0.96 MeV	~4.1 mm	[11C]CO ₂ or [11C]CH ₄
Nitrogen-13	9.97 minutes	1.20 MeV	~5.4 mm	[¹³ N]Ammonia
(^{13}N)				
Oxygen-15 (15O)	2.04 minutes	1.73 MeV	~8.0 mm	[15O]O2 or [15O]H2O

Table 1. Properties of Common PET Radionuclides for Radiopharmaceutical Production

2.2. Tracer Design and Radiosynthesis

A successful radiotracer must exhibit high affinity and specificity for its biological target (e.g., a receptor, enzyme, or transporter) while demonstrating appropriate pharmacokinetics, such as rapid uptake in the target tissue and clearance from non-target tissues. A significant challenge in tracer development and data interpretation is the presence of radiometabolites. The PET scanner detects all sources of radioactivity, not just the intact parent tracer. If the tracer is rapidly metabolized into other radioactive compounds, these metabolites may also enter tissues or remain in the blood pool, confounding the signal and complicating the kinetic models used to quantify the target [10].

3. Applications in Drug Development and Pharmacology

PET imaging is a foundational tool in modern pharmaceutical science, providing a bridge between preclinical models and human studies.

3.1. Pharmacokinetic and Pharmacodynamic Assessments

PET provides a non-invasive method to determine a drug's *in vivo* pharmacokinetics (PK), including its absorption, distribution, metabolism, and excretion (ADME) [11]. This is particularly valuable for assessing drug concentrations in tissues that are difficult to sample, such as the brain. In "microdosing" or Phase 0 studies, a sub-pharmacological, tracer-level dose of a radiolabeled drug candidate is administered to healthy volunteers. This approach can provide essential human PK data, such as brain penetration, very early in the development pipeline, helping to select the most promising compounds for further development [12].

Figure 2. Kinetics and Metabolism of Radiotracers

In addition to PK, PET is used to measure *in vivo* pharmacodynamics (PD), or the effect of a drug on its target. A common application in central nervous system (CNS) drug development is the *target occupancy* study. In this paradigm, a generic radioligand that binds to the target of interest is administered. Then, escalating doses of the unlabeled drug candidate are given to determine

the dose required to displace the radioligand, thereby quantifying target engagement *in vivo*. This method is crucial for dose-finding in clinical trials [13].

3.2. Probing Drug-Transporter Interactions

Drug efficacy and toxicity are heavily influenced by membrane transporter proteins, such as those in the ATP-binding cassette (ABC) and Solute Carrier (SLC) superfamilies, which control the flux of substances across biological barriers [14]. PET is uniquely suited to study the function of these transporters *in vivo*.

A primary focus has been the P-glycoprotein (P-gp, or ABCB1) efflux transporter at the blood-brain barrier (BBB). P-gp actively removes a wide array of substrates from the brain, limiting the efficacy of many CNS drugs. Furthermore, P-gp dysfunction has been implicated in the pathophysiology of neurological disorders, including drug-resistant epilepsy and Alzheimer's disease [15]. PET radiotracers such as (R)-[11C]verapamil and [11C]-N-desmethyl-loperamide are known P-gp substrates. By measuring the brain uptake of these tracers, typically before and after administration of a P-gp inhibitor, researchers can quantify transporter function at the BBB [16]. Developing such tracers is challenging, as the ideal probe must be highly specific for one transporter (e.g., P-gp but not BCRP or MRP1) and avoid problematic metabolites [17, 18].

Application Area	Scientific Objective	Example PET Study
Pharmacokinetics	To quantify the Absorption,	Administering a ¹¹ C-labeled version of the drug candidate to
(PK)	Distribution, Metabolism, and Excretion	measure its concentration over time in target organs vs. non-
	(ADME) of a new drug.	target organs.
Pharmacodynamics	To measure the in vivo effect of a drug,	A target occupancy study: administering a generic radioligand
(PD)	such as target engagement and dose-	(e.g., [11C]raclopride) before and after unlabeled drug
	response.	administration to quantify D ₂ receptor blockade.
Microdosing (Phase	To assess human PK and tissue	Administering a single tracer-level dose of the radiolabeled
0)	penetration at sub-pharmacological	drug to confirm brain penetration before committing to
	doses early in development.	larger trials.
Transporter	To quantify the activity of efflux	Measuring the brain uptake of (R)-[11C]verapamil (a P-gp
Function	transporters (e.g., P-gp) at biological	substrate) with and without a P-gp inhibitor to assess
	barriers.	transporter function.

Table 2. Applications of PET in Pharmaceutical Drug Development

4. Clinical Applications in Disease

PET imaging has become a standard of care in several medical disciplines, most notably oncology, neurology, and cardiology.

4.1. Oncology

The most widely used PET tracer in medicine is [18F]FDG. This glucose analog is transported into cells by glucose transporters and phosphorylated by hexokinase, trapping it intracellularly. Cancer cells often exhibit significantly increased glucose metabolism (the "Warburg effect") and therefore show high [18F]FDG accumulation, appearing as "hot spots" on the scan [9, 19].

In endometrial cancer (EC), for example, hybrid PET/CT imaging, which co-registers the functional PET data with anatomical CT data, is integral to patient management. [18F]FDG-PET/CT is more effective than conventional imaging for the initial staging of high-risk EC, as it can detect lymph node involvement and distant metastases with greater accuracy [20, 21]. It is also highly valuable for detecting recurrent disease, where it can reliably distinguish between metabolically active tumor regrowth and metabolically inert post-treatment scar tissue. This information is critical for guiding surgical or radiotherapeutic interventions and for monitoring the patient's response to systemic therapy [22]. While [18F]FDG is dominant, other tracers targeting processes like proliferation (e.g., [18F]fluorothymidine, [18F]FLT) or amino acid transport (e.g., [11C]methionine) are also used [23, 24].

4.2. Neurology

In neurology, PET allows for the *in vivo* characterization of neurochemistry and neuropathology. Studies in schizophrenia have leveraged PET for decades. Early investigations using [18F]FDG revealed patterns of altered brain metabolism, most notably "hypofrontality," or reduced glucose metabolism in the frontal lobes, which has been linked to the negative symptoms and cognitive deficits of the disorder [25, 26].

Table 3. [18F]FDG-PET/CT in the Management of Endometrial Cancer (EC)

Clinical	Role of [18F]FDG-PET/CT	Rationale / Mechanism
Application		
Initial Staging	Detecting lymph node (LN) involvement and	Malignant cells are highly metabolic and show high
	distant metastases in high-risk patients.	[18F]FDG uptake, allowing detection of disease missed by
		anatomical imaging.
Detecting	Differentiating recurrent tumors from post-	Active tumor recurrence is highly [18F]FDG-avid,
Recurrence	treatment scarring in patients with rising tumor	whereas fibrotic scar tissue is metabolically inert (low
	markers.	uptake).
Therapy	Assessing early response to chemotherapy or	A decrease in [18F]FDG uptake (metabolic response)
Monitoring	radiation.	often precedes anatomical tumor shrinkage (structural
		response).
Prognostication	Providing prognostic information based on	High [18F]FDG uptake (high SUVmax) in the primary
_	tumor metabolic activity.	tumor often correlates with more aggressive disease and
		poorer prognosis.

More specific tracers have provided deeper insights. The dopamine hypothesis of schizophrenia has been substantially supported by PET studies. Using D_2/D_3 receptor antagonists like [\frac{11}{2}] raclopride, researchers have demonstrated increased striatal dopamine synthesis and release in patients [27, 28]. PET imaging of receptor occupancy is also a standard tool in the development of antipsychotic medications, allowing for the determination of dosing schedules that achieve therapeutic D_2 receptor blockade (typically 60-80%) while minimizing motor side effects associated with higher occupancy levels [29].

Oncology

- [18F]FDG: Tumor metabolism
- [18F]FLT: Cell proliferation
- [11C]Methionine: Amino acid transport
- Applications:
 - Staging
 - Treatment monitoring
 - Recurrence detection

Neurology/Psychiatry

- [18F]FDG: Brain metabolism
- [11C]Raclopride: D2/D3 receptors
- [15O]Water: Brain perfusion
- Applications:
 - Neurodegeneration
 - Psychiatric disorders
 - Drug development

Cardiology

- [13N]Ammonia: Perfusion
- [¹8F]FDG: Viability
- [11C]HED: Sympathetic innervation
- Applications:
 - Coronary disease
 - Heart failure
 - Arrhythmia risk

Figure 3. Clinical Applications of PET Radiotracers

4.3. Cardiology

PET plays several key roles in the assessment of cardiac failure and coronary artery disease. It is considered a gold standard for the non-invasive quantification of myocardial perfusion (blood flow). Tracers such as [13N]ammonia or generator-produced rubidium-82 (82Rb) are used to measure blood flow at rest and during stress, allowing for the precise identification of myocardial ischemia [30].

Table 4. Radiotracers and their Clinical Applications

Tracer	Biological Target / Process	Clinical Question
[¹⁸ F]FDG	Glucose metabolism	Tumor staging, detecting recurrence, assessing myocardial viability, identifying seizure focus.
[¹³ N]Ammonia	Myocardial perfusion	Diagnosing coronary artery disease by measuring myocardial blood flow at rest and stress.
[15O]Water	Perfusion / Blood flow	Quantifying cerebral or myocardial blood flow; considered a gold standard for flow quantification.
[11C]Raclopride	Dopamine D ₂ /D ₃ receptors	Quantifying D ₂ /D ₃ receptor availability in disorders like schizophrenia; used in drug occupancy studies.
[¹¹C]HED	Sympathetic nerve terminals (norepinephrine transporter)	Assessing cardiac sympathetic innervation to stratify arrhythmia risk in heart failure.
[¹⁸ F]FLT	Cellular proliferation (DNA synthesis)	Measuring tumor proliferation as an early marker of response to chemotherapy.

A unique and critical application of cardiac PET is the assessment of myocardial viability. Patients with severe left ventricular dysfunction may have regions of "hibernating myocardium" tissue that is chronically ischemic and dysfunctional but still metabolically alive. [18F]FDG is used to identify this viable tissue, as it relies on glucose for its energy needs. Detecting a mismatch (i.e., reduced perfusion but preserved [18F]FDG uptake) identifies patients who would likely benefit from revascularization procedures like angioplasty or bypass surgery [31]. Other tracers, such as [11C]meta-hydroxyephedrine ([11C]HED), are used to evaluate sympathetic nervous system innervation, providing prognostic information on arrhythmia risk [32].

5. Safety

The primary consideration in PET imaging is the exposure to ionizing radiation. The radiation dose from a typical PET scan is low, generally considered safe for diagnostic purposes, and comparable to other radiological procedures. However, the cumulative dose from repeated scans is monitored [33].

Other adverse effects are rare. Mild, transient allergic reactions to the radiotracer are possible but uncommon. Patients may occasionally experience minor injection site pain, a brief metallic taste, or mild nausea, which typically resolve quickly [34]. Certain patient factors require special consideration. PET scans are generally avoided in pregnant women due to the potential risk to the fetus. Patients with diabetes must be managed carefully for [18F]FDG scans, as high blood glucose levels will compete with the tracer for cellular uptake, degrading image quality [35].

6. Conclusion

Positron Emission Tomography is an indispensable component of modern clinical diagnostics and pharmaceutical development. Its unique ability to provide non-invasive, quantitative measurements of *in vivo* biochemistry distinguishes it from all other imaging modalities. The widespread clinical adoption of [18F]FDG has transformed cancer treatment by enabling accurate staging and monitoring therapy. Simulataneouslys, the development of highly specific radioligands has deepened the characterization of complex neurological and psychiatric disorders and streamlined the development of new CNS-active drugs. In cardiology, PET remains a reference standard for quantifying perfusion and viability. The role of PET in biological science and guiding personalized medicine will continue to expand in reaching hard to reach biological targets such as neuroinflammation, specific protein aggregates, and genes.

References

- [1] Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 4th ed. Philadelphia, PA: Elsevier Saunders; 2012.
- [2] Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun. 2008;29(3):193-207.
- [3] Bailey DL, Townsend DW, Valk PE, Maisey MN. Positron Emission Tomography: Basic Sciences. London: Springer-Verlag; 2005.
- [4] Qi J, Leahy RM. Iterative reconstruction techniques in emission computed tomography. Phys Med Biol. 2006;51(15):R1541-86.
- [5] Ametamey SM, Honer M, Schubiger PA. Molecular imaging with PET. Chem Rev. 2008;108(5):1501-16.
- [6] Miller PW, Long NJ, Vilar R, Gee AD. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew Chem Int Ed Engl. 2008;47(47):8998-9033.
- [7] Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med. 1983;24(9):790-8.
- [8] Schelbert HR. 13N-ammonia: a new physiologic radiotracer for myocardial perfusion imaging. J Nucl Med. 2010;51(8):1167-9.
- [9] Alavi A, Kpoor S, Pahlavian S, et al. An update on the unparalleled impact of FDG-PET imaging on the day-to-day practice of medicine. Eur J Nucl Med Mol Imaging. 2020;47(1):18-27.
- [10] Pike VW. PET radiotracers: crossing the blood-brain barrier and escaping radiometabolite interference. Trends Pharmacol Sci. 2009;30(8):431-9.
- [11] Varrone A, Halldin C. PET as a translational tool in drug development for neuroscience compounds. Clin Pharmacol Ther. 2022;112(3):451-467.

- [12] Bergström M, Grahnén A, Långström B. Positron emission tomography microdosing: a new concept with application in tracer and drug development. Eur J Clin Pharmacol. 2003;59(5-6):357-66.
- [13] Gunn RN, Rabiner EA, Slifstein M, Laruelle M. Positron emission tomography (PET) imaging of drug targets in drug development. Pharmacol Ther. 2015;148:43-60.
- [14] Kuntner C, Bankstahl JP. PET imaging of ABC and SLC transporters—focus on radiotracer development and molecular imaging applications. Front Pharmacol. 2020;11:109.
- [15] van Assema D, Lubberink M, Boellaard R, et al. P-glycoprotein function at the blood-brain barrier in Alzheimer's disease. J Nucl Med. 2012;53(3):374-80.
- [16] Bauer M, Karch R, Zeitlinger M, et al. Approaching complete inhibition of P-glycoprotein at the human blood–brain barrier: an (R)-[11C]verapamil PET study. J Cereb Blood Flow Metab. 2015;35(5):766-74.
- [17] Langer O. Use of PET Imaging to Evaluate Transporter-Mediated Drug-Drug Interactions. J Clin Pharmacol. 2016;56(S1):S88-S103.
- [18] Tournier N, Goutal S, Auvity S, et al. Strategies to Evaluate and Optimize Drug-Transporter Interactions in the Brain. Clin Pharmacol Ther. 2017;101(5):619-628.
- [19] Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer. 2002;2(9):683-93.
- [20] Oaknin A, Bosse T, Creutzberg C, et al. Endometrial cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2022;33(7):860-877.
- [21] Wang Y, Bian C, Gao Y, et al. Diagnostic value of integrated 18F-FDG PET/MRI for staging of endometrial carcinoma: Comparison with PET/CT. BMC Cancer. 2022;22(1):947.
- [22] Sharma P, Kumar R, Singh H, Jeph S, Sharma DN, Bal C, Malhotra A. Uses of PET/CT in post-treatment evaluation of endometrial carcinoma: comparison with conventional imaging and tumour marker CA-125. Eur J Radiol. 2011;80(1):125-31.
- [23] Been L, Suurmeijer A, Cobben D, et al. [18F]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging. 2004;31(12):1659-72.
- [24] Jager PL, Vaalburg W, Pruim J, et al. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med. 2001;42(3):432-45.
- [25] Li G, McAlonan GM, Howes OD. Hypofrontality and posterior hyperactivity in early schizophrenia. Schizophr Res. 2018;193:196-202.
- [26] Weinberger DR, Berman KF, Zec RF. Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow (rCBF) evidence. Arch Gen Psychiatry. 1986;43(2):114-24.
- [27] Slifstein M, van de Giessen E, Van Snellenberg J, et al. Deficits in prefrontal cortical and extra-striatal dopamine release in schizophrenia: A PET-fMRI study. JAMA Psychiatry. 2015;72(4):316-24.
- [28] Howes OD, Kambeitz J, Kim E, et al. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry. 2012;69(8):776-86.
- [29] Farde L, Nordström AL, Wiesel FA, et al. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in schizophrenic patients treated with classic neuroleptics and clozapine. Arch Gen Psychiatry. 1992;49(7):538-44.
- [30] Schindler TH. Myocardial perfusion PET: from detection of coronary artery disease to quantification of absolute myocardial blood flow. J Nucl Med. 2019;60(1):15-22.
- [31] Schinkel AF, Poldermans D, El-Haj M, et al. Assessment of myocardial viability in patients with ischemic left ventricular dysfunction. Am J Cardiol. 2007;99(6):777-83.
- [32] Sinusas AJ, Lazewatsky J, Brunetti J, et al. [11C]meta-hydroxyephedrine: a PET radiotracer for mapping sympathetic neuronal fiber density in the heart. J Nucl Med. 2014;55(9):1446-52.
- [33] Case JA, deKemp RA, Slomka PJ, et al. Status of cardiovascular PET radiation exposure and strategies for reduction: An information statement from the Cardiovascular PET Task Force. J Nucl Cardiol. 2017;24(6):1868-83.
- [34] Silberstein EB, Ryan J. Prevalence of adverse reactions to radiopharmaceuticals: a meta-analysis. J Nucl Med. 1996;37(11):185-92.
- [35] Boellaard R, Delgado-Bolton R, Oyen WJG, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328-54.