REVIEW ARTICLE

# Current Advances in Pharmaceutical Analysis and Method Development using High Performance Liquid Chromatography



Yamini Amudala\*1, Yogeeswara Rao V2

<sup>1</sup> UG Scholar, Department of Pharmacy, JNTUA, Tirupati, Andhra Pradesh, India

Publication history: Received on 24th June 2025; Revised on 1st Aug 2025; Accepted on 8th August 2025

Article DOI: 10.69613/yw231t95

Abstract: High Performance Liquid Chromatography (HPLC) is a versatile analytical technique in pharmaceutical analysis, offering superior resolution, sensitivity, and versatility. The technological evolution of HPLC instrumentation, coupled with sophisticated detection methods, has enabled precise quantification and qualification of pharmaceutical compounds at trace levels. The fundamental principles of HPLC encompass various separation modes, including reverse phase, normal phase, size exclusion, ion exchange, and bioaffinity chromatography, each serving specific analytical requirements. Modern HPLC method development incorporates systematic approaches in mobile phase selection, stationary phase optimization, and parameter adjustment to achieve optimal separation. The usage of Quality by Design (QbD) principles in method development has enhanced robustness and reliability in pharmaceutical analysis. Method validation parameters, including accuracy, precision, specificity, linearity, range, and system suitability, ensure the reliability of analytical results. HPLC applications extend across pharmaceutical quality control, stability studies, impurity profiling, and bioanalysis. Recent developments in HPLC technology, particularly in column chemistry and detection systems, have expanded its capabilities in complex pharmaceutical matrices analysis. The combination of HPLC with mass spectrometry has further increased its analytical scope, enabling structural elucidation and trace-level impurity profiling of pharmaceutical compounds.

**Keywords:** High Performance Liquid Chromatography; Pharmaceutical Analysis; Method Development; Method Validation; Quality by Design

#### 1. Introduction

High Performance Liquid Chromatography (HPLC) serves as an indispensable analytical tool in pharmaceutical analysis, offering unparalleled separation capabilities and quantitative determination of drug substances [1]. The evolution of HPLC technology has paralleled the increasing complexity of pharmaceutical formulations and regulatory requirements for analytical precision [2]. This advancement has revolutionized pharmaceutical analysis by providing enhanced resolution, sensitivity, and reproducibility compared to traditional chromatographic techniques.

The fundamental principle of HPLC relies on the differential distribution of analytes between a mobile phase and stationary phase, enabling separation based on various molecular characteristics [3]. Modern HPLC systems incorporate advanced pumping systems, precise injection mechanisms, specialized columns, and sensitive detection systems, facilitating high-resolution separations and accurate quantification [4]. These technological improvements have enabled the analysis of increasingly complex pharmaceutical matrices and the detection of trace-level impurities.

The pharmaceutical industry extensively utilizes HPLC for various analytical purposes, including raw material testing, formulation analysis, stability studies, and impurity profiling [5]. The technique's versatility allows for the analysis of diverse chemical entities, ranging from small molecules to complex biologics [6]. Recent developments in column technology, particularly the introduction of sub-2-µm particles and core-shell materials, have significantly improved separation efficiency and analysis speed.

The integration of HPLC with mass spectrometry has further expanded its analytical capabilities, enabling structural elucidation and enhanced selectivity in complex sample analysis. Additionally, the implementation of Quality by Design (QbD) principles in method development has improved method robustness and reliability. The adoption of automated systems and sophisticated data analysis tools has streamlined workflow efficiency and enhanced data integrity in pharmaceutical laboratories. The aim of this review is to discuss current trends in HPLC method development and validation.

<sup>&</sup>lt;sup>2</sup> Associate Professor, Department of Pharmacy, JNTUA, Tirupati, Andhra Pradesh, India

<sup>\*</sup> Corresponding author: Yamini Amudala

# 2. Principles and Modes of HPLC Separation

#### 2.1. Principle

The separation of compounds in HPLC relies on the differential partitioning of analytes between the mobile and stationary phases. The distribution coefficient (K) determines the retention behavior of analytes, influenced by factors such as molecular structure, polarity, and ionic characteristics [7]. The separation efficiency depends on theoretical plate numbers, peak resolution, and capacity factors, which are optimized through careful method development [8].

## 2.2. Separation Modes

## 2.2.1. Reverse Phase Chromatography

Reverse phase HPLC (RP-HPLC) employs non-polar stationary phases, typically consisting of C18 or C8 alkyl chains bonded to silica support. The separation mechanism primarily involves hydrophobic interactions, with polar mobile phases facilitating the elution of analytes [9]. RP-HPLC accounts for approximately 80% of pharmaceutical applications due to its versatility and reproducibility [10].

#### 2.2.2. Normal Phase Chromatography

In normal phase HPLC, polar stationary phases interact with analytes through hydrogen bonding and dipole-dipole interactions. Non-polar mobile phases, such as hexane or chloroform, are utilized for elution. This mode proves particularly effective for separating structural isomers and compounds with similar polarities [11].

#### 2.2.3. Size Exclusion Chromatography

Size exclusion chromatography separates molecules based on their hydrodynamic volume. The stationary phase consists of porous particles with controlled pore sizes, enabling molecular sieving. This mode finds extensive application in the analysis of proteins, polymers, and high molecular weight compounds [12].

#### 2.2.4. Ion Exchange Chromatography

Ion exchange separation relies on electrostatic interactions between charged analytes and oppositely charged functional groups on the stationary phase. The technique proves invaluable for separating ionic species, particularly in the analysis of proteins and peptides [13].

## 2.2.5. Bioaffinity Chromatography

This specialized mode utilizes specific biological interactions between analytes and immobilized ligands. The high selectivity makes it suitable for purifying and analyzing biomolecules in complex matrices [14].

| Separation<br>Mode | Stationary Phase                   | Mobile Phase           | Primary<br>Interactions | Applications              |
|--------------------|------------------------------------|------------------------|-------------------------|---------------------------|
| Reverse Phase      | C18, C8, C4 alkyl chains           | Water-organic mixtures | Hydrophobic             | Small molecules, peptides |
| Normal Phase       | Silica, amino, cyano               | Organic solvents       | Polar/H-bonding         | Isomer separation         |
| Ion Exchange       | Quaternary ammonium, sulfonic acid | Aqueous buffers        | Electrostatic           | Proteins, ions            |
| Size Exclusion     | Cross-linked polymers              | Aqueous/organic        | Physical sieving        | Polymers, proteins        |
| Bioaffinity        | Immobilized ligands                | Aqueous buffers        | Specific binding        | Biomolecules              |

Table 1. Common HPLC Separation Modes and Their Applications

#### 3. HPLC Instrumentation

## 3.1. Solvent Delivery System

Modern HPLC systems employ high-pressure pumps capable of delivering precise and pulse-free flow rates. Binary and quaternary gradient systems enable complex mobile phase compositions and gradient profiles. Advanced features include automated compressibility compensation and real-time flow correction [15].

## 3.2. Sample Handling

#### 3.2.1. Auto-samplers

Contemporary auto-samplers provide precise injection volumes ranging from sub-microliter to milliliter quantities. Temperature control and sample preparation capabilities enhance analytical reliability [16].

## 3.2.2. Injection Systems

Various injection modes, including full-loop, partial-loop, and micro-sampling, accommodate different analytical requirements. Advanced systems incorporate needle wash stations and carry-over prevention mechanisms [17].

## 3.3. Chromatographic Columns

# 3.3.1. Column Composition

Modern column technology features sub-2-µm particles, core-shell materials, and monolithic structures. These advances have significantly improved separation efficiency and speed [18].

## 3.3.2. Column Chemistry

Specialized surface modifications and hybrid particle technologies provide enhanced selectivity and pH stability. Novel stationary phases incorporate mixed-mode functionalities for complex separations [19].

#### 3.4. Detection Systems

#### 3.4.1. UV-Visible Detectors

Photodiode array detectors offer simultaneous multi-wavelength detection and spectral analysis capabilities. Advanced optical designs provide enhanced sensitivity and linear dynamic range [20].

#### 3.4.2. Mass Spectrometry

The coupling of HPLC with mass spectrometry enables structural characterization and high-sensitivity quantification. Various ionization techniques and mass analyzers accommodate different analytical challenges [21].

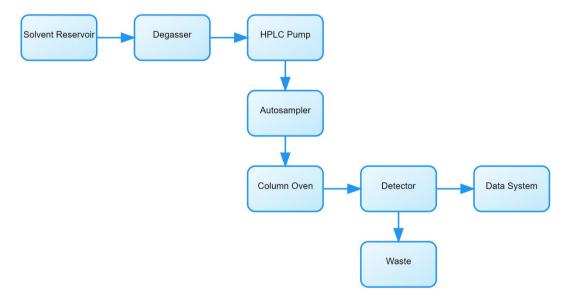



Figure 1. HPLC Instrumentation and Components

# 4. Method Development in HPLC

## 4.1. Systematic Approach

The development of HPLC methods follows a structured approach incorporating preliminary analysis of physicochemical properties, selection of separation mode, optimization of chromatographic conditions, and method validation [22]. Initial method

development begins with the assessment of analyte properties including solubility, pKa values, and molecular structure characteristics [23].

Table 2. Critical Method Development Parameters and Their Effects

| Parameter            | Range          | Effect on Separation      | Optimization Considerations       |
|----------------------|----------------|---------------------------|-----------------------------------|
| рН                   | 2-8            | Peak shape, retention     | Buffer capacity, column stability |
| Temperature          | 20-60°C        | Selectivity, efficiency   | Thermal stability, pressure       |
| Flow Rate            | 0.1-2.0 mL/min | Resolution, analysis time | Pressure limits, efficiency       |
| Organic Modifier     | 5-95%          | Retention, selectivity    | Viscosity, detector compatibility |
| Buffer Concentration | 10-50 mM       | Peak shape, repeatability | Solubility, MS compatibility      |

## 4.2. Mobile Phase

#### 4.2.1. Solvent Selection

Mobile phase composition significantly influences separation selectivity and efficiency. The selection criteria include UV cutoff, viscosity, boiling point, and compatibility with detection systems [24]. Binary or ternary solvent systems often provide optimal separation conditions compared to single-solvent systems [25].

## 4.2.2. Buffer Systems

Buffer selection and concentration affect peak shape and retention time reproducibility for ionizable compounds. The operational pH range typically spans from 2.0 to 8.0 for silica-based columns, with consideration given to buffer capacity and column compatibility [26].

#### 4.3. Stationary Phase

The choice of stationary phase depends on analyte characteristics and separation requirements. Modern column selection guides utilize chemical classification systems and retention models to predict separation behavior [27]. Parameters such as carbon load, surface area, and end-capping influence selectivity and peak shape [28].

## 4.4. Optimization

## 4.4.1. Flow Rate Optimization

Flow rate affects separation efficiency, analysis time, and system pressure. The van Deemter equation guides optimal flow rate selection, particularly important for sub-2-µm particle columns [29].

# 4.4.2. Effects of Temperature

Column temperature influences retention behavior, selectivity, and mobile phase viscosity. Controlled temperature operation enhances method reproducibility and may improve peak shape [30].

#### 5. Quality by Design in HPLC Method Development

Quality by Design principles incorporate systematic evaluation of method variables and their impact on analytical performance. Design of Experiments (DoE) approaches enable efficient optimization of multiple parameters simultaneously [31].

## 5.1. Assessment of Risk

Critical method parameters are identified through risk assessment tools, including Ishikawa diagrams and failure mode effects analysis. This systematic approach ensures method robustness and reliability [32].

#### 5.2. Development of Design Space

The establishment of method design space defines the operational parameters ensuring consistent method performance. Multivariate analysis techniques help visualize parameter interactions and optimize separation conditions [33].

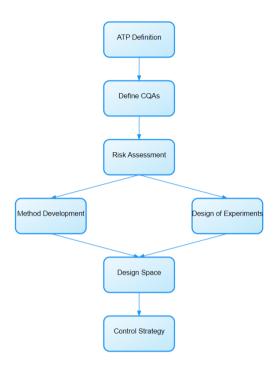



Figure 2. QbD in HPLC Method Development

## 6. Method Validation

## 6.1. Validation Parameters

## 6.1.1. Specificity

Method specificity ensures accurate analyte identification and quantification in the presence of potential interferents, including degradation products, impurities, and matrix components [34].

## 6.1.2. Linearity and Range

The linear relationship between analyte concentration and detector response is established across the intended analytical range. Statistical evaluation includes correlation coefficient assessment and residual analysis [35].

# 6.1.3. Accuracy and Precision

Accuracy measurements verify the closeness of test results to true values, while precision evaluates method repeatability and intermediate precision under varying conditions [36].

Table 3. Method Validation Parameters and Acceptance Criteria

| Validation Parameter | Acceptance Criteria | Test Method              |
|----------------------|---------------------|--------------------------|
| Specificity          | No interference     | Peak purity, resolution  |
| Linearity            | $R^2 \ge 0.999$     | 5-7 concentration levels |
| Precision (RSD)      | ≤ 2.0%              | 6 replicate injections   |
| Accuracy             | 98-102% recovery    | Spiked samples           |
| LOQ                  | $S/N \ge 10$        | Signal-to-noise ratio    |
| LOD                  | $S/N \ge 3$         | Signal-to-noise ratio    |
| Robustness           | ≤ 2% variation      | Deliberate changes       |

## 6.1.4. Detection and Quantitation Limits

LOD and LOQ determinations ensure reliable detection and quantification at trace levels. Signal-to-noise ratio approaches and statistical methods provide systematic evaluation [37].

#### 6.1.5. Robustness

Deliberate variation of method parameters assesses method stability under typical operational conditions. Parameters include mobile phase composition, pH, temperature, and flow rate variations [38].

#### 6.1.6. System Suitability

System suitability tests verify adequate chromatographic performance before analysis. Parameters include theoretical plates, tailing factor, resolution, and injection precision [39].

Table 4. Common System Suitability Parameters and Their Requirements

| Parameter              | Requirement | Calculation Method      |
|------------------------|-------------|-------------------------|
| Theoretical Plates (N) | > 2000      | $N = 16(tR/w)^2$        |
| Tailing Factor         | ≤ 2.0       | Tf = W0.05/2f           |
| Resolution             | > 2.0       | Rs = 2(tR2-tR1)/(w1+w2) |
| Injection Precision    | RSD ≤ 1.0%  | 6 replicate injections  |
| Capacity Factor        | 1-10        | k = (tR-t0)/t0          |

## 7. Applications in Pharmaceutical Analysis

## 7.1. Quality Control

HPLC serves as a primary analytical tool in pharmaceutical quality control, enabling quantitative determination of active pharmaceutical ingredients (APIs) and related substances. Advanced detection systems facilitate analysis at trace levels, ensuring compliance with regulatory specifications [40]. The technique provides essential data for batch release testing and stability monitoring programs [41].

# 7.2. Impurity Profiling

#### 7.2.1. Process-Related Impurities

HPLC methods enable separation and quantification of synthesis-related impurities, intermediates, and by-products. Specialized gradient elution techniques facilitate resolution of structurally similar compounds [42].

#### 7.2.2. Degradation Products

Forced degradation studies utilize HPLC to identify and characterize degradation pathways. The implementation of stress testing conditions helps establish stability-indicating methods [43].

## 7.3. Bioanalytical Studies

#### 7.3.1. Pharmacokinetic Studies

HPLC-MS/MS methods facilitate drug quantification in biological matrices, supporting pharmacokinetic and bioequivalence studies. Sample preparation techniques and matrix effect considerations ensure reliable analysis [44].

#### 7.3.2. Identification of Metabolites

The coupling of HPLC with high-resolution mass spectrometry enables identification and structural characterization of drug metabolites. Advanced software tools assist in metabolite prediction and confirmation [45].

## 7.4. Stability Testing

Stability-indicating HPLC methods monitor drug product stability under various storage conditions. Method specificity ensures accurate quantification in the presence of degradation products [46]. Long-term stability studies provide crucial data for shelf-life determination and storage recommendations [47].

## 7.5. Environmental Monitoring

Environmental monitoring applications include analysis of pharmaceutical residues in water systems and assessment of manufacturing waste streams. Multi-residue methods enable simultaneous determination of multiple pharmaceutical compounds [48].

## 8. Current Trends

#### 8.1. Ultra-High Performance Liquid Chromatography

UHPLC systems, utilizing sub-2-µm particles and elevated pressures, provide enhanced resolution and faster analysis. Advanced instrument designs accommodate pressure requirements while maintaining system reliability [49].

## 8.2. Multi-dimensional Separations

Two-dimensional HPLC techniques offer increased peak capacity and improved resolution for complex samples. Automated column switching systems facilitate comprehensive analysis [50].

## 8.3. Green Chemistry

Implementation of environmentally friendly separation techniques includes reduced solvent consumption, recycling systems, and alternative mobile phases. Miniaturization trends support reduced resource consumption while maintaining analytical performance [51].

## 8.4. Automation and Integration

Advanced automation features incorporate sample preparation, method development, and data analysis. Integration with laboratory information management systems enhances workflow efficiency and data integrity [52].

|                 | _                      |                                    |
|-----------------|------------------------|------------------------------------|
| Problem         | Possible Causes        | Solutions                          |
| Peak Tailing    | Dead volume, chemistry | Check connections, column age      |
| Poor Resolution | Method parameters      | Adjust selectivity, efficiency     |
| Retention Drift | Phase degradation      | Column regeneration, replacement   |
| High Pressure   | Blockage, viscosity    | Filter samples, check mobile phase |
| Baseline Noise  | Detector mixing        | Check lamp degassing               |

Table 5. Troubleshooting Guide for Common HPLC Issues

## 9. Conclusion

High Performance Liquid Chromatography is as an essential analytical technique in pharmaceutical analysis. The evolution of instrumentation, column technology, and method development approaches has expanded its capabilities and applications. Integration of Quality by Design principles has enhanced method reliability and robustness. Advanced detection systems, particularly mass spectrometry coupling, have extended analytical capabilities to meet increasingly complex pharmaceutical analysis requirements. The technique's versatility, precision, and adaptability ensure its continued relevance in pharmaceutical quality control, research, and development applications. Further research in miniaturization, automation, and green chemistry initiatives will further enhance its utility while addressing sustainability concerns.

# References

- [1] Dong MW. Modern HPLC for practicing scientists. John Wiley & Sons; 2006.
- [2] Snyder LR, Kirkland JJ, Dolan JW. Introduction to modern liquid chromatography. John Wiley & Sons; 2011.
- [3] Meyer VR. Practical high-performance liquid chromatography. John Wiley & Sons; 2013.
- [4] Kazakevich Y, LoBrutto R. HPLC for pharmaceutical scientists. John Wiley & Sons; 2007.
- [5] McPolin O. Validation of analytical methods for pharmaceutical analysis. Mourne Training Services; 2009.
- [6] Nageswara Rao R, Nagaraju V. An overview of the recent trends in development of HPLC methods for determination of impurities in drugs. J Pharm Biomed Anal. 2003;33(3):335-377.
- [7] Neue UD. HPLC columns: theory, technology, and practice. Wiley-VCH; 1997.
- [8] Kromidas S. HPLC made to measure: a practical handbook for optimization. John Wiley & Sons; 2006.
- [9] Snyder LR, Kirkland JJ, Glajch JL. Practical HPLC method development. John Wiley & Sons; 2012.
- [10] Gama MR, Collins CH, Bottoli CB. Nano-liquid chromatography in pharmaceutical and biomedical research. J Chromatogr Sci. 2013;51(7):694-703.

- [11] Lesellier E, West C. The many faces of packed column supercritical fluid chromatography: A critical review. J Chromatogr A. 2015;1382:2-46.
- [12] Mori S, Barth HG. Size exclusion chromatography. Springer Science & Business Media; 2013.
- [13] Cummins PM, Dowling O, O'Connor BF. Ion-exchange chromatography: basic principles and application to the partial purification of soluble mammalian prolyl oligopeptidase. Methods Mol Biol. 2011;681:215-228.
- [14] Hage DS, Matsuda R. Affinity chromatography: a historical perspective. Methods Mol Biol. 2015;1286:1-19.
- [15] Moldoveanu SC, David V. Essentials in modern HPLC separations. Elsevier; 2013.
- [16] Wells DA. High throughput bioanalytical sample preparation: methods and automation strategies. Elsevier; 2003.
- [17] Gumustas M, Kurbanoglu S, Uslu B, Ozkan SA. UPLC versus HPLC on drug analysis: advantageous, applications and their validation parameters. Chromatographia. 2013;76:1365-1427.
- [18] González-Ruiz V, Olives AI, Martín MA. Core-shell particles lead the way to renewing high-performance liquid chromatography. TrAC Trends Anal Chem. 2015;64:17-28.
- [19] Walter TH, Andrews RW. Recent innovations in UHPLC columns and instrumentation. TrAC Trends Anal Chem. 2014;63:14-20.
- [20] Swartz ME. UPLC<sup>TM</sup>: An introduction and review. J Liq Chromatogr Relat Technol. 2005;28:1253-1263
- [21] Pitt JJ. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev. 2009;30(1):19-34.
- [22] Radhakrishna T, Om Reddy G. Development and validation of a stability-indicating HPLC method for simultaneous determination of related compounds in drug products. J Pharm Biomed Anal. 2002;30(3):887-895.
- [23] Snyder LR, Dolan JW. Initial experiments in high-performance liquid chromatographic method development I. Use of a starting gradient run. J Chromatogr A. 1996;721(1):3-14.
- [24] Dolan JW. Mobile phase selection for liquid chromatography. LC GC North America. 2016;34(8):530-533.
- [25] Schellinger AP, Carr PW. Isocratic and gradient elution chromatography: a comparison in terms of speed, retention reproducibility and quantitation. J Chromatogr A. 2006;1109(2):253-266.
- [26] Neue UD, Alden BA, Walter TH. Universal procedure for the assessment of the reproducibility and the classification of silica-based reversed-phase packings II. Classification of reversed-phase packings. J Chromatogr A. 1999;849(1):101-116.
- [27] Snyder LR, Dolan JW, Carr PW. The hydrophobic-subtraction model of reversed-phase column selectivity. J Chromatogr A. 2004;1060(1-2):77-116.
- [28] Kirkland JJ, Snyder LR. Introduction to modern liquid chromatography. Wiley-Interscience; 2009.
- [29] Guillarme D, Nguyen DT, Rudaz S, Veuthey JL. Method transfer for fast liquid chromatography in pharmaceutical analysis: application to short columns packed with small particle. Part II: gradient experiments. Eur J Pharm Biopharm. 2008;68(2):430-440.
- [30] Thompson JD, Carr PW. A study of the critical criteria for analyte stability in high-temperature liquid chromatography. Anal Chem. 2002;74(5):1017-1023.
- [31] Rozet E, Lebrun P, Debrus B, Boulanger B, Hubert P. Design spaces for analytical methods. TrAC Trends Anal Chem. 2013;42:157-167.
- [32] Borman P, Elder D, Nethercote P, Teasdale A. Quality by Design: The development of the analytical control strategy and the analytical method lifecycle. Pharm Technol. 2014;38(9):56-61.
- [33] Monks K, Molnár I, Rieger HJ, Bogáti B, Szabó E. Quality by Design: Multidimensional exploration of the design space in high performance liquid chromatography method development for better robustness before validation. J Chromatogr A. 2012;1232:218-230.
- [34] ICH Harmonised Tripartite Guideline. Validation of analytical procedures: text and methodology Q2(R1). International Conference on Harmonisation. 2005.
- [35] Shabir GA. Validation of high-performance liquid chromatography methods for pharmaceutical analysis: Understanding the differences and similarities between validation requirements of the US Food and Drug Administration, the US Pharmacopeia and the International Conference on Harmonization. J Chromatogr A. 2003;987(1-2):57-66.
- [36] Huber L. Validation of analytical methods. Agilent Technologies; 2010.

- [37] Shrivastava A, Gupta VB. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci. 2011;2(1):21-25.
- [38] Swartz M, Krull I. Analytical method development and validation. Marcel Dekker; 1997.
- [39] Kupiec T. Quality-control analytical methods: High-performance liquid chromatography. Int J Pharm Compd. 2004;8(3):223-227.
- [40] Alsante KM, Ando A, Brown R, Ensing J, Hatajik TD, Kong W, Tsuda Y. The role of degradant profiling in active pharmaceutical ingredients and drug products. Adv Drug Deliv Rev. 2007;59(1):29-37.
- [41] Maggio RM, Vignaduzzo SE, Kaufman TS. Practical and regulatory considerations for stability-indicating methods for the assay of bulk drugs and drug formulations. TrAC Trends Anal Chem. 2013;49:57-70.
- [42] Baertschi SW, Pack BW, Hoaglund Hyzer CS, Nussbaum MA. Assessing mass balance in pharmaceutical drug products: New insights into an old topic. TrAC Trends Anal Chem. 2013;49:126-136.
- [43] Blessy M, Patel RD, Prajapati PN, Agrawal YK. Development of forced degradation and stability indicating studies of drugs—A review. J Pharm Anal. 2014;4(3):159-165.
- [44] Korfmacher WA. Principles and applications of LC-MS in new drug discovery. Drug Discov Today. 2005;10(20):1357-1367.
- [45] Zhang H, Zhang D, Ray K, Zhu M. Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry. J Mass Spectrom. 2009;44(7):999-1016.
- [46] Bakshi M, Singh S. Development of validated stability-indicating assay methods—critical review. J Pharm Biomed Anal. 2002;28(6):1011-1040.
- [47] Reynolds DW, Facchine KL, Mullaney JF, Alsante KM, Hatajik TD, Motto MG. Available guidance and best practices for conducting forced degradation studies. Pharm Technol. 2002;26(2):48-56.
- [48] Fatta-Kassinos D, Meric S, Nikolaou A. Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem. 2011;399(1):251-275.
- [49] Novakova L, Matysova L, Solich P. Advantages of application of UPLC in pharmaceutical analysis. Talanta. 2006;68(3):908-918.
- [50] Stoll DR, Li X, Wang X, Carr PW. Fast, comprehensive two-dimensional liquid chromatography. J Chromatogr A. 2007;1168(1-2):3-43.
- [51] Gaber Y, Törnvall U, Kumar MA, Amin MA, Hatti-Kaul R. HPLC-ESI-MS/MS characterization of novel peptide derivatives from enzymatically synthesized green chemicals. Green Chem. 2011;13(8):2021-2025.
- [52] Krummen M, Hilkert AW, Juchelka D, Duhr A, Schlüter HJ, Pesch R. A new concept for isotope ratio monitoring liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2004;18(19):2260-2266.