

A bimonthly pharma refresh brought to you by Journal of Pharma Insights and Research (JOPIR)

ISSN No. 3048-5428

OCTOBER 2025 VOL. 3, ISSUE 5

DOI: 10.5281/ZENODO.17267422

Contents

THE IMPACT OF DIGITAL PILLS ON PATIENT ADHERENCE TO MEDICATION	2
Miss Harshitha Acham, Miss Bharathi J	2
ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY	2
Dr. Saikoteswar Sarma	2
TECHNOLOGICAL INNOVATIONS IN DRUG DISCOVERY	3
Miss Vidhyalakshmi R, Mrs. Elavarasi E	3
NANOTECHNOLOGY BASED PLATFORMS FOR CANCER DIAGNOSIS AND TREATMENT	3
Dr. Anupama B, Ms. Sai Manasa Ch, Mr. Jagadish Ch, Mr. Venkat Dinesh Ch, Mr. Chandrahaas D	3
SMART NANOGELS FOR PERSONAL CARE AND COSMETIC APPLICATIONS	4
Miss Kanishka Patel, Miss Roohi Yusufi	4
PHYTOCHEMICAL EPIGENETIC REPROGRAMMING FOR AUTOIMMUNE DISEASES	4
Miss Sakshi Barge Suryawanshi	4
CURRENT TREATMENT ADVANCES AND MANAGEMENT OF VEXAS SYNDROME	5
Miss Poojitha Kandukuri	5
AI-DRIVEN INNOVATION IN PHARMACEUTICAL DEVELOPMENT	5
Mr. Shivansh Kumar Singh	5
DIGITAL HEALTHCARE TRANSFORMATION IN HEALTHCARE	6
Miss Hashvitha V, Miss Bharathi J	6
MODERN APPROACHES IN DRUG DESIGN AND DEVELOPMENT	6
Miss Meenatchi S, Miss Deva Dharshini R, Miss Gomathy E	6
OPTIMIZATION AND INNOVATIONS IN CLINICAL TRIALS FOR DRUG DEVELOPMENT	
Miss Deva Dharshini R, Miss Meenatchi S, Miss Gomathy E	7
DESIGN AND EVALUATION OF CURCUMIN-PIPERINE LOADED PLGA NANOPARTICLES FOR IMPROVED ORAL BIOAVAILABILITY	7
Miss Tebong Josma	7
APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN DRUG DESIGN AND PEDIATRIC HEALTHCARE	8
Mr. Harish Kandati Miss Rharathi I	۵

A bimonthly pharma refresh brought to you by Journal of Pharma Insights and Research (JOPIR)

ISSN No. 3048-5428

OCTOBER 2025 VOL. 3, ISSUE

THE IMPACT OF DIGITAL PILLS ON PATIENT ADHERENCE TO MEDICATION

Miss Harshitha Acham*1, Miss Bharathi J²

¹UG Scholar, Department of Pharmacy, Krishna Teja Pharmacy College, Tirupati, India ² Assistant Professor, Department of Pharmacy, Krishna Teja Pharmacy College, Tirupati, India

harshithaacham@gmail.com

Abstract: Ingestible sensor-embedded digital pills represent a paradigm shift in chronic disease management, offering real-time confirmation of medication ingestion. A three-month observational analysis indicated adherence rates reaching 99% with digital pill systems, significantly surpassing conventional monitoring methods such as self-reporting and manual pill counting. The digital pill ecosystem encompasses ingestible sensors, wearable patches, and smartphone applications, creating a comprehensive medication monitoring network. This system enables immediate verification of dose consumption, facilitates timely medication reminders, and enhances patient-provider communication channels. Patient feedback highlighted positive experiences regarding system usability and the reassurance of automated tracking. While implementation barriers include economic considerations and technological requirements, the benefits particularly impact individuals with historically low medication compliance. The technology shows particular promise in complex medication regimens where precise timing and consistent intake are crucial for therapeutic success. The documented improvements in adherence patterns suggest potential applications across various chronic conditions requiring long-term medication management. Integration of digital pills into standard care protocols could enable healthcare providers to develop more personalized intervention strategies and optimize treatment outcomes through data-driven decision-making. This technology represents a significant step toward addressing medication non-adherence, a persistent challenge in chronic disease management.

Keywords: Chronic disease management, Digital pills, Health technology, Ingestible sensors, Real-time tracking, Patient engagement.

ARTIFICIAL INTELLIGENCE IN DRUG DISCOVERY

Dr. Saikoteswar Sarma

Associate Professor, Department of Pharmacognosy, Sri Padmavathi School of Pharmacy(A), Tirupati, Andhra Pradesh, India

sarmaspsp@gmail.com

Abstract: Artificial intelligence has emerged as a revolutionary force in pharmaceutical research, fundamentally changing drug discovery approaches through sophisticated neural networks and deep learning systems. The technology shows remarkable capability in predicting crucial drug properties, including physicochemical characteristics and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) parameters. These predictions rely heavily on quantitative structure-property relationships (QSPR) and quantitative structure-activity relationships (QSAR), establishing reliable correlations between molecular structures and their biological activities. Al-driven de novo design represents a particularly promising advancement, enabling the targeted creation of novel bioactive compounds with desired therapeutic properties. The integration of Al extends beyond initial discovery to synthesis planning and manufacturability assessment, suggesting a future where drug development becomes increasingly automated. This technological evolution arrives at a critical juncture when the pharmaceutical industry faces mounting challenges from escalating R&D costs and declining research efficiency. The application of Al-based software solutions offers potential pathways to address high attrition rates in new drug approvals and streamline the research process. Strategic collaborations between established pharmaceutical companies and specialized Al-driven drug discovery firms are emerging as a new paradigm, combining traditional pharmaceutical expertise with cutting-edge computational capabilities. These partnerships indicate a promising way to accelerate drug development while maintaining scientific rigor and innovation.

Keywords: Artificial intelligence, Quantitative Structure-Property Relationships, Al-Based Software, Pharmaceutical Industry, Drug Discovery, Neural Networks.

A bimonthly pharma refresh brought to you by Journal of Pharma Insights and Research (JOPIR)

ISSN No. 3048-5428

TECHNOLOGICAL INNOVATIONS IN DRUG DISCOVERY

Miss Vidhyalakshmi R*1, Mrs. Elavarasi E²

¹UG Scholar, Faculty of Pharmacy, Bharath Institute of Higher Education and Research, Chennai, India ² Assistant Professor, Faculty of Pharmacy, Bharath Institute of Higher Education and Research, Chennai. India

vidhyarajan2004@gmail.com

Abstract: Advanced technological integration is fundamentally reshaping pharmaceutical research and development, addressing critical challenges in global healthcare through accelerated and cost-effective drug discovery processes. The convergence of artificial intelligence (AI), machine learning (ML), big data analytics, high-throughput screening, and computational biology creates a powerful framework that overcomes traditional limitations of time, cost, and attrition rates in drug development. These integrated technologies enable rapid identification of drug targets, optimization of lead compounds, and precise prediction of pharmacokinetic properties and toxicity profiles. The synergistic application of these computational tools significantly enhances decision-making accuracy and expedites early-stage research and development activities. This technological revolution supports precision medicine initiatives while simultaneously streamlining development pipelines and optimizing resource allocation. Industry analyses demonstrate substantial reductions in discovery timelines and improved target validation processes through technology adoption. The transformation extends beyond mere efficiency improvements, fostering data-driven innovation that accelerates the development of next-generation therapeutics. This technological evolution in pharmaceutical research promises continued advancement in drug discovery capabilities, ultimately contributing to enhanced patient care outcomes and global health improvements. The current technologies suggest an increasingly efficient and precise future for pharmaceutical development, where innovative therapeutics reach patients more rapidly and effectively.

Keywords: Artificial intelligence, Machine Learning, Pharmacokinetics, Toxicity, Drug Development, Data-Driven Innovation, Computational Biology, Precision Medicine.

NANOTECHNOLOGY BASED PLATFORMS FOR CANCER DIAGNOSIS AND TREATMENT

Dr. Anupama B*1, Ms. Sai Manasa Ch2, Mr. Jagadish Ch2, Mr. Venkat Dinesh Ch2, Mr. Chandrahaas D²

¹Senior Professor and HOD, Department of Pharmaceutical Chemistry, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh, India ² UG Scholar, Department of Pharmaceutical Chemistry, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh, India

changantipatisaimanasa@gmail.com

Abstract: Nanoparticle-based technologies are a transformative approach in oncological applications, offering unique advantages through their enhanced surface area, volume fraction, and precise targeting capabilities. These nanoscale platforms demonstrate remarkable selectivity in tumor targeting while maintaining minimal toxicity to healthy tissues, achieved through their ability to effectively penetrate epithelial barriers and tissue fenestrations. The enhanced bioavailability and extended circulation times of nanoparticles have established them as powerful tools across diverse biomedical applications, particularly in cancer diagnostics and therapeutics. Contemporary developments showcase various nanoformulations, including metallic, magnetic, polymeric, metal oxide, quantum dots, graphene, fullerene, liposomes, carbon nanotubes, and dendrimers, each offering distinct advantages in oncological applications. These platforms demonstrate intrinsic anticancer properties through their antioxidant mechanisms, contributing to tumor growth inhibition. The controlled release capabilities of nanoparticle systems enhance therapeutic efficacy while minimizing adverse effects, representing a significant advancement over conventional treatment approaches. Specialized applications, such as microbubble-based contrast agents, have revolutionized ultrasound imaging in cancer diagnostics. The versatility of nanoparticle platforms in conjugating with therapeutic agents enables targeted delivery to tumors and affected organs, marking a significant evolution in cancer treatment strategies. This technological convergence of nanotechnology and oncology provides opportunities for advancing cancer diagnosis and therapy through precision medicine approaches.

Keywords: Quantum Dots, Liposomes, Microbubbles, Graphene, Fullerene, Nanoparticles, Cancer Therapy, Targeted Delivery

A bimonthly pharma refresh brought to you by Journal of Pharma Insights and Research (JOPIR)

ISSN No. 3048-5428

OCTOBER 2025 VOL. 3, ISSUE

SMART NANOGELS FOR PERSONAL CARE AND COSMETIC APPLICATIONS

Miss Kanishka Patel*1, Miss Roohi Yusufi2

¹UG Scholar, Department of Pharmacy, Acropolis Institute of Pharmaceutical Education and Research, Indore, India

² Assistant Professor, Department of Pharmacy, Acropolis Institute of Pharmaceutical Education and Research, Indore, India

mp639212@gmail.com

Abstract: Innovative smart nanogel are advanced personal care and cosmetic formulations through their unique stimuli-responsive properties and controlled release capabilities. These crosslinked polymeric networks respond dynamically to environmental triggers, offering unprecedented control over active ingredient delivery. The evolution of complementary systems, including nanohydrogels and organogels, enhances formulation performance through improved stability, enhanced skin penetration, and superior tactile properties. Experimental evidence demonstrates remarkable efficacy across various applications: chitosan nanogels effectively preserve vitamin C bioactivity, hyaluronic acid nanohydrogels deliver significant improvements in skin hydration and wrinkle reduction, while specialized lipid-based organogels provide enhanced photoprotection through co-delivery of UV filters and polyphenols. A significant advancement lies in the integration of herbal bioactives such as curcumin, catechins, and resveratrol within these gel matrices, amplifying anti-aging, anti-inflammatory, and skin-brightening benefits while protecting sensitive ingredients from oxidative degradation. The development of hybrid gel platforms enables precise temporal control over ingredient release, aligning with skin chronobiology and meeting growing consumer demand for sustainable, scientifically-validated products. However, scalability challenges, regulatory guidelines, and safety evaluation remain critical considerations for commercial implementation. These advanced delivery systems contemplate a convergence of materials science and cosmetic technology, offering unprecedented potential for evidence-based innovation in personal care formulations through enhanced efficacy and controlled delivery of active ingredients.

Keywords: Smart Nanogels, Nanohydrogels, Organogels, Cosmetics, Herbal Synergy, Controlled Release, Stimuli-Responsive Systems.

PHYTOCHEMICAL EPIGENETIC REPROGRAMMING FOR AUTOIMMUNE DISEASES

Miss Sakshi Barge Suryawanshi

UG Scholar, Department of Pharmacy, Acropolis Institute of Pharmaceutical Education and Research, Indore, India

seemasuryawanshi638@gmail.com

Abstract: The pathogenesis of autoimmune diseases consists of pathophysiological interactions between genetic susceptibility, environmental factors, and immune system dysfunction, leading to self-antigen intolerance and chronic inflammation. Epigenetic dysregulation, including abnormal DNA methylation, histone modifications, and altered noncoding RNA expression, plays a fundamental role in perpetuating autoimmune responses. While conventional synthetic epigenetic modulators demonstrate therapeutic potential, their clinical implementation faces significant challenges regarding toxicity profiles and long-term safety concerns. Natural phytochemicals present a promising alternative approach through their epigenetic regulatory capabilities. Specific compounds demonstrate distinct mechanistic actions: curcumin and epigallocatechin gallate function as DNA methyltransferase inhibitors, resveratrol and apigenin target histone deacetylases, while quercetin and baicalin influence immune-related microRNA expression. These botanical compounds modulate key inflammatory pathways, reducing pro-inflammatory cytokine production, normalizing Th17/Treg balance, and promoting immune homeostasis. Advanced delivery systems, including nanoformulations and liposomal preparations, enhance the therapeutic potential of these compounds by improving their bioavailability and targeting efficiency. The integration of phytochemical epigenetic therapy with immunogenomic analysis offers opportunities for personalized treatment strategies. However, successful clinical translation requires proper validation studies, standardized formulation protocols, and coherent regulatory guidelines to establish these approaches as evidence-based therapeutic options for autoimmune conditions.

Keywords: Autoimmune diseases, Epigenetic Modulation, Herbal Phytochemicals, Immunotherapy, Precision Medicine, Natural Compounds

A bimonthly pharma refresh brought to you by Journal of Pharma Insights and Research (JOPIR)

OCTOBER 2025 VOL. 3. ISSUE

ISSN No. 3048-5428

OOI: 10 5281/ZENODO 17267/2

CURRENT TREATMENT ADVANCES AND MANAGEMENT OF VEXAS SYNDROME

Miss Poojitha Kandukuri

UG Scholar, Department of Pharmacy, Krishna Teja Pharmacy College, Tirupati, Andhra Pradesh, India poojithakandukuri2@gmail.com

Abstract: VEXAS syndrome is a recently identified X-linked autoinflammatory disorder caused by somatic UBA1 gene mutations, typically manifesting in individuals over fifty years of age. The condition disrupts ubiquitination-dependent protein regulation, leading to impaired protein homeostasis, clonal expansion of myeloid cells, and heightened innate immune responses. Clinical presentation includes systemic inflammation, recurrent fevers, chondritis, skin manifestations, cytopenias, and progressive hematologic complications. Diagnostic confirmation relies on distinctive bone marrow findings, characterized by vacuolated myeloid and erythroid precursors, combined with next-generation sequencing identification of UBA1 mutations, distinguishing it from other hematologic and inflammatory conditions. Current therapeutic options remain limited, with conventional treatments including corticosteroids, immunosuppressants, and cytokinetargeted biologics providing only temporary symptomatic relief and frequently resulting in disease recurrence. Allogeneic hematopoietic stem cell transplantation currently represents the only potentially curative intervention, particularly in cases complicated by myelodysplastic syndrome. Current research focus on molecular interventions, including gene editing technologies, epigenetic modulation, and inflammasome inhibition, offering promising avenues for disease modification and improved long-term outcomes.

Keywords: Thrombocytopenia, Pulmonary Infiltrates, Proteostasis Dysfunction, Macrocytic Anemia, Vacuolated Myeloid Precursors, Bone Marrow Biopsy, UBA1 Mutations

AI-DRIVEN INNOVATION IN PHARMACEUTICAL DEVELOPMENT

Mr. Shivansh Kumar Singh

UG Scholar, Delhi College of Pharmacy-DIRD, Holambi Khurd, Delhi, India

Abstract: Artificial intelligence is revolutionizing pharmaceutical industry operations through its strategic implementation across drug discovery, research, and development processes. Al technologies accelerate drug development timelines, identify novel therapeutic targets, and enable precision medicine approaches by utilizing vast datasets and sophisticated machine learning algorithms. The integration of Al spans the entire pharmaceutical value chain, from initial discovery to patient care delivery, significantly reducing development costs while enhancing clinical trial accuracy. In manufacturing, Al systems optimize equipment performance and ensure consistent product quality through continuous monitoring. Al applications extend to predictive analytics, compound screening, and therapeutic design, fundamentally transforming traditional pharmaceutical research methodologies. However, data security remains a critical consideration, particularly regarding the protection of sensitive patient information from unauthorized access. The careful management of patient privacy and data confidentiality represents a key challenge in the broader implementation of Al technologies within pharmaceutical operations. This technological integration marks a paradigm shift in pharmaceutical research and development, promising more efficient, cost-effective, and precise approaches to drug discovery and development.

Keywords: Drug Discovery; Clinical Trials; Artificial Intelligence; Pharmaceutical Industry; Algorithms; Machine Learning; Data Privacy; Precision Medicine

A bimonthly pharma refresh brought to you by Journal of Pharma Insights and Research (JOPIR)

OCTOBER 2025 VOL. 3. ISSUE

ISSN No. 3048-5428

OI: 10 5281/ZENODO 17267422

DIGITAL HEALTHCARE TRANSFORMATION IN HEALTHCARE

Miss Hashvitha V*1, Miss Bharathi J2

¹UG Scholar, Department of Pharmacy, Krishna Teja Pharmacy College, Tirupati, India ²Assistant Professor, Department of Pharmacy, Krishna Teja Pharmacy College, Tirupati, India

chintuhashvitha@gmail.com

Abstract: Digital transformation in healthcare involves integration of digital technologies that fundamentally restructures healthcare delivery systems, emphasizing patient-centricity, operational efficiency, and accessibility. This evolution extends beyond mere digitization of medical records, encompassing a broader socio-technical revolution in healthcare processes and organizational culture. Key technological enablers including electronic health records, telemedicine platforms, wearable devices, artificial intelligence, and advanced analytics drive improvements in diagnostic accuracy, treatment personalization, remote patient monitoring, and clinical outcomes. The COVID-19 pandemic catalyzed rapid adoption of digital healthcare solutions, accelerating institutional transformation. While digital health innovations demonstrate potential for cost reduction, quality improvement, waiting time reduction, and enhanced collaborative care, successful implementation demands robust governance frameworks addressing privacy concerns, equity considerations, accountability measures, and digital competency development. Implementation challenges include clinical resistance, technology misuse, and access disparities. Nevertheless, digital transformation presents unprecedented opportunities to advance value-based care and universal health coverage through responsible and inclusive technology integration. This revolution in healthcare delivery emphasizes the critical importance of developing supportive infrastructure, establishing effective governance mechanisms, and achieving stakeholder alignment to optimize transformational benefits.

Keywords: Digital transformation; Healthcare Technology; Electronic Health Records; Telemedicine; Wearable Devices; Data Analytics; Remote Monitoring; Personalized Medicine; Predictive Analytics; Interoperability

MODERN APPROACHES IN DRUG DESIGN AND DEVELOPMENT

Miss Meenatchi S*, Miss Deva Dharshini R, Miss Gomathy E

UG Scholar, Faculty of Pharmacy, Bharath Institution of Higer Education And Research, Chennai, Tamil Nadu, India

meenatchismeena222@gmail.com

Abstract: Drug design is one of the cornerstones of pharmaceutical research, involving medicinal chemistry, pharmacology, computational modeling, and molecular biology to develop novel therapeutic agents. This multidisciplinary approach begins with target identification, typically focusing on disease-relevant enzymes or receptors, and employs both structure-based and ligand-based strategies to predict molecular interactions. Contemporary methodologies, including computer-aided drug design (CADD), molecular docking simulations, and quantitative structure-activity relationship (QSAR) analyses, have revolutionized the traditional discovery process, significantly reducing development timelines and costs. High-throughput and virtual screening technologies enable rapid evaluation of vast compound libraries, accelerating lead identification. Candidate molecules undergo systematic optimization of pharmacokinetic parameters, including absorption, distribution, metabolism, and excretion (ADME), followed by comprehensive safety and toxicity assessments prior to clinical evaluation. The field continues to evolve with the integration of bioinformatics, artificial intelligence, and precision medicine approaches, moving towards individualized therapeutic solutions. This sophisticated fusion of technologies and methodologies exemplifies modern pharmaceutical innovation, streamlining the development of effective, patient-specific therapeutic interventions.

Keywords: Drug Design; Molecular Docking; Computational Modeling; Pharmacokinetics; QSAR, Personalized Medicine; Therapeutic Development; Bioinformatics

A bimonthly pharma refresh brought to you by Journal of Pharma Insights and Research (JOPIR)

OCTOBER 2025 VOL. 3. ISSUE

ISSN No. 3048-5428

DOI: 10.5281/ZENODO.17267422

OPTIMIZATION AND INNOVATIONS IN CLINICAL TRIALS FOR DRUG DEVELOPMENT

Miss Deva Dharshini R*, Miss Meenatchi S, Miss Gomathy E

UG Scholar, Faculty of Pharmacy, Bharath Institution of Higer Education And Research, Chennai, Tamil Nadu. India

dharshinideva205@gmail.com

Abstract: Clinical trial optimization is a strategic evolution in pharmaceutical research methodology, addressing traditional challenges of extended timelines, high failure rates, recruitment difficulties, and data management inefficiencies. Modern approaches incorporate adaptive trial designs, enabling dynamic protocol modifications based on interim analyses, thus enhancing both operational efficiency and ethical standards. Digital health technologies and remote monitoring solutions facilitate decentralized trial models, improving data collection accuracy and participant diversity while enabling real-time insights. The integration of artificial intelligence and machine learning advances patient stratification, predictive modeling, and protocol optimization, while risk-based monitoring and sophisticated statistical approaches streamline resource allocation without compromising regulatory compliance. Patient-centered strategies, including simplified consent procedures and community engagement initiatives, enhance recruitment effectiveness and participant retention. Regulatory bodies increasingly support innovative trial methodologies, recognizing their potential for generating robust evidence more efficiently. Despite progress, challenges persist in data standardization, system interoperability, ethical considerations, and equitable access. This transformation from traditional rigid guidelines to flexible, technology-enabled, patient-focused models represents a fundamental shift in clinical research methodology, accelerating the translation of scientific discoveries into accessible therapeutic solutions.

Keywords: Clinical Trial Optimization; Adaptive Trial Design; Decentralized Trials; Patient Recruitment; Real-World Evidence; Artificial Intelligence; Patient-Centric Approaches; Regulatory Harmonization

DESIGN AND EVALUATION OF CURCUMIN-PIPERINE LOADED PLGA NANOPARTICLES FOR IMPROVED ORAL BIOAVAILABILITY

Miss Tebong Josma

UG Scholar, Department of Pharmacy, Bahra University, Shimla hills, Himachal Pradesh, India

Abstract: Nanotechnology and novel drug delivery systems stand as a foundational technology for the next generation rather than just an emerging field as it offers precision in targeting disease tissues there by enhancing drug efficacy and minimizing systemic side effects. The low oral bioavailability and poor aqueous solubility of curcumin (CUR) limit its therapeutic potential as a potent anti-cancer agent. This study aims to develop poly(lactic-co-glycolic acid) (PLGA) nanoparticles to co-deliver CUR and a bio enhancer, piperine (PIP), to improve their systemic availability and efficacy. Nanoparticles were prepared using a solvent evaporation method and optimized for critical quality attributes like particle size, polydispersity index (PDI), and entrapment efficiency (EE) using a 3^2 factorial design. The optimized formulation exhibited a particle size of 152.3 ± 4.7 nm, a PDI of 0.118, and high EE of $89.2 \pm 1.8\%$ for CUR and $78.5 \pm 2.1\%$ for PIP. In vitro drug release studies showed a sustained release profile over 72 hours, fitting the Korsmeyer-Peppas model. The optimized CUR-PIP-NPs demonstrated significantly enhanced cytotoxicity (IC50 = $15.2 \mu g/mL$) against MCF-7 breast cancer cells compared to free CUR (IC50 = $32.1 \mu g/mL$), as assessed by the MTT assay. Moreover, oral pharmacokinetic studies in Wistar rats revealed a 6.8-fold increase in the relative bioavailability of CUR from the nanoparticles compared to an unformulated CUR suspension. These results strongly indicate that the developed PLGA nanoparticle system is a viable technique for the effective delivery of poorly soluble phytomedicines like curcumin for cancer therapy.

Keywords: Nanoparticles; Bioavailability; Curcumin; Piperine; PLGA; Factorial Design; Anticancer Activity.

A bimonthly pharma refresh brought to you by Journal of Pharma Insights and Research (JOPIR)

ISSN No. 3048-5428

OCTOBER 2025 VOL 3 ISSUE

OI: 10.5281/ZENODO.1726742

APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN DRUG DESIGN AND PEDIATRIC HEALTHCARE

Mr. Harish Kandati*1, Miss Bharathi J²

¹UG Scholar, Department of Pharmacy, Krishna Teja Pharmacy College, Tirupati, India ²Assistant Professor, Department of Pharmacy, Krishna Teja Pharmacy College, Tirupati, India

kandatiharish123@gmail.com

Abstract: The integration of artificial intelligence (AI) systems in healthcare is a transformation for managing and analyzing extensive clinical data derived from electronic medical records and medical imaging, while simultaneously advancing intelligent drug design methodologies. In pediatric medicine, clinical decision-making involves comprehensive data collection encompassing symptomatology, physical examination findings, laboratory results, specialized investigations, and treatment responses. Practitioners synthesize this information with clinical expertise to formulate therapeutic strategies, applying data-driven approaches across both population-level databases and individual patient cases. Al technologies have shown significant utility across multiple healthcare domains, including diagnostic assistance, therapeutic planning, advanced imaging analysis, drug development acceleration, and healthcare management optimization. The application of AI extends to sophisticated tasks such as intelligent diagnostics, advanced image recognition, pharmaceutical development, and comprehensive health management systems, particularly benefiting pediatric research and clinical practice applications.

Keywords: Artificial Intelligence, Deep Learning, Neural Networks, Natural Language Processing, Generative Models, Explainable Al, Virtual Screening, De Novo Drug Design.