REVIEW ARTICLE

A Review on Current Advances in Transdermal Drug Delivery Systems

Nagalaxmi Pinnamraju*1, Hema Sri Valli Yekula², Subhasri Amujuri²

- ¹ Assistant Professor, Department of Pharmaceutics, Koringa College of Pharmacy, Korangi, Kakinada, Andhra Pradesh, India
- ² UG Scholar, Department of Pharmaceutics, Koringa College of Pharmacy, Korangi, Kakinada, Andhra Pradesh, India

Publication history: Received on 8th July 2025; Revised on 17th Aug 2025; Accepted on 24th August 2025

Article DOI: 10.69613/0gw98k09

Abstract: Transdermal drug delivery systems (TDDS) provide a non-invasive route for systemic medication administration, offering significant advantages over conventional oral and parenteral methods. These systems circumvent hepatic first-pass metabolism, improve drug bioavailability, and maintain steady-state plasma concentrations by delivering therapeutic agents through the skin, thereby enhancing therapeutic efficacy and reducing systemic side effects. The primary obstacle to this route is the highly impermeable stratum corneum, the outermost layer of the epidermis. Overcoming this barrier involves interactions between the drug's physicochemical properties, the formulation's design, and the skin's physiological state. Modern TDDS have evolved from simple passive patches to sophisticated platforms incorporating chemical permeation enhancers, vesicular nanocarriers like liposomes and transfersomes, and physical enhancement techniques such as microneedles and iontophoresis. These innovations have expanded the range of deliverable molecules from small, lipophilic compounds to larger biologics, including peptides and vaccines. The development and characterization of these systems rely on a robust framework of physicochemical, *in vitro*, and *in vitro* evaluation methods to ensure safety, stability, and predictable performance. The integration of smart materials and bioelectronics is paving the way for personalized, feedback-controlled therapeutic systems, can make TDDS a cornerstone of future medicine for managing a wide spectrum of acute and chronic diseases.

Keywords: Transdermal delivery; Stratum corneum; Permeation enhancement; Nanocarriers; Controlled release.

1. Introduction

The administration of therapeutic agents for systemic effects has traditionally been dominated by oral and parenteral routes. However, these methods are associated with limitations, such as enzymatic degradation and pH instability in the gastrointestinal (GI) tract, hepatic first-pass metabolism for oral drugs, and the pain and inconvenience associated with injections [1]. Transdermal drug delivery systems (TDDS), commonly known as patches, are highly effective alternative, utilizing the skin as a portal for systemic drug entry. This approach offers controlled, continuous administration of drugs, which is particularly beneficial for therapeutics with short biological half-lives that would otherwise require frequent dosing [2]. By maintaining consistent plasma drug levels, TDDS can minimize the peak-and-trough fluctuations characteristic of conventional dosing, potentially reducing side effects and improving patient adherence.

The modern era of TDDS began with the regulatory approval of Transderm-SCOP in 1979 for the prevention of motion sickness, demonstrating the clinical viability of this route [3]. Since then, the field has expanded significantly, with transdermal systems developed for a variety of therapeutic areas, including pain management, hormone replacement therapy, and the treatment of cardiovascular and central nervous system disorders [4]. The success of TDDS is predicated on its ability to bypass the harsh environment of the GI tract and avoid first-pass hepatic clearance, thereby increasing the bioavailability of susceptible drugs [5]. Furthermore, the non-invasive nature of transdermal patches reduces patient discomfort, making them a safe and convenient option, especially for pediatric and geriatric populations [6].

Despite these advantages, the full potential of transdermal delivery is constrained by the skin's primary function as a protective barrier against the external environment [7]. The principal challenge lies in overcoming the formidable resistance of the stratum corneum (SC), the outermost epidermal layer, which severely restricts the passage of most molecules, particularly those that are large or hydrophilic [8]. Consequently, successful passive transdermal delivery has largely been limited to small, potent, and moderately lipophilic molecules. Ongoing research is focused on developing innovative strategies to transiently and reversibly modulate the SC barrier, thereby broadening the spectrum of drugs suitable for transdermal administration. These techniques range from the use of chemical enhancers and nanocarriers to the application of physical energy-based techniques, reflecting the continuous evolution of TDDS as a versatile and sophisticated drug delivery platform [9, 10].

^{*} Corresponding author: Nagalaxmi Pinnamraju

2. The Skin Barrier and Permeation Pathways

The efficacy of any transdermal system is fundamentally dependent on its ability to pass through the complex, multi-layered structure of the skin.

2.1. Anatomy of the Skin

The skin is the largest organ of the human body and is composed of three primary layers: the epidermis, the dermis, and the subcutaneous tissue (hypodermis). The epidermis is the outermost, avascular layer, approximately 150 µm thick. It is a stratified epithelium that undergoes continuous renewal, with basal cells dividing and differentiating as they migrate towards the surface [11]. The innermost layer of the epidermis, the stratum germinativum, is responsible for this regeneration. Above it lie the stratum spinosum, stratum granulosum, stratum lucidum (in thick skin), and finally, the stratum corneum (SC).

The SC, with a thickness of 10–20 µm, is the principal barrier to molecular transport and is often described by the "bricks and mortar" model [12]. In this analogy, the "bricks" are the corneocytes—terminally differentiated, keratin-filled dead cells—and the "mortar" is the continuous extracellular lipid matrix in which they are embedded. This unique lipid matrix, composed primarily of ceramides, cholesterol, and free fatty acids, is organized into lamellar sheets and is crucial for the skin's barrier function [13]. Beneath the epidermis lies the dermis, a much thicker layer (1–2 mm) of connective tissue that provides structural support, elasticity, and tensile strength. The dermis is rich in collagen and elastin fibers and contains a dense network of blood capillaries, lymphatic vessels, and nerves. For a drug to exert a systemic effect after transdermal application, it must first penetrate the epidermis and subsequently be absorbed into the dermal microcirculation [14].

2.2. Pathways of Transdermal Drug Permeation

A molecule traversing the skin to reach the systemic circulation can follow one of three potential pathways through the stratum corneum: the intercellular, transcellular, or appendageal route. The physicochemical properties of the drug molecule, such as its size, lipophilicity, and charge, largely dictate the dominant pathway.

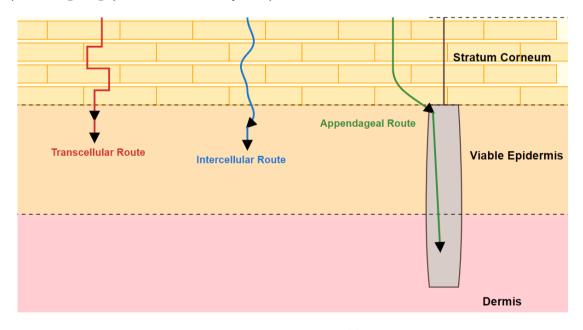


Figure 1. Drug Permeation Pathways Through the Skin

2.2.1. The Intercellular Route

The intercellular pathway involves the diffusion of molecules through the tortuous, continuous lipid matrix surrounding the corneocytes. This route is considered the primary permeation pathway for most small, lipophilic drugs that can successfully partition into and diffuse through the lipid-rich environment [15]. The path is significantly longer than the physical thickness of the SC due to its convoluted nature. Furthermore, the alternating lipophilic and hydrophilic domains within the lamellar lipid structure present a series of partitioning challenges that a permeating molecule must overcome.

2.2.2. The Transcellular Route

Alternatively, the transcellular or intracellular route requires the molecule to pass directly through the corneocytes, repeatedly partitioning between the hydrophilic keratin-filled cells and the lipophilic intercellular lipid layers. This pathway presents a formidable barrier due to the need for sequential partitioning and is generally considered to be less significant for most permeants, although it may be relevant for certain hydrophilic compounds [16].

2.2.3. The Appendageal Route

The appendageal or "shunt" route involves passage through the hair follicles and sweat glands. While these appendages bypass the continuous barrier of the stratum corneum, they constitute a very small fraction of the total skin surface area, typically estimated at around 0.1% [17]. Consequently, this route is thought to contribute minimally to the steady-state flux of most drugs. However, it may play a more significant role in the initial onset of drug absorption and for the permeation of large polar molecules and ions that are otherwise unable to cross the intact SC.

3. Factors Influencing Transdermal Permeation

The rate and extent of drug permeation through the skin are governed by a complex interplay of factors related to the drug molecule itself, the delivery system, and the physiological state of the skin.

3.1. Physicochemical Properties of the Drug

For a drug to be a suitable candidate for passive transdermal delivery, it must possess a specific set of physicochemical characteristics.

3.1.1. Molecular Weight

Generally, molecules with a weight of less than 500 Daltons (Da) are considered favorable for crossing the SC [18]. Larger molecules exhibit significantly lower diffusion coefficients.

Table 1. Ideal Physicochemical Properties for Passive Transdermal Drug Delivery Candidat	es.
--	-----

Parameter	Ideal Range /	Rationale
	Characteristic	
Molecular Weight (MW)	< 500 Da	Smaller molecules diffuse more readily through the dense lipid matrix of the
		stratum corneum.
Octanol/Water Partition	1 – 4	Requires a balance of lipophilicity to partition into the stratum corneum and
Coefficient (log P)		hydrophilicity to partition out into the viable epidermis.
Melting Point	< 200 °C	Lower melting point correlates with higher solubility in skin lipids, enhancing
		permeability.
Aqueous Solubility	$> 100 \mu g/mL$	Sufficient solubility is needed to maintain a concentration gradient and for
		the drug to be available in the viable epidermis.
Ionization State	Primarily non-	The uncharged form of a drug is more lipophilic and permeates the stratum
	ionized at skin	corneum more effectively.
	pH (4.5–5.5)	
Daily Dose	< 20 mg/day	The low flux across the skin limits the total amount of drug that can be
	-	delivered in a 24-hour period.

3.1.2. Lipophilicity

The drug must have adequate lipophilicity to partition into the lipid-rich SC, but also sufficient aqueous solubility to partition out of it and into the viable epidermis. This balance is often quantified by the octanol-water partition coefficient (log P), with an optimal range typically falling between 1 and 4 [19].

3.1.3. Melting Point

A lower melting point (<200 °C) is associated with higher solubility in the SC lipids and thus better permeability.

3.1.4. Ionization

Non-ionized (uncharged) forms of a drug are more lipophilic and permeate the SC more readily than their ionized counterparts. The pH of the formulation and the skin surface (typically 4.5–5.5) can influence the drug's ionization state.

3.1.5. Potency

Because the flux across the skin is limited, only potent drugs requiring a low daily dose (typically <20 mg/day) are suitable for transdermal administration.

3.2. Factors Affecting Formulation

The design of the TDDS itself plays a critical role in modulating drug release and skin permeation.

3.2.1. Drug Concentration

According to Fick's first law of diffusion, the flux of a drug across the skin is proportional to the concentration gradient. Using a saturated or supersaturated drug solution in the patch reservoir maximizes this gradient and drives permeation [20].

3.2.2. Occlusion

The patch backing material is often occlusive, preventing water evaporation from the skin surface. This hydrates the SC, causing it to swell and become more permeable to both hydrophilic and lipophilic drugs [21].

3.2.3. Permeation Enhancers

These are chemical agents incorporated into the formulation to reversibly decrease the barrier resistance of the SC. They can act by various mechanisms, such as disrupting the ordered lipid structure, interacting with intracellular proteins, or improving drug partitioning into the SC [22].

3.3. Physiological and Pathological Factors

The condition of the skin at the site of application significantly influences drug absorption.

3.3.1. Skin Hydration

As mentioned, increased hydration of the SC enhances the permeation of most drugs.

3.3.2. Anatomical Site

The thickness of the SC varies across the body. For example, the skin on the scrotum and post-auricular region is much more permeable than the skin on the palms and soles.

3 3 3 Age

The skin of infants and the elderly is generally more permeable than that of younger adults due to differences in SC structure and composition.

3.3.4. Skin Condition

Diseases such as psoriasis and eczema, or physical damage like cuts and abrasions, can compromise the integrity of the SC, leading to a significant increase in drug penetration [23].

4. Components of a Transdermal Patch

A typical transdermal patch is a multi-laminate system, with each layer designed to perform a specific function to ensure stable, effective, and safe drug delivery.

4.1. Backing Laminate

This is the outermost layer of the patch, providing structural support and protecting the formulation from the external environment. It is typically made of flexible, occlusive, or non-occlusive materials like polyester, polyethylene, or aluminized films. The choice of material affects the patch's flexibility, appearance, and the degree of skin hydration it induces.

4.2. Drug Reservoir or Matrix

This layer contains the active pharmaceutical ingredient (API) and various excipients. The drug can be dissolved or dispersed in a liquid, gel, or solid polymer matrix. This component is central to the patch's performance, as its composition dictates the drug loading capacity and the release kinetics.

4.3. Rate-Controlling Membrane (Optional)

In some designs (reservoir systems), a semi-permeable membrane is placed between the drug reservoir and the skin. This membrane, typically made from microporous or non-porous polymers like ethylene-vinyl acetate copolymer, controls the rate of drug release from the patch, ensuring a constant and predictable delivery profile.

4.4. Pressure-Sensitive Adhesive (PSA)

The PSA layer is responsible for securing the patch to the skin. It must be biocompatible, non-irritating, and provide adequate adhesion throughout the intended wear period, yet allow for easy and trauma-free removal. In many modern patches (drug-in-adhesive systems), the PSA also serves as the drug matrix, simplifying the design. Common PSAs include acrylates, polyisobutylenes, and silicones.

4.5. Release Liner

This protective layer covers the adhesive before application and is peeled away by the user. It is typically made of a siliconized or fluoropolymer-coated film that prevents the drug from migrating into the liner during storage while ensuring easy removal without damaging the adhesive layer.

5. Types of Transdermal Patch Designs

Transdermal patches can be broadly classified into several categories based on their design and the mechanism of drug release.

5.1. Reservoir System

This design features a liquid drug reservoir, often containing a solution or suspension of the drug, which is separated from the skin by a rate-controlling polymeric membrane and an adhesive layer. The drug release rate is governed by diffusion across this membrane, providing zero-order (constant) release as long as the drug concentration in the reservoir remains saturated.

5.2. Matrix System

In matrix systems, the drug is uniformly dispersed or dissolved within a solid polymer matrix. The adhesive is typically applied as a peripheral ring or a face adhesive overlay. The drug diffuses from the matrix to the skin, and the release rate is dependent on the square root of time, decreasing as the depletion zone expands.

5.3. Drug-in-Adhesive System

This is the simplest and most common design, where the drug is incorporated directly into the pressure-sensitive adhesive layer. This single layer serves as both the drug reservoir and the means of attachment to the skin. These patches are typically thin and comfortable. The release kinetics are often similar to matrix systems. Multi-layer drug-in-adhesive systems also exist, which can be designed to provide an initial burst release followed by a sustained release phase.

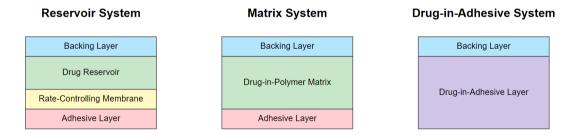


Figure 2. Types of TDDS

6. Evaluation of Transdermal Systems

The development of a TDDS requires rigorous evaluation to ensure its quality, safety, and efficacy. This process involves a multi-tiered approach encompassing physicochemical, *in vitro*, and *in vivo* testing.

6.1. Physicochemical Characterization

These tests assess the physical properties and integrity of the patch to ensure uniformity and stability.

6.1.1. Physical Parameters

Tests for thickness, weight uniformity, and flatness are conducted to ensure batch-to-batch consistency.

6.1.2. Drug Content

The amount of active drug per patch is quantified to confirm dosage accuracy and uniformity. This is typically performed using validated analytical methods such as high-performance liquid chromatography (HPLC) or UV-Vis spectrophotometry after extracting the drug from the patch.

6.1.3. Moisture Content and Uptake

These parameters are important for the stability of the drug and the physical integrity of the patch. They are assessed by storing the patch in controlled humidity environments and measuring weight changes.

6.1.4. Mechanical Properties

The flexibility and strength of the patch are evaluated through tests like folding endurance and tensile strength. These properties are crucial for patient comfort and ensuring the patch remains intact during wear.

6.1.5. Adhesive Properties

The performance of the pressure-sensitive adhesive is critical. The main tests include peel adhesion (force required to remove the patch), tack (initial stickiness), and shear strength (resistance to sliding under load). These ensure the patch adheres properly for the required duration without causing skin stripping upon removal [24].

6.2. In Vitro Evaluation

In vitro studies provide essential information on drug release from the patch and its ability to permeate the skin, serving as a crucial link between formulation design and *in vivo* performance.

6.2.1. In Vitro Drug Release Testing

These studies measure the rate and extent of drug release from the patch into a dissolution medium. The USP paddle-over-disc method (Apparatus 5) is commonly used. The patch is fixed to a disc at the bottom of the dissolution vessel, and the release profile is monitored over time. This test is vital for quality control and ensuring predictable performance.

6.2.2. In Vitro Skin Permeation Testing

This is the gold standard for assessing the ability of a drug to cross the skin barrier. These experiments are typically conducted using vertical diffusion cells, such as Franz or Keshary-Chien cells [25]. Excised skin (human or animal, e.g., porcine) is mounted between the donor and receptor chambers. The TDDS is applied to the epidermal side in the donor chamber, and the receptor chamber is filled with a physiological buffer maintained at 32-37°C. Samples are periodically withdrawn from the receptor fluid to quantify the amount of drug that has permeated. From these data, key parameters like steady-state flux (Jss) and permeability coefficient (Kp) can be calculated to compare different formulations [26].

6.3. In Vivo Evaluation

In vivo studies are the final step in confirming the safety and efficacy of a TDDS before clinical use.

6.3.1. Animal Models

Preclinical studies in animal models (e.g., rats, guinea pigs, hairless mice) are used to assess skin irritation, sensitization, and to obtain initial pharmacokinetic data. While animal skin is often more permeable than human skin, these studies provide valuable preliminary insights [27].

6.3.2. Human Studies

Clinical trials in human volunteers are essential for establishing the pharmacokinetic profile (absorption, distribution, metabolism, and excretion) of the drug delivered from the patch. Blood samples are collected over time to determine parameters like Cmax (peak plasma concentration), Tmax (time to reach Cmax), and AUC (area under the concentration-time curve). These studies also evaluate the adhesive performance, skin tolerability (erythema, edema), and overall safety of the system under real-world conditions [28].



Figure 3. Development of TDDS

7. Techniques for Permeation Enhancement

Numerous enhancement strategies have been developed to expand the range of drugs deliverable via the transdermal route, particularly large molecules and biologics. These can be broadly classified into chemical, nanocarrier-based, and physical methods.

7.1. Nanocarrier-Based Systems

Nanotechnology offers sophisticated platforms for improving transdermal drug delivery. Nanocarriers can enhance drug solubility, protect the drug from degradation, provide controlled release, and facilitate transport into and across the skin barrier.

Table 2. Comparison of Major Vesicular Nanocarriers Used in Transdermal Drug Delivery.

Carrier Type	Composition	Mechanism of	Advantages	Limitations
•	-	Enhancement	O	
Liposomes	Phospholipids,	Fusion with SC lipids;	Biocompatible;	Poor penetration into
	Cholesterol	improve drug localization in	encapsulate both	deeper skin layers;
		upper skin layers.	hydrophilic and	potential instability.
			lipophilic drugs.	
Transfersomes®	Phospholipids,	Ultradeformability allows	High efficiency for deep	Higher cost; more
	Cholesterol, Edge	squeezing through SC pores	skin penetration and	complex formulation
	Activator (e.g.,	smaller than their size.	systemic delivery.	than conventional
	surfactant)			liposomes.
Ethosomes	Phospholipids,	Ethanol acts as a	Enhanced penetration	Potential for skin
	Cholesterol, High	permeation enhancer,	for a wide range of	irritation due to high
	concentration of	fluidizing SC lipids and the	drugs; suitable for deep	ethanol content.
	Ethanol (20-45%)	vesicle membrane.	dermal delivery.	
Niosomes	Non-ionic	Similar to liposomes but	High chemical stability;	Permeation
	Surfactants,	formed from surfactants;	low cost; can	enhancement is generally
	Cholesterol	modify SC permeability.	encapsulate various drug	less pronounced than
			types.	with transfersomes or
				ethosomes.

7.1.1. Vesicular Carriers

These are lipid-based vesicles that can encapsulate both hydrophilic and lipophilic drugs.

7.1.2. Liposomes

Conventional liposomes, composed of phospholipid bilayers, can improve drug localization in the upper skin layers but have limited ability to penetrate into deeper tissues.

7.1.3. Transfersomes®

These are ultradeformable vesicles containing an "edge activator" (a single-chain surfactant) that destabilizes the lipid bilayers, allowing the vesicles to squeeze through pores much smaller than their own diameter, thereby enhancing deep skin penetration [29].

7.1.4. Ethosomes

These vesicles contain a high concentration of ethanol, which acts as a permeation enhancer by fluidizing both the vesicle membrane and the SC lipids, enabling deeper penetration [30].

7.1.5. Niosomes

Formulated from non-ionic surfactants, niosomes are more stable and cost-effective alternatives to liposomes that can enhance skin permeation.

7.1.6. Lipid Nanoparticles

Solid Lipid Nanoparticles (SLNs): These consist of a solid lipid core and can provide controlled release and an occlusive effect, hydrating the skin to enhance permeation.

Nanostructured Lipid Carriers (NLCs): As a second generation of lipid nanoparticles, NLCs are composed of a blend of solid and liquid lipids, creating an imperfect matrix that increases drug loading capacity and reduces potential drug expulsion during storage [31].

Technology	Mechanism of Action	Suitable Drug Candidates	Features
Iontophoresis	Applies a low-level electric current to	Small to medium-sized	Controlled, programmable
•	drive ionized drugs through the skin via	charged molecules (ions),	(pulsatile) delivery; rapid onset of
	electrostatic repulsion.	peptides.	action.
Sonophoresis Uses low-frequency ultrasound to		Hydrophilic molecules,	Non-invasive; synergistic with
	create transient pores in the stratum	macromolecules, proteins,	chemical enhancers.
	corneum via cavitation and thermal	vaccines.	
	effects.		
Electroporation	Applies short, high-voltage electrical	Large hydrophilic	Significantly increases
	pulses to create transient aqueous	molecules, genes (DNA),	permeability (by orders of
	micropores in the skin barrier.	vaccines, proteins.	magnitude).
Microneedles	Arrays of microscopic needles	Macromolecules, proteins,	Painless; can deliver a very wide
(MNs)	painlessly create microchannels across	peptides, vaccines,	range of molecules; various types
	the stratum corneum, bypassing the	nanoparticles.	(solid, dissolving, hollow).
	barrier.		

Table 3. Physical Permeation Enhancement Technologies

7.2. Physical Enhancement Methods

Physical or energy-based methods utilize external energy to transiently disrupt the SC and facilitate drug transport. These techniques are particularly promising for the delivery of macromolecules and for achieving rapid or pulsatile release profiles.

7.2.1. Iontophoresis

This technique involves applying a low-intensity electric current (typically <0.5 mA/cm²) to the skin. An active electrode containing the ionized drug is placed on the skin, and a counter electrode is placed elsewhere. The electric field provides a driving force for the transport of charged drug molecules across the SC, primarily through appendageal pathways [32].

7.2.2. Sonophoresis (Phonophoresis)

This method uses low-frequency ultrasound (20–100 kHz) to increase skin permeability. The ultrasonic waves are thought to induce cavitation (formation and collapse of microbubbles) within the SC lipids, creating transient pores and disordering the lipid structure, thereby enhancing drug diffusion [33].

7.2.3. Electroporation

This technique involves applying short, high-voltage electrical pulses to the skin. These pulses are believed to create transient aqueous pores in the SC, significantly increasing the permeability to a wide range of molecules, including large hydrophilic drugs and DNA [34].

7.2.4. Microneedles (MNs)

Microneedles are arrays of microscopic needles (typically 100-1000 µm in length) that painlessly pierce the SC to create microchannels into the viable epidermis, bypassing the main barrier layer. The drug can then diffuse through these conduits. MNs can be solid (used to pre-treat the skin), coated with the drug, dissolving (made from a drug-polymer composite that dissolves in the skin), or hollow (for infusion of liquid formulations) [35].

8. Generations of Transdermal Technology

The evolution of TDDS can be categorized into distinct generations, each representing a significant technological advancement in overcoming the skin barrier.

8.1. First Generation

These are the conventional passive patches that rely on the drug's intrinsic ability to permeate the skin. Their application is limited to a small subset of potent, lipophilic, low-molecular-weight drugs (e.g., scopolamine, nicotine, fentanyl).

8.2. Second Generation

This generation incorporates chemical permeation enhancers into the patch formulation to moderately increase skin permeability. This expanded the range of small molecules that could be delivered transdermally. Iontophoresis-based systems also fall into this category.

8.3. Third Generation

This generation focuses on aggressively disrupting the SC using physical methods to deliver large molecules like peptides, proteins, and vaccines. Technologies such as sonophoresis, electroporation, and, most prominently, microneedles characterize this generation, aiming to provide a non-invasive alternative to injections for biologics [36].

8.4. Fourth Generation

Representing the future of the field, this generation aims to integrate smart, responsive technologies with drug delivery. These systems often incorporate biosensors to monitor physiological parameters (e.g., glucose levels) and use feedback-controlled mechanisms (e.g., responsive microneedles or iontophoresis) to adjust drug delivery in real-time, enabling personalized medicine [37].

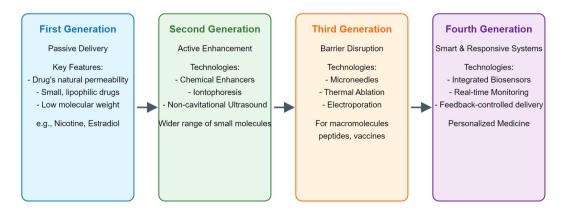


Figure 4. Evolution of TDDS

9. Clinical Applications

TDDS has found successful application in numerous therapeutic areas, including chronic pain management (fentanyl, buprenorphine), hormone replacement therapy (estradiol, testosterone), smoking cessation (nicotine), and the treatment of neurological conditions like Parkinson's disease (rotigotine) and Alzheimer's disease (rivastigmine). The future of transdermal delivery is moving towards more sophisticated, patient-centric systems. The development of microneedle technology is poised to revolutionize the delivery of vaccines and biologics, offering a painless and potentially more immunogenic alternative to hypodermic needles. Moreover, the convergence of TDDS with wearable electronics and biosensors is creating a new frontier of "smart patches." These devices could enable closed-loop therapeutic systems that continuously monitor a patient's condition and automatically deliver the precise dose of medication required, heralding a new era of personalized and programmable medicine.

Drug	Brand Name (Example)	Therapeutic Category	Indication
Scopolamine	Transderm-Scōp®	Anticholinergic	Motion Sickness
Nicotine	Nicoderm CQ®, Habitrol®	Smoking Cessation Aid	Smoking Cessation
Fentanyl	Duragesic®	Opioid Analgesic	Chronic Pain Management
Estradiol	Vivelle-Dot®, Climara®	Hormone Replacement	Menopausal Symptoms
Testosterone	Androderm®	Hormone Replacement	Hypogonadism
Rotigotine	Neupro®	Dopamine Agonist	Parkinson's Disease, Restless Legs Syndrome
Rivastigmine	Exelon® Patch	Cholinesterase Inhibitor	Alzheimer's & Parkinson's Dementia
Buprenorphine	Butrans®	Opioid Analgesic	Chronic Pain Management
Clonidine	Catapres-TTS®	Antihypertensive	Hypertension
Methylphenidate	Daytrana®	CNS Stimulant	Attention Deficit Hyperactivity Disorder (ADHD)

Table 4. Examples of Commercially Successful Transdermal Drug Delivery Systems.

10. Conclusion

Transdermal drug delivery systems have matured from a niche technology into a major platform for systemic drug administration. TDDS offers improved patient compliance, bioavailability for certain drugs, and the ability to provide sustained, controlled therapy by avoiding the demerits of oral and parenteral routes. The primary limitation remains the formidable barrier of the stratum corneum. However, the field has responded with remarkable innovation, from the rational design of chemical enhancers and advanced nanocarriers to the development of powerful physical enhancement techniques. The progression through successive generations of TDDS technology has systematically expanded the library of deliverable drugs from small molecules to large biotherapeutics. The transdermal route along with nanotechnology, and microelectronics, is set to play an increasingly vital role in modern healthcare, paving the way for non-invasive, intelligent, and personalized therapeutic solutions.

References

- [1] Langer R. Drug delivery and targeting. Nature. 1998;392(6679 Suppl):5-10.
- [2] Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261-8.
- [3] Pastore MN, Kalia YN, Horstmann M, Roberts MS. Transdermal patches: history, development and pharmacology. Br J Pharmacol. 2015;172(9):2179-209.
- [4] Paudel KS, Milewski M, Swadley CL, Brogden NK, Banks P, Stinchcomb AL. Challenges and opportunities in dermal/transdermal delivery. Ther Deliv. 2010;1(1):109-31.
- [5] Scheindlin S. Transdermal drug delivery: PAST, PRESENT, FUTURE. Mol Interv. 2004;4(5):308-12.
- [6] Leppert W, Malec-Milewska M, Zajaczkowska R, Wordliczek J. Transdermal and Topical Drug Administration in the Treatment of Pain. Molecules. 2018;23(3):681.
- [7] Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17(12):1063-72.
- [8] Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001;14(2):101-
- [9] Karande P, Mitragotri S. Enhancement of transdermal drug delivery via synergy between chemical enhancers and physical enhancement strategies. Expert Opin Drug Deliv. 2009;6(1):1-13.

- [10] Vaseem RS, D'cruz A, Shetty S, H H, Vardhan A, R SS, et al. Transdermal Drug Delivery Systems: A Focused Review of the Physical Methods of Permeation Enhancement. Adv Pharm Bull. 2024;14(1):67-85.
- [11] Madison KC. Barrier function of the skin: "la raison d'être" of the epidermis. J Invest Dermatol. 2003;121(2):231-41.
- [12] Elias PM. The skin barrier as an innate immune element. Semin Immunopathol. 2007;29(1):3-14.
- [13] Bouwstra JA, Ponec M. The skin barrier in healthy and diseased state. Biochim Biophys Acta. 2006;1758(12):2080-95.
- [14] Schoellhammer CM, Blankschtein D, Langer R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Deliv. 2014;11(3):393-407.
- [15] Scheuplein RJ, Blank IH. Permeability of the skin. Physiol Rev. 1971;51(4):702-47.
- [16] Hadgraft J. Skin, the final frontier. Int J Pharm. 2001;224(1-2):1-18.
- [17] Otberg N, Richter H, Schaefer H, Blume-Peytavi U, Sterry W, Lademann J. Variations of hair follicle size and distribution in different body sites. J Invest Dermatol. 2004;122(1):14-9.
- [18] Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):165-9.
- [19] Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9(5):663-9.
- [20] Flynn GL. Physicochemical determinants of skin absorption. In: Gerrity TR, Henry CJ, editors. Principles of route-to-route extrapolation for risk assessment. New York: Elsevier; 1990. p. 93–127.
- [21] Finnin BC, Morgan TM. Transdermal penetration enhancers: applications, limitations, and potential. J Pharm Sci. 1999;88(10):955-8.
- [22] Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2012;64(Suppl):128-37.
- [23] Keum T, Kim H, Kim Y, Choi S, Kim Y, Lee E, et al. Effect of skin barrier damage on the transdermal delivery of drugs. Pharmaceutics. 2020;12(2):105.
- [24] Tan HS, Pfister WR. Pressure-sensitive adhesives for transdermal drug delivery systems. Pharm Sci Technol Today. 1999;2(9):218-227.
- [25] Ng KW, Lau WM. In vitro permeation of diclofenac from topical formulations through human skin. Br J Clin Pharmacol. 2015;80(5):1065-72.
- [26] Godin B, Touitou E. Transdermal skin delivery: predictions for humans from *in vivo*, *ex vivo* and animal models. Adv Drug Deliv Rev. 2007;59(11):1152-61.
- [27] Todo H. Transdermal permeation of drugs in various animal species. Pharmaceutics. 2017;9(3):33.
- [28] U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Guidance for Industry: Skin Irritation and Sensitization Testing of Generic Transdermal Drug Products. 1999.
- [29] Cevc G, Blume G. Lipid vesicles penetrate into intact skin *in vivo* and enhance transdermal drug delivery. Biochim Biophys Acta. 1992;1104(1):226-32.
- [30] Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes--novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000;65(3):403-18.
- [31] Müller RH, Radtke M, Wissing SA. Nanostructured lipid carriers (NLC) in cosmetic and pharmaceutical dermal preparations. Adv Drug Deliv Rev. 2002;54(Suppl 1):S131-55.
- [32] Kalia YN, Naik A, Garrison J, Guy RH. Iontophoretic drug delivery. Adv Drug Deliv Rev. 2004;56(5):619-58.
- [33] Mitragotri S, Blankschtein D, Langer R. Ultrasound-mediated transdermal protein delivery. Science. 1995;269(5228):850-3.
- [34] Prausnitz MR. The effects of electric current applied to skin: a review for transdermal drug delivery. Adv Drug Deliv Rev. 1996;18(3):395-425.
- [35] Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547-68.
- [36] Wanner M. Transdermal drug delivery: the 3rd generation. Med Monatsschr Pharm. 2009;32(5):169-74.
- [37] Joshi N, Azizi Machekposhti S, Narayan RJ. Evolution of Transdermal Drug Delivery Devices and Novel Microneedle Technologies: A Historical Perspective and Review. JID Innov. 2023;3(6):100225.