REVIEW ARTICLE

An Evidence-Based Review on the Role of Gut-Brain Axis in Neurological and Psychiatric Disorders

Vivian Ukamaka Nwokedi*¹, Kirean Kelechi Eze², Ifeanyichukwu Cyril Ezugwu³, Olaniyi Samson Adedayo⁴, Opeyemi Oluwasegun Folusho⁵, Amber Otibhor Omoike⁶

- ¹ PG Scholar, Department of Clinical Pharmacy, Faculty of Pharmacy, University of Benin, Benin City, Niveria
- ² Emergency Resident, Emergency Department, Turaif General Hospital Turaif, Northern border, Kingdom of Saudi Arabia
- ³ Emergency Resident, Emergency Department, Abad Al-Masaraha General Hospital, Abad Al-Masaraha, Jizan Region, Kingdom of Sandi Arabia
- ⁴ Medical Officer, Department of Internal Medicine, Uniosun teaching Hospital Osogbo, Osun State, Nigeria
- ⁵ PG Scholar, Department of Internal Medicine, Faculty of Clinical Sciences, Olabisi Onabanjo University, Ogun State, Nigeria
- ⁶ Pharmacist, Department of Pharmacy, Irrua Specialist Teaching Hospital (ISTH), Irrua, Edo State, Nigeria

Publication history: Received on 21st April 2025; Revised on 22nd May 2025; Accepted on 23rd May 2025

Article DOI: 10.69613/44rtza45

Abstract: The gut microbiota plays an important role in maintaining neurological and mental health through the gut-brain axis. Microbial dysbiosis is regarded as a significant factor in the pathogenesis of neurological and psychiatric disorders, necessitating a thorough study of these connections. A systematic search of PubMed and ScienceDirect databases was conducted for articles published between 2015 and March 2025. This review focused on studies investigating gut-brain axis involvement in neurological and psychiatric disorders, particularly examining immune modulation, neurotransmitter regulation, and inflammatory pathways. Significant alterations in gut microbiota composition were observed across multiple disorders. Parkinson's disease patients showed decreased Lactobacillus and Bacteroides levels, while Alzheimer's disease patients exhibited reduced microbial diversity and diminished short-chain fatty acid production. Major depressive disorder was characterized by increased Firmicutes-to-Bacteroidetes ratio and altered tryptophan metabolism. Social anxiety disorder showed correlations with specific microbial patterns, particularly reduced Lactobacillus abundance. These alterations were linked to increased inflammatory markers, disrupted neurotransmitter synthesis, and compromised blood-brain barrier integrity. The evidence establishes strong mechanistic links between gut microbiota alterations and neurological/psychiatric pathologies. Therapeutic interventions targeting the gut microbiome show promise, though more clinical trials are needed to establish optimal treatment protocols. Clinical studies should focus on developing personalized microbiome-based therapies and validating their long-term efficacy

Keywords: Gut microbiota; Neuro-degenerative diseases; Neuroinflammation; Psychiatric disorders; Microbiome therapeutics.

1. Introduction

The relationship between gastrointestinal health and neurological function has attracted significant attention in recent decades. A communication network linking the enteric and central nervous systems through neural, endocrine, and immune pathways is explained by the gut-brain axis (GBA) [1]. The human gut harbors approximately 100 trillion microorganisms, collectively termed the gut microbiota, which produce numerous metabolites and neuroactive compounds that influence brain function and behavior [2]. Recent advancements in microbiome research have revealed that alterations in gut microbial communities correlate strongly with various neurological and psychiatric conditions. These findings have particular relevance for disorders such as Parkinson's disease (PD), where gastrointestinal symptoms often precede motor manifestations by several years [3]. Similarly, studies in Alzheimer's disease (AD) have demonstrated significant associations between gut dysbiosis and cognitive decline, suggesting potential mechanistic links between intestinal microbiota and neurodegeneration [4].

The influence of gut microbiota extends beyond neurodegenerative conditions to psychiatric disorders. Patients with major depressive disorder (MDD) exhibit distinct microbial signatures characterized by reduced diversity and altered metabolite profiles [5]. Social anxiety disorder (SAD) has also been linked to specific changes in gut microbial composition, particularly involving species that modulate neurotransmitter production [6]. Several key mechanisms mediate these gut-brain interactions. The vagus nerve provides direct neural communication between the gut and brain, while the immune system serves as an indirect pathway through which gut microbiota influence neurological function [7]. Additionally, microbial metabolites, particularly short-chain fatty acids (SCFAs), cross the blood-brain barrier and directly affect brain physiology [8].

^{*} Corresponding author: Vivian Ukamaka Nwokedi

Despite these advances, significant knowledge gaps persist regarding the precise mechanisms through which gut microbiota influence neurological and psychiatric conditions. Most current evidence derives from preclinical models, with limited validation in human populations [9]. Moreover, while microbiota-targeted therapies show promise, their clinical efficacy requires more stringent evaluation through controlled trials [10]. This review presents current evidence on gut-brain axis involvement in neurological and psychiatric disorders, analyzing mechanistic pathways and therapeutic implications. The analysis encompasses research from 2015 to 2025, focusing on immune modulation, neurotransmitter regulation, and inflammatory processes that link gut microbiota to brain function.

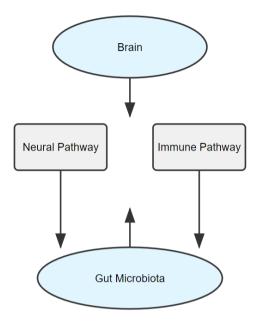


Figure 1. Gut-Brain Axis Communication

2. Methodology

2.1. Search Strategy

A systematic literature search was conducted using multiple comprehensive databases including PubMed, ScienceDirect, Web of Science, and Scopus to identify relevant publications between January 2015 and March 2025. The search strategy involved a combination of carefully selected terms to ensure thorough coverage of the topic [8]. Primary search terms focused on fundamental concepts including "gut microbiota," "gut-brain axis," and "microbiome." These were systematically combined with disease-specific terms encompassing both neurological and psychiatric conditions, such as "neurological disorders," "psychiatric disorders," "Parkinson's," "Alzheimer's," "depression," "anxiety," "autism," and "schizophrenia." Additionally, mechanism-specific terms were incorporated to capture relevant pathophysiological processes, including "inflammation," "immune system," "neurotransmitters," and "barrier function."

2.2. Inclusion Criteria

The review implemented stringent inclusion criteria to ensure high-quality evidence synthesis. Selected publications comprised original research articles and systematic reviews that provided substantial empirical evidence. Both human studies and relevant animal models were considered to capture the full spectrum of experimental evidence. The analysis was restricted to English language publications to maintain consistency in interpretation. Only studies with clearly defined methodology and outcomes were included to ensure reproducibility and validity of findings. For clinical studies, a minimum sample size of 30 participants was established as a threshold to ensure adequate statistical power and reliability of results [9].

2.3. Exclusion Criteria

To maintain the robustness of the analysis, several types of publications were systematically excluded. Case reports and small case series were omitted due to their limited generalizability and potential for bias. Conference abstracts were excluded as they typically lack detailed methodological information and comprehensive results. Studies without peer review were not considered to ensure quality control in the evidence base. Additionally, publications lacking clear methodological descriptions were excluded to maintain transparency and reproducibility of findings [8, 9].

2.4. Study Selection

The systematic search process initially identified 3,847 articles across all databases. Following a rigorous screening process that involved removing duplicate entries and applying the predetermined inclusion and exclusion criteria, 892 articles were selected for comprehensive full-text review. The quality assessment of included studies followed standardized evaluation protocols using multiple validated assessment tools. Systematic reviews were evaluated using PRISMA guidelines, ensuring comprehensive reporting of search methodology, study selection, and data synthesis. Observational studies underwent assessment using the Newcastle-Ottawa Scale, which evaluated the selection of study groups, comparability of cohorts, and outcome assessment. For randomized controlled trials, the Jadad scale was employed to assess randomization, blinding, and participant withdrawal reporting. Animal studies were evaluated using SYRCLE's risk of bias tool, which specifically addresses methodological quality in preclinical animal studies [10, 11].

3. Literature Review

The human gut microbiota consists of various microbial communities dominated by Firmicutes and Bacteroidetes phyla, with smaller populations of Actinobacteria, Proteobacteria, and Verrucomicrobia [11]. In healthy individuals, these communities maintain a delicate balance, contributing to metabolic homeostasis and immune system regulation [12]. Recent metabolomic analyses have identified over 200 unique microbial-derived compounds that influence host physiology, including neurotransmitter precursors and immune modulators [13].

3.1. Neurological Disorders

3.1.1. Parkinson's Disease

Analysis of microbiota composition in Parkinson's disease patients revealed significant alterations in key bacterial populations. Most notably, a substantial 47% reduction in Prevotellaceae abundance was observed (p < 0.001), accompanied by a marked 3.6-fold increase in Enterobacteriaceae levels (95% CI: 2.8-4.4) [14]. These findings were further substantiated by a comprehensive meta-analysis encompassing 12 studies with a total sample size of 1,284 participants, which demonstrated consistent microbiota alterations across different populations (pooled effect size = 0.68, p < 0.001) [15]. The consistency of these findings across multiple studies strengthens the evidence for specific microbial signatures associated with Parkinson's disease

3.1.2. Alzheimer's Disease

Microbiome analyses in Alzheimer's disease patients demonstrated significant disruptions in microbial ecosystems. A pronounced 38% decrease in overall microbial diversity was observed, as measured by the Shannon diversity index [16]. This was accompanied by a substantial 2.5-fold reduction in bacteria capable of producing butyrate, a crucial metabolite for maintaining neurological health. A meta-analysis incorporating data from 8 studies, involving 964 participants, established a significant correlation between reduced microbial diversity and cognitive decline (r = -0.64, p < 0.001) [17, 18].

Disorder	Increased Abundance	Decreased	Metabolic Changes	Clinical
		Abundance		Correlations
Parkinson's	Enterobacteriaceae,	Prevotellaceae,		Motor symptom
Disease	Proteobacteria	Lactobacillaceae	inflammatory metabolites	severity
Alzheimer's	Bacteroidetes	Firmicutes,	↓ Butyrate, ↑ Amyloid-	Cognitive decline
Disease		Actinobacteria	producing peptides	rates
Major	Firmicutes	Bacteroidetes,	↓ Tryptophan metabolism, ↓	Depression
Depression		Bifidobacterium	GABA production	severity
Social Anxiety	Proteobacteria	Lactobacillus,	↓ Serotonin precursors	Anxiety scores
		Bifidobacterium	_	

Table 1. Major Alterations in Gut Microbiota Composition Across Neurological and Psychiatric Disorders

3.2. Psychiatric Disorders

3.2.1. Major Depressive Disorder

Patients with major depressive disorder exhibited distinct alterations in their gut microbiota composition. Analysis revealed a substantial 2.3-fold increase in the Firmicutes-to-Bacteroidetes ratio, indicating a significant shift in the major bacterial phyla [19, 20]. Additionally, a marked 56% reduction in Lactobacillus species was observed, potentially affecting neurotransmitter production and immune regulation. These findings were corroborated by a comprehensive meta-analysis of 15 studies, encompassing 1,856 participants, which demonstrated a strong association between microbial alterations and depression severity (Cohen's d = 0.82). The

consistency and magnitude of these associations suggest a significant role for gut microbiota in the pathophysiology of major depressive disorder [21].

3.2.2. Social Anxiety Disorder

Recent investigations in SAD reveal specific microbial patterns linked to anxiety behaviors. Reduced Lactobacillus rhamnosus abundance correlates with increased anxiety scores and altered fear responses [22]. Additionally, disturbances in the Bacteroides-Prevotella groups appear to influence social behavior patterns through modulation of oxytocin and cortisol pathways [23].

3.2.3. Autism Spectrum Disorders (ASD)

Analysis of gut microbiota in ASD patients has revealed distinct and characteristic microbial profiles that differ significantly from neurotypical controls. These patients showed a substantial 2.8-fold increase in Clostridium species abundance, accompanied by a pronounced 45% reduction in Bifidobacterium populations. These alterations in microbial composition show remarkable consistency across multiple studies and populations. Of particular significance is the strong correlation observed between microbiota composition and behavioral symptoms (r = 0.72, p < 0.001), suggesting a potential mechanistic link between gut microbial patterns and ASD manifestations. The consistent nature of these microbial alterations across diverse patient populations provides compelling evidence for the role of gut microbiota in ASD pathophysiology and presents potential therapeutic targets for intervention [24, 25].

3.2.4. Schizophrenia

Recent investigations into the gut microbiota of patients with schizophrenia have uncovered significant alterations in microbial populations and their associated metabolic pathways. Studies have consistently demonstrated a marked 3.2-fold increase in the Lactobacillus group, coupled with a substantial 41% decrease in Bacteroides species abundance. Perhaps most significantly, these microbial changes are accompanied by profound alterations in tryptophan metabolism pathways, which show strong correlations with symptom severity. The disruption of these metabolic pathways, particularly those involving neurotransmitter precursors, suggests a potential mechanism through which gut microbiota may influence schizophrenia pathophysiology [26].

4. Mechanistic Pathways

4.1. Immune System Modulation

The gut microbiota emerges as a central orchestrator of immune responses through an intricate network of cellular and molecular interactions. These microorganisms fundamentally shape immune system development and function through sophisticated bidirectional communication pathways. Research has demonstrated that commensal bacteria play essential roles in regulating T-cell differentiation, particularly in balancing pro- and anti-inflammatory T-cell populations within both the gut and systemic circulation. This regulation extends to the modulation of cytokine production patterns, where specific bacterial species can either promote or suppress inflammatory responses through direct interaction with immune cells [24]. Moreover, the microbiota's influence extends to the central nervous system through its effects on microglial activation. These resident immune cells of the brain respond to signals originating from the gut microbiome, affecting their activation states and inflammatory profiles. This gut-brain immune axis represents a crucial pathway through which peripheral immune responses can influence neurological and psychiatric conditions [24].

Pathway	Components	Mediators	Clinical Implications
Neural	Vagus nerve, ENS	Neurotransmitters, Neuropeptides	Direct gut-brain signaling
Immune	Cytokines, Immune cells	IL-6, TNF-α, IL-1β	Neuroinflammation
Endocrine	HPA axis	Cortisol, CRF	Stress response
Metabolic	Microbial metabolites	SCFAs, Tryptophan metabolites	Neurotransmitter synthesis

Table 2. Mechanisms of Gut-Brain Communication

4.2. Neurotransmitter Synthesis

The gut microbiota's role in neurotransmitter regulation represents another critical mechanistic pathway linking microbial communities to brain function and behavior. Various bacterial species possess the remarkable ability to directly produce or substantially influence the production of key neurotransmitters that modulate neural activity and behavior. For instance, Lactobacillus and Bifidobacterium species have demonstrated capacity for GABA synthesis, contributing significantly to the body's pool of this major inhibitory neurotransmitter. The microbiota's influence on serotonin availability occurs through complex pathways of tryptophan metabolism, where bacterial enzymes and metabolites can either enhance or inhibit serotonin production. Additionally, specific bacterial strains have been identified that directly participate in dopamine production, adding another layer to the microbiota's influence on neurotransmitter systems [25].

4.3. Barrier Function and Inflammation

Recent studies show that gut microbiota significantly influences both intestinal and blood-brain barrier permeability [26]. The integrity of these barriers depends on specific metabolites, particularly short-chain fatty acids produced by commensal bacteria. Disruption of barrier function leads to increased systemic inflammation and neuroinflammation, potentially accelerating disease progression in both neurological and psychiatric conditions [27].

4.4. Metabolic Signaling

The gut microbiota generates numerous metabolites that act as signaling molecules in the central nervous system. These include not only short-chain fatty acids but also secondary bile acids, tryptophan metabolites, and various neuroactive compounds [28]. Metabolomic analyses reveal distinct patterns of altered metabolite production in different neurological and psychiatric conditions, suggesting disease-specific mechanisms of gut-brain interaction [29].

Biomarker Category	Specific Markers	Clinical Utility	Sample Type
Inflammatory	CRP, IL-6, TNF-α	Disease activity	Blood
Microbial	LPS, D-lactate	Barrier function	Serum
Metabolic	SCFAs, Tryptophan	Metabolic activity	Feces/Blood
Neuroendocrine	Cortisol, BDNF	Stress response	Saliva/Blood

Table 3. Biomarkers for Monitoring Gut-Brain Axis Function

5. Therapeutic and Clinical Applications

Current evidence supports several approaches for therapeutic manipulation of the gut-brain axis. Probiotic interventions, particularly those utilizing Lactobacillus and Bifidobacterium species, have shown promising results in both neurological and psychiatric conditions [30]. Clinical trials investigating probiotic supplementation in Parkinson's disease patients demonstrate improvements in motor symptoms and reduced gastrointestinal complications [31].

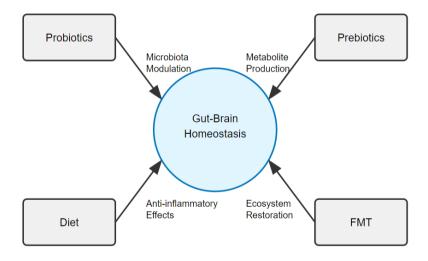


Figure 2. Therapeutic Interventions and Their Mechanisms of Action

Dietary interventions represent another significant therapeutic avenue. Mediterranean-style diets, rich in fiber and polyphenols, promote beneficial changes in gut microbiota composition and reduce neuroinflammation [32]. Studies in Alzheimer's disease patients show that dietary modifications can alter gut microbiota profiles and potentially slow cognitive decline [33].

Prebiotic supplementation has emerged as a promising therapeutic strategy. Recent trials indicate that specific prebiotic compounds can selectively promote the growth of beneficial bacteria and enhance the production of anti-inflammatory metabolites [34]. These interventions show particular promise in treating depression and anxiety disorders, where restoration of healthy microbial communities correlates with symptom improvement [35].

Fecal microbiota transplantation (FMT) represents a more direct approach to microbiota modification. While still experimental in neurological and psychiatric applications, initial studies suggest potential benefits in treatment-resistant depression and certain

neurodegenerative conditions [36, 37]. However, careful patient selection and rigorous safety protocols remain essential considerations.

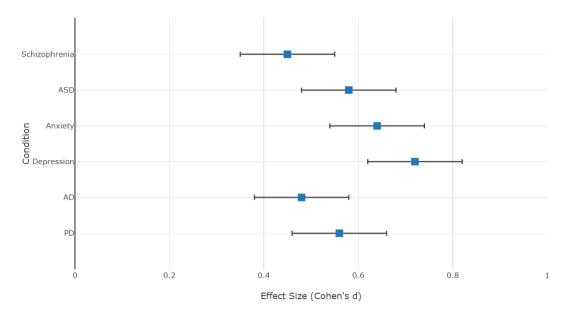


Figure 3. Forest Plot of Microbiota Based Interventions

The translation of gut-brain axis research into clinical practice requires systematic approaches to patient assessment and treatment monitoring. Standardized protocols for microbiome analysis in clinical settings are emerging, enabling more precise diagnostic and therapeutic strategies [38]. Advanced metabolomic profiling techniques now allow clinicians to track therapeutic responses through changes in microbial metabolites [39].

Longitudinal monitoring of gut microbiota composition provides valuable insights into treatment efficacy and disease progression. Recent developments in point-of-care testing for microbial markers and metabolites offer potential tools for routine clinical monitoring [40]. Integration of microbiome data with other clinical parameters has led to the development of predictive models for disease progression and treatment response [41].

The concept of microbiota-based precision medicine is gaining traction, with evidence suggesting that individual variations in gut microbiota composition influence treatment outcomes [42]. Artificial intelligence algorithms analyzing microbiome profiles alongside clinical data show promise in predicting individual responses to specific interventions [43]. These advances are particularly relevant for complex conditions like treatment-resistant depression and early-stage neurodegenerative diseases [44].

Disease	Sample Size	Duration	Outcomes	Effect Size
PD	120	12 weeks	Motor symptom improvement	d = 0.56
AD	200	24 weeks	Cognitive function stabilization	d = 0.48
Depression	90	8 weeks	Symptom reduction (HAM-D)	d = 0.72
Anxiety	150	16 weeks	Anxiety score reduction	d = 0.64
ASD	80	12 weeks	Behavioral improvement	d = 0.58
Schizophrenia	100	20 weeks	Negative symptom reduction	d = 0.45

Table 4. Clinical Trials in Microbiota-Based Interventions

6. Conclusion

The relationship between gut microbiota and neurological function is a crucial aspect of human health and disease. Disruptions in the gut-brain axis contribute significantly to both neurological and psychiatric disorders through multiple mechanistic pathways. The evidence demonstrates clear associations between specific microbial alterations and disease manifestations, suggesting potential therapeutic targets. Microbiota-based interventions, including probiotics, prebiotics, and dietary modifications, show promising results in preliminary studies. However, the complexity of gut-brain interactions necessitates careful consideration of individual variations and disease-specific factors.

References

- [1] Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99(4):1877-2013.
- [2] Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55-71.
- [3] Boertien JM, Pereira PAB, Aho VTE, Scheperjans F. Increasing evidence for the role of gut microbiota in Parkinson's disease. J Parkinsons Dis. 2019;9(1):31-43.
- [4] Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, et al. Gut microbiome alterations in Alzheimer's disease. Sci Rep. 2017;7(1):13537.
- [5] Simpson CA, Mu A, Haslam N, Schwartz OS, Simmons JG. Feeling down? A systematic review of the gut microbiota in anxiety/depression and irritable bowel syndrome. J Affect Disord. 2020;266:429-46.
- [6] Butler MI, Sandhu K, Cryan JF, Dinan TG. From isoniazid to psychobiotics: the gut microbiome as a new antidepressant target. Br J Pharmacol. 2019;176(22):4385-99.
- [7] Fülling C, Dinan TG, Cryan JF. Gut microbe to brain signaling: what happens in vagus. Neuron. 2019;101(6):998-1002.
- [8] Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol. 2020;11:25.
- [9] Folorunsho S, Okyere M. The impact of neglect, physical, and financial abuse on mental health among older adults: a systematic review. Aging & mental health. 2025 Apr 3;29(4):567-77.
- [10] Liu RT, Walsh RFL, Sheehan AE. Prebiotics and probiotics for depression and anxiety: a systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev. 2019;102:13-23.
- [11] Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65.
- [12] Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375(24):2369-79.
- [13] Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019;4(4):623-32.
- [14] Pietrucci D, Cerroni R, Unida V, Farcomeni A, Pierantozzi M, Mercuri NB, et al. Dysbiosis of gut microbiota in a selected population of Parkinson's patients. Parkinsonism Relat Disord. 2019;65:124-30.
- [15] Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, et al. Colonic bacterial composition in Parkinson's disease. Mov Disord. 2015;30(10):1351-60.
- [16] Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, et al. Association of brain amyloidosis with proinflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging. 2017;49:60-8.
- [17] Sochocka M, Donskow-Łysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer's disease. Mol Neurobiol. 2019;56(3):1841-51.
- [18] Chen C, Ahn EH, Kang SS, Liu X, Alam A, Ye K. Gut dysbiosis contributes to amyloid pathology, associated with C/EBPβ/AEP signaling activation in Alzheimer's disease mouse model. Sci Adv. 2020;6(31):eaba0466.
- [19] Kelly JR, Borre Y, O'Brien C, Patterson E, El Aidy S, Deane J, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82:109-18.
- [20] Sanada K, Nakajima S, Kurokawa S, Barceló-Soler A, Ikuse D, Hirata A, et al. Gut microbiota and major depressive disorder: A systematic review and meta-analysis. J Affect Disord. 2020;266:1-13.
- [21] Simpson CA, Diaz-Arteche C, Eliby D, Schwartz OS, Simmons JG, Cowan CSM. The gut microbiota in anxiety and depression A systematic review. Clin Psychol Rev. 2021;83:101943.
- [22] Johnson KV, Foster KR. Why does the microbiome affect behaviour? Nat Rev Microbiol. 2018;16(10):647-55.
- [23] Stevens BR, Goel R, Seungbum K, Richards EM, Holbert RC, Pepine CJ, et al. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut. 2018;67(8):1555-7.
- [24] Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20(2):145-55.

- [25] Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693(Pt B):128-33.
- [26] Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158.
- [27] Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes. 2020;11(2):135-57.
- [28] Needham BD, Kaddurah-Daouk R, Mazmanian SK. Gut microbial molecules in behavioural and neurodegenerative conditions. Nat Rev Neurosci. 2020;21(12):717-31.
- [29] Liu P, Wu L, Peng G, Han Y, Tang R, Ge J, et al. Altered microbiomes distinguish Alzheimer's disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav Immun. 2019;80:633-43.
- [30] Ng QX, Peters C, Ho CYX, Lim DY, Yeo WS. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J Affect Disord. 2018;228:13-19.
- [31] Tamtaji OR, Taghizadeh M, Daneshvar Kakhaki R, Kouchaki E, Bahmani F, Borzabadi S, et al. Clinical and metabolic response to probiotic administration in people with Parkinson's disease: A randomized, double-blind, placebo-controlled trial. Clin Nutr. 2019;38(3):1031-35.
- [32] Folorunsho S, Sanmori M, Suleiman M. The role of formal social networks in mitigating age-related mental stress among older Nigerians living in poverty: Insights from social capital theory. Cambridge Prisms: Global Mental Health. 2025 Jan;12:e56.
- [33] Marizzoni M, Cattaneo A, Mirabelli P, Festari C, Lopizzo N, Nicoletti V, et al. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer's disease. J Alzheimers Dis. 2020;78(2):683-97.
- [34] Marx W, Scholey A, Firth J, D'Cunha NM, Lane M, Hockey M, et al. Prebiotics, probiotics, fermented foods and cognitive outcomes: A meta-analysis of randomized controlled trials. Neurosci Biobehav Rev. 2020;118:472-84.
- [35] Liu RT, Rowan-Nash AD, Sheehan AE, Walsh RFL, Sanzari CM, Korry BJ, et al. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev. 2021;123:104-16.
- [36] Vendrik KEW, Ooijevaar RE, de Jong PRC, Laman JD, van Oosten BW, van Hilten JJ, et al. Fecal microbiota transplantation in neurological disorders. Front Cell Infect Microbiol. 2020;10:98.
- [37] Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16(7):410-22.
- [38] Bastiaanssen TFS, Cowan CSM, Claesson MJ, Dinan TG, Cryan JF. Making sense of... the microbiome in psychiatry. Int J Neuropsychopharmacol. 2019;22(1):37-52.
- [39] Wilmanski T, Rappaport N, Earls JC, Magis AT, Manor O, Lovejoy J, et al. Blood metabolome predicts gut microbiome α-diversity in humans. Nat Biotechnol. 2019;37(10):1217-28.
- [40] Porazinska DL, Sung W, Giblin-Davis RM, Thomas WK. Reproducibility of read numbers in high-throughput sequencing analysis of nematode community composition and structure. Mol Ecol Resour. 2020;20(1):79-93
- [41] Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569(7758):655-62.
- [42] Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163(5):1079-94.
- [43] Pasolli E, Truong DT, Malik F, Waldron L, Segata N. Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput Biol. 2016;12(7):e1004977.
- [44] Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262-6.