REVIEW ARTICLE

Ethnopharmacological Properties, Phytochemical Constituents, and Therapeutic Applications of Asian Sand Pear

Deepak Gowda N S*1, Suresha B S2, Balasubramanian T2, Ahalya Devi K H3

¹PG Scholar, Department of Pharmacology, Bharathi College of Pharmacy, Bharathinagar, Mandya, Karnataka, India ²Associate Professor, Department of Pharmacology, Bharathi College of Pharmacy, Bharathinagar, Mandya, Karnataka, India ³Assistant Professor, Department of Pharmacology, Bharathi College of Pharmacy, Bharathinagar, Mandya, Karnataka, India

Publication history: Received on 16th April 2025; Revised on 12th May 2025; Accepted on 12th May 2025

Article DOI: 10.69613/824neb09

Abstract: *Pyrus pyrifolia* (sand pear), a member of the Rosaceae family, is a valuable medicinal and nutritional resource cultivated across temperate and subtropical regions worldwide. The sand pear's therapeutic potential is mainly due to its rich composition of bioactive compounds, including phenolic acids, flavonoids, terpenoids, vitamins, and minerals. Traditional medicine systems have utilized various parts of *P. pyrifolia* for treating ailments such as cough, fever, asthma, and digestive disorders. Modern pharmacological studies prove these traditional applications through documented antimicrobial, antioxidant, anticancer, anti-inflammatory, antidiabetic, and hepatoprotective properties. The fruit contains dietary fiber, essential minerals, and bioactive compounds like arbutin, chlorogenic acid, and quercetin. Recent research shows the sand pear's role in alcohol detoxification, obesity management, and urinary health. The plant's phenolic compounds have significant antioxidant capacity and enzyme inhibitory activities relevant to diabetes management. Additionally, triterpenoids isolated from *P. pyrifolia* exhibit hepatoprotective and anti-inflammatory effects. Scientific investigations reveal the mechanisms behind these therapeutic properties, including modulation of inflammatory pathways, enhancement of antioxidant defenses, and regulation of metabolic processes. This review provides the current knowledge on *P. pyrifolia*'s ethnobotanical uses, phytochemistry, and pharmacological activities, proving its significance in traditional medicine and potential in modern therapeutic applications.

Keywords: Asian pear; Bioactive compounds; Ethnomedicine; Pharmacological activities; Traditional medicine.

1. Introduction

Medicinal plants have formed the cornerstone of traditional healthcare systems for millennia, with their therapeutic applications evolving through generations of human experience. Among these valuable botanical resources, *Pyrus pyrifolia* L., commonly known as the sand pear or Asian pear, emerges as a significant species with diverse medicinal properties [1]. *P. pyrifolia* belongs to the Rosaceae family, which includes over 22 primary species and more than 5,000 varieties of pears. While terms like "Korean pear," "Japanese pear," and "Chinese pear" are often used interchangeably, they represent distinct cultivars that developed in specific geographic regions, including *P. sinkiangensis*, *P. bretschneideri*, *P. pyrifolia*, and *P. ussuriensis* [2]. The domestication of *P. pyrifolia* traces back to two primary regions: China and Asia Minor, extending through the Middle East. This adaptable species thrives in both temperate and subtropical climates, contributing to its widespread cultivation [3]. Asian pears differ from their European counterparts in their water and phenolic content, typically containing lower levels of sugar and starch, making them a healthier dietary choice [4].

Morphologically, *P. pyrifolia* presents as a deciduous tree with distinctive characteristics. The leaves are oblong to ovate, measuring 7-12 cm in length with finely toothed margins. The tree produces white flowers, followed by subglobose fruits characterized by granular, sweet flesh with a crisp, juicy texture. Japanese varieties typically develop rounded fruits, while Chinese cultivars exhibit a pyriform shape [5]. The nutritional profile of *P. pyrifolia* is dominated by water content, with carbohydrates as the primary macronutrient. The fruit's soluble solids content ranges from 10-13%, primarily composed of sucrose, fructose, and glucose. While protein and lipid contents are minimal, the dietary fiber content (1-2g per 100g) is notably high compared to other fruits. This fiber composition contributes to digestive health by modulating intestinal microbiota [6].

Traditional oriental medicine has utilized *P. pyrifolia* for centuries to address various health conditions. The fruit and its derivatives have been employed to treat respiratory ailments (cough, asthma), fever, hangover symptoms, and digestive issues. Both the flesh and peel contain beneficial compounds, including chlorogenic acid, arbutin, and (+)-catechin, which contribute to its therapeutic

^{*} Corresponding author: Deepak Gowda N S

properties [7]. Modern scientific research has proved many traditional applications through identification of bioactive compounds and investigation of their mechanisms of action. The plant's phenolic components show significant antioxidant, anti-inflammatory, and antimicrobial properties, while its triterpenes exhibit hepatoprotective effects [8]. *P. pyrifolia*'s significance extends beyond traditional medicine into modern pharmacological applications. Recent studies have identified novel therapeutic properties, including anti-diabetic, anti-obesity, and anti-cancer activities, highlighting its potential in contemporary healthcare [9].

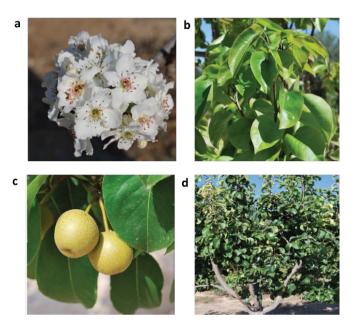


Figure 1. P. pyrifolia a. Flowers b. Leaves c. Fruits and d. Entire tree

2. Taxonomical Classification and Description

2.1. Taxonomic Classification

The systematic classification of *P. pyrifolia* follows a hierarchical arrangement within the plant kingdom. The species belongs to the order Rosales, characterized by flowering plants that typically produce fleshy fruits. Within the Rosaceae family, *P. pyrifolia* represents one of the economically significant members of the genus Pyrus [10].

2.1.1. Synonyms

The scientific nomenclature includes several recognized synonyms that reflect the plant's taxonomic history. These include *Pyrus pyrifolia* f. discolor Nakai, *Pyrus pyrifolia* var. culta (Makino) Nakai, *Pyrus pyrifolia* var. montana (Nakai) Nakai, and *Pyrus pyrifolia* var. talyschensis Gladkova [11].

2.1.2. Vernacular Names

The species is recognized by various local names across different regions. In Hindi, it is known as Nashpati, while in Malayalam it is called Salvag. Telugu-speaking regions refer to it as Berikaya or Beripandu, and in Kannada, it is known as Marasebu. The Manipuri name for the species is Naspati, while in Kashmiri it is called Kishtabahira [12].

2.2. Botanical Description

2.2.1. Morphological Characteristics

P. pyrifolia exhibits distinct morphological features that aid in its identification and classification. The plant manifests as a deciduous tree with specific characteristics in its vegetative and reproductive parts [13].

The tree reaches moderate heights with a spreading canopy. Young branches show slight pubescence, becoming glabrous with age. The leaves are arranged alternately, displaying characteristic features. The leaf shape ranges from oblong to ovate, occasionally long-ovate, measuring 7-12 cm in length. The leaf margins are finely serrated, with petioles extending 5-6 cm. The leaf apex is distinctly acuminate, and the surface appears glabrous or slightly pubescent in young leaves [14].

The reproductive structures of *P. pyrifolia* include both floral and fruit characteristics. The flowers appear white in color, arranged in cymose inflorescence patterns. Each flower contains five free petals, multiple stamens with distinct filaments, and an inferior ovary comprising multiple carpels [15]. The fruits develop into distinctive forms, varying from subglobose to pyriform shapes. They possess a firm, crisp, and granular texture, containing very sweet, juicy flesh. The fruits emit a characteristic aromatic fragrance, and their size varies depending on the cultivar [16].

2.3. Geographic Distribution and Habitat

P. pyrifolia originated in East Asia, with primary centers of diversity in China, particularly the eastern and central regions, the Korean Peninsula, and Japan [17]. The species has been successfully introduced and cultivated across various geographical regions, including the temperate zones of Asia, Mediterranean regions, parts of North and South America, and regions of Australia and New Zealand [18]. The species demonstrates specific preferences for environmental conditions. It thrives in temperate to subtropical climates, requiring well-drained soils with slightly acidic to neutral pH. The plant adapts to elevations ranging from sea level to 2500 meters and requires annual rainfall between 800-1500 mm for optimal growth [19]

3. Phytochemical Constituents

3.1. Primary and Secondary Metabolites

P. pyrifolia contains essential primary metabolites necessary for plant growth and development. These include common sugars, proteins, amino acids, and nucleic acid components. The fruit predominantly consists of water (88.23%), followed by carbohydrates (1.79%), fiber (7.32%), protein (0.61%), and fats (0.24%) [20]. The secondary metabolites in *P. pyrifolia* contribute significantly to its therapeutic properties and can be categorized into several major groups [21].

Plant Part	Major Compounds	Content (mg/100g)
Fruit Flesh	Arbutin	12.5-18.3
	Chlorogenic acid	8.2-14.7
	Catechin	5.6-9.8
	Epicatechin	4.3-7.9
Peel	Quercetin	15.8-22.4
	Kaempferol	9.7-13.5
	Rutin	7.8-11.2
Leaves	Triterpenes	25.3-32.1
	Flavonoids	18.4-24.6
	Phenolic acids	12.9-16.8

Table 1. Phytochemical Composition of Different Parts of P. pyrifolia

3.1.1. Phenolic Compounds

Phenolic compounds represent a major class of bioactive constituents in *P. pyrifolia*. Arbutin, a prominent phenolic glycoside, demonstrates significant antioxidant and skin-whitening properties. The plant contains various phenolic acids, including neochlorogenic acid, chlorogenic acid, and its derivatives, caffeic acid, and gallic acid. These compounds exhibit notable anti-inflammatory and antidiabetic properties [22].

3.1.2. Flavonoids

The flavonoid profile includes quercetin, isorhamnetin, epicatechin, and proanthocyanidins. Quercetin, particularly abundant in leaves and fruits, shows antibiotic, antitumoral, and anti-inflammatory activities. The hydrochalcones present contribute to the plant's therapeutic potential [23].

3.1.3. Triterpenoids

Several bioactive triterpenoids have been isolated from *P. pyrifolia*, including betulinic aldehyde, lupeol, and betulinic acid. The plant also contains unique caffeoyl derivatives such as 3-O-cis-caffeoylbetulinic acid and 3-O-trans-caffeoylbetulinic acid. These compounds demonstrate significant hepatoprotective and anti-inflammatory properties [24].

3.2. Nutritional Composition

3.2.1. Macronutrients

The edible portions of *P. pyrifolia* contain a balanced profile of macronutrients. The fruit comprises predominantly water, with significant amounts of dietary fiber. The protein content, though modest, includes essential amino acids. The low-fat content makes it suitable for low-calorie diets [25].

3.2.2. Micronutrients

Minerals: *P. pyrifolia* serves as an excellent source of essential minerals. Potassium represents the most abundant mineral (190.01 mg/100g), followed by sodium (53.80 mg/100g). Other significant minerals include magnesium (12.69 mg/100g), calcium (10.34 mg/100g), phosphorus (8.13 mg/100g), and iron (2.30 mg/100g). This mineral composition contributes to the fruit's nutritional value and therapeutic properties [26].

Vitamins: The fruit contains various vitamins essential for human health. Vitamin C content varies among cultivars but remains significant for nutritional purposes. The presence of B-complex vitamins and vitamin E further enhances its nutritional profile [27].

Dietary Fiber: The dietary fiber content in *P. pyrifolia* plays a crucial role in its health benefits. The fiber composition includes both soluble and insoluble forms, contributing to digestive health and metabolic regulation. This fiber content aids in maintaining healthy gut microbiota and supports regular bowel function [28].

Nutrient	Content
Water (g)	88.23
Energy (kcal)	42
Protein (g)	0.61
Fat (g)	0.24
Carbohydrates (g)	10.79
Dietary Fiber (g)	7.32
Calcium (mg)	10.34
Iron (mg)	2.30
Magnesium (mg)	12.69
Potassium (mg)	190.01
Vitamin C (mg)	4.3

0.028

Vitamin B6 (mg)

Table 2. Nutritional Composition of P. pyrifolia Fruit (per 100g fresh weight)

4. Pharmacological Activities

4.1. Anti-inflammatory Properties

P. pyrifolia exhibits significant anti-inflammatory effects through multiple pathways. Research indicates its ability to suppress inflammatory molecules by inhibiting the MAPK and NF-kB signaling pathways. The activation of Nrf-2 pathways further contributes to its anti-inflammatory action through oxidative stress regulation [29]. Studies using DSS-induced colitis mouse models have demonstrated the anti-inflammatory efficacy of P. pyrifolia extracts. Water extract (PWE), ethanol extract (PEE), and fermented extract (PFE) showed remarkable improvement in disease symptoms, including preservation of colon length and reduction in inflammatory markers. The extracts significantly decreased proinflammatory cytokine IL-1 levels and reduced myeloperoxidase activity [30].

4.2. Antioxidant Activity

The ethyl acetate extracts of *P. pyrifolia* demonstrate superior radical scavenging properties, correlating with their high phenolic content. The methanol extracts of pear peel show particularly high concentrations of total phenols and flavonoids, establishing their potential as natural antioxidant agents [31]. The antioxidant compounds in *P. pyrifolia* protect cellular components from oxidative damage through direct scavenging of reactive oxygen species and enhancement of cellular antioxidant defense mechanisms [32].

Activity	Active Compounds	Mechanism of Action	
Anti-inflammatory	Quercetin, Chlorogenic acid	NF-αB pathway inhibition	
Antioxidant	Phenolic compounds, Flavonoids	Free radical scavenging	
Antimicrobial	Arbutin, Hydroquinone	Cell wall disruption	
Antidiabetic	Chlorogenic acid, Rutin	α-glucosidase inhibition	
Hepatoprotective	Betulinic derivatives	Antioxidant enzyme activation	

Table 3. Pharmacological Activities and Their Mechanisms of Action

4.3. Antimicrobial Activity

P. pyrifolia leaf extracts containing high concentrations of hydroquinone demonstrate significant antimicrobial activity against various bacterial pathogens, including Helicobacter pylori. The correlation between hydroquinone content and antimicrobial efficacy suggests its role as the primary active compound [33]. Both unfermented and fermented immature pear fruits show strong inhibitory effects against multiple bacterial species, including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. The antimicrobial activity correlates with flavonoid content, particularly enhanced through fermentation processes [34].

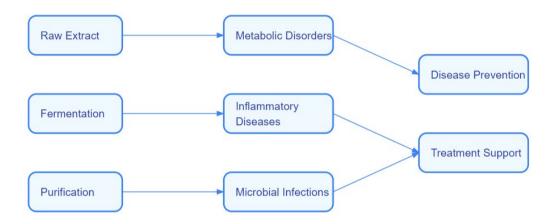


Figure 2. Therapeutic Applications of P. pyrifolia

4.4. Antidiabetic Effects

The polar fraction of *P. pyrifolia* demonstrates significant inhibitory activity against key diabetic enzymes, α -glucosidase and α -amylase. Six major phenolic compounds, including rutin, isoquercitrin, and chlorogenic acid, contribute to this antidiabetic activity through their enzyme inhibitory properties [35]. The phenolic compounds present in *P. pyrifolia* influence glucose metabolism through multiple mechanisms, including enhanced insulin sensitivity and reduced glucose absorption in the intestinal tract [36].

4.5. Cardiovascular Effects

Regular consumption of *P. pyrifolia* contributes to improved lipid profiles by reducing total cholesterol, LDL cholesterol, and triglycerides while increasing HDL cholesterol levels. The polyphenol content plays a crucial role in these cholesterol-lowering effects [37]. The bioactive compounds in *P. pyrifolia* support vascular health through multiple mechanisms, including endothelial function improvement and reduction of oxidative stress in blood vessels [38].

4.6. Hepatoprotective Activity

The triterpenoids present in *P. pyrifolia*, particularly betulinic derivatives, demonstrate significant hepatoprotective properties. These compounds protect liver cells from toxin-induced damage and enhance antioxidant defenses. Studies with pear pomace extracts show suppression of hepatic lipid peroxidation and protection against free radical-induced liver damage [39]

4.7. Anticancer Properties

P. pyrifolia's anticancer activity operates through multiple mechanisms. The dietary fiber, flavonoids, and phenolic compounds, particularly arbutin and chlorogenic acid, demonstrate antiproliferative effects. A significant mechanism involves the inhibition of polycyclic aromatic hydrocarbon (PAH)-induced carcinogenesis by accelerating carcinogen excretion from the body [40]. The plant

exhibits protective effects against PAH-induced oxidative stress by reducing malondialdehyde levels, a biomarker of lipid peroxidation. This antioxidant activity contributes to its overall anticancer potential through prevention of DNA damage and cellular oxidative stress [41].

4.8. Anti-asthmatic Effects

Studies utilizing Immature Asian Pear (IAP) extract demonstrate significant anti-asthmatic properties through immunomodulation. The extract shows particular efficacy in reducing asthma symptoms through its anti-inflammatory and antioxidant mechanisms [42]. The bioactive compounds present in *P. pyrifolia* exhibit bronchodilatory properties, contributing to its traditional use in respiratory conditions. These effects are attributed to the synergistic action of various phenolic compounds and flavonoids [43].

4.9. Anti-aging Properties

P. pyrifolia leaf extracts promote skin cell proliferation and enhance wound healing processes. The extracts demonstrate significant effects on collagen production and skin cell regeneration, particularly when combined with other bioactive compounds such as adenosine [44]. The antioxidant properties of P. pyrifolia contribute to its anti-aging effects by protecting dermal cells from oxidative damage and promoting skin barrier function [45].

4.10. Alcohol Detoxification

Korean pear demonstrates significant effects on alcohol metabolism through stimulation of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities. Individual responses vary based on ALDH2 genetic polymorphism [46]. The consumption of pear extract before alcohol intake shows protective effects through enhanced alcohol metabolism and reduced blood alcohol levels [47].

4.11. Anti-obesity Properties

P. pyrifolia water extract significantly influences lipid degradation and synthesis pathways. The extract affects cell growth and death through modulation of lipid peroxidation processes [48]. Fermented Fructus Pyrus pyrifolia extract demonstrates anti-obesity effects through reduction of body weight and adipose tissue mass. The fermentation process enhances the bioavailability and efficacy of active compounds [49].

4.12. Renoprotective Effects

Research indicates that quercetin from *P. pyrifolia* provides protective effects against bladder damage. Studies demonstrate reduced inflammation and improved bladder health, particularly in cases of chemotherapy-induced damage. The diuretic properties of *P. pyrifolia*, combined with its anti-inflammatory effects, contribute to overall urinary system health and function [50].

Region	Traditional Uses	Part Used
East Asia	Alcohol detoxification	Fruit
South Asia	Respiratory disorders	Leaves
Southeast Asia	Digestive ailments	Fruit, Bark
Traditional Chinese Medicine	Heat clearing, Cough relief	Fruit, Leaves
Korean Medicine	Hangover prevention	Fruit juice

Table 4. Traditional Uses in Different Regions

5. Conclusion

P. pyrifolia represents a valuable medicinal plant with significant therapeutic potential validated through both traditional knowledge and modern scientific research. The extensive phytochemical profile, including phenolic compounds, flavonoids, and triterpenoids, contributes to its diverse pharmacological activities. The plant demonstrates remarkable efficacy in managing various health conditions, from inflammatory disorders to metabolic diseases. The antimicrobial, antioxidant, and anticancer properties of P. pyrifolia suggest its potential in developing novel therapeutic agents. The documented effects on alcohol metabolism, obesity management, and urinary health further expand its therapeutic applications. The nutritional composition and bioactive compounds present in different parts of the plant support its role in both traditional medicine and modern healthcare systems. Future research directions should focus on isolating novel compounds, establishing standardized extracts, and conducting clinical trials to fully realize the therapeutic potential of this valuable medicinal plant.

References

- [1] Singh R, Kumar A, Garg V. Medicinal plants of the family Rosaceae: A comprehensive review of traditional uses and pharmacological properties. J Ethnopharmacol. 2021;278:114266.
- [2] Li X, Wang T, Zhou B, Gao W, Cao J, Huang L. Chemical composition and antioxidant and anti-inflammatory potential of peels and flesh from 10 different pear varieties (Pyrus spp.). Food Chem. 2014;152:531-538.
- [3] Silva GJ, Souza TM, Barbieri RL, Costa de Oliveira A. Origin, domestication, and dispersing of pear (Pyrus spp.). Adv Agric. 2014;2014:541097.
- [4] Cui T, Nakamura K, Ma L, Li JZ, Kayahara H. Analyses of arbutin and chlorogenic acid, the major phenolic constituents in oriental pear. J Agric Food Chem. 2005;53(10):3882-3887.
- [5] Martínez-Nicolás JJ, Legua P, Melgarejo P, Martínez R, Hernández F. Phenological growth stages of nashi tree (*Pyrus pyrifolia*): codification and description according to the BBCH scale. Ann Appl Biol. 2016;168(2):255-263.
- [6] Lee HS, Isse T, Kawamoto T, Baik HW, Park JY, Yang M. Effect of Korean pear (*Pyrus pyrifolia* cv. Shingo) juice on hangover severity following alcohol consumption. Food Chem Toxicol. 2013;58:101-106.
- [7] Cui T, Li JZ, Kayahara H, Ma L, Wu LX, Nakamura K. Quantification of the polyphenols and triterpene acids in Chinese hawthorn fruit by high-performance liquid chromatography. J Agric Food Chem. 2006;54(13):4574-4581.
- [8] Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, Li HB. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules. 2015;20(11):21138-21156.
- [9] Li X, Wang T, Liu J, Liu Y, Zhang J, Li X, et al. Comparative analysis of chemical composition, antioxidant and antiproliferative activities of pear peel and flesh from different varieties. Molecules. 2020;25(5):1256.
- [10] Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, et al. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res. 2013;23(2):396-408.
- [11] Bell RL, Itai A. Pyrus. In: Wild Crop Relatives: Genomic and Breeding Resources. Berlin: Springer; 2011. p. 147-177.
- [12] Kumar S, Kirk C, Deng C, Wiedow C, Knaebel M, Brewer L. Genotyping-by-sequencing of pear (Pyrus spp.) accessions unravels novel patterns of genetic diversity and selection footprints. Hortic Res. 2017;4:17015.
- [13] Yamamoto T, Terakami S, Takada N, Nishio S, Onoue N, Nishitani C, et al. Identification of QTLs controlling harvest time and fruit skin color in Japanese pear (*Pyrus pyrifolia* Nakai). Breed Sci. 2014;64(4):351-361.
- [14] Itai A. Pear. In: Handbook of Plant Breeding. New York: Springer; 2012. p. 149-187.
- [15] Yim SH, Nam SH. Physiochemical, nutritional and functional characterization of 10 different pear cultivars (Pyrus spp.). J Appl Bot Food Qual. 2016;89:73-81.
- [16] Shin IS, Jung HY, Yun SK, Lee HC, Kang SS, Lee JH. A new early-maturing, high-quality, and long-shelf-life pear cultivar 'Picuda'. HortScience. 2017;52(12):1821-1823.
- [17] Yukimura K, Nishimura Y, Fukui H, Goto M, Terakami S, Yamamoto T. Genetic diversity and population structure analysis of Asian pear (*Pyrus pyrifolia*) genetic resources in Japan using SSR markers. Genes Genet Syst. 2019;94(4):161-169.
- [18] Bell RL, Quamme HA, Layne REC, Skirvin RM. Pears. In: Fruit Breeding, Volume I: Tree and Tropical Fruits. London: John Wiley & Sons; 2016. p. 441-514.
- [19] Okubo M, Furukawa Y, Tomimatsu T. Growth, flowering and fruit production of pear trees under adverse soil moisture conditions. Sci Hortic. 2020;261:108935.
- [20] Baniwal P, Hathan BS. Physico-chemical, nutritional, functional, textural and morphological characterization of sand pear fruit (*Pyrus pyrifolia* L.) from Northern Region of India. Asian J Chem. 2017;29(4):925-929.
- [21] Cui T, Nakamura K, Tian S, Kayahara H, Tian YL. Polyphenolic content and physiological activities of Chinese hawthorn extracts. Biosci Biotechnol Biochem. 2006;70(12):2948-2956.
- [22] Lee G, Kim JH, Jang HJ, Park JW, Lee JW, Kwon OK, et al. Anti-inflammatory effects of the fraction from the leaves of *Pyrus pyrifolia* on LPS-stimulated THP-1 cells. Evid Based Complement Alternat Med. 2021;2021:4946241.
- [23] Sroka Z, Zgórka G, Żbikowska B, Sowa A, Franiczek R, Wychowaniec K, et al. High antimicrobial efficacy, antioxidant activity, and a novel approach to phytochemical analysis of bioactive polyphenols in extracts from leaves of Pyrus communis and *Pyrus pyrifolia*. Microb Drug Resist. 2019;25(4):582-593.

- [24] Park SY, Chang MS, Choi JH, Kang YH. Triterpenoids from the leaves of *Pyrus pyrifolia*: isolation, structure elucidation, and their anti-inflammatory activities. Phytochemistry. 2020;173:112292.
- [25] Sharma S, Vaidya D, Kaushal M, Gupta A. Physico-chemical, nutritional and functional characterization of Pathernakh pear (*Pyrus pyrifolia* L.) from Himachal Pradesh of India. Int J Chem Stud. 2020;8(1):2732-2735.
- [26] Kim MJ, Jun JG, Park SY, Choi MJ, Park E, Kim JI, et al. Antioxidant activities of fresh grape juices prepared using various household processing methods. Food Sci Biotechnol. 2017;26(4):861-869.
- [27] Li X, Wang T, Zhou B, Gao W, Cao J, Huang L. Chemical composition and antioxidant and anti-inflammatory potential of peels and flesh from 10 different pear varieties (Pyrus spp.). Food Chem. 2014;152:531-538.
- [28] Mahdy NE, Abdel-Baki PM, El-Rashedy AA, Ibrahim RM. Modulatory effect of *Pyrus pyrifolia* fruit and its phenolics on key enzymes against metabolic syndrome: bioassay-guided approach, HPLC analysis, and in silico study. Plant Foods Hum Nutr. 2023;78(2):383-389.
- [29] Lee MR, Kim B, Kim NG, Kim HJ, Ra M, Chung BH, et al. Ameliorative effects of *Pyrus pyrifolia* (Burm. f) Nakai fruit extract on DSS-induced colitis in C57BL/6 mice. J Agric Life Environ Sci. 2021;33(3):166-175.
- [30] Cho JY, Park KY, Lee KH, Lee HJ, Lee SH, Cho JA, et al. Recovery of arbutin in high purity from fruit peels of pear (*Pyrus pyrifolia* Nakai). Food Sci Biotechnol. 2011;20(3):801-807.
- [31] Patricia VM, Syaputri FN, Tugon TD, Mardhatillah A. Antioxidant properties of Pyrus communis and *Pyrus pyrifolia* peel extracts. Borneo J Pharm. 2020;3(2):64-70.
- [32] Zhang X, Liu Y, Xu D, Yang X, Zhang J, Li S, et al. Comparative study on antioxidant activity of different varieties of *Pyrus pyrifolia* Nakai fruits. J Food Meas Charact. 2021;15(2):1512-1521.
- [33] Lee SW, Cho JY, Moon JH. Phenolic compounds from the leaves of *Pyrus pyrifolia* and their antibacterial activities against pathogenic bacteria including Helicobacter pylori. Food Sci Biotechnol. 2018;27(5):1425-1431.
- [34] Lee SW, Cho JY, Jeong HY, Na TW, Lee SH, Moon JH. Enhancement of antioxidative and antimicrobial activities of immature pear (*Pyrus pyrifolia* cv. Niitaka) fruits by fermentation with Leuconostoc mesenteroides. Food Sci Biotechnol. 2016;25:1719-1726.
- [35] Kim MR, Lee JH, Kim JW, Kim KY, Shin S, Hong EJ, et al. Efficacy confirmation test of immature Asian pear (*Pyrus pyrifolia* Nakai) extract on ovalbumin-induced asthma in mice. Appl Sci. 2023;13(16):9342.
- [36] Park DE, Adhikari D, Pangeni R, Panthi VK, Kim HJ, Park JW. Preparation and characterization of callus extract from *Pyrus pyrifolia* and investigation of its effects on skin regeneration. Cosmetics. 2018;5(4):71.
- [37] Lee HS, Isse T, Kawamoto T, Woo HS, Kim AK, Park JY, et al. Effects and action mechanisms of Korean pear (*Pyrus pyrifolia* cv. Shingo) on alcohol detoxification. Phytother Res. 2012;26(11):1753-1758.
- [38] Chu H, Kim J. Anti-obesity effect of Fructus pyri Pyrifoliae extract fermented by lactic-acid bacteria on rats. Appl Microsc. 2018;48(3):62-72.
- [39] Na EJ, Kim DJ, Kim JH, Kim GR. Recent trends in anti-obesity and anti-inflammatory studies in modern health care. Technol Health Care. 2019;27(5):519-530.
- [40] Li Y, Zhang JJ, Xu DP, Zhou T, Zhou Y, Li S, et al. Bioactivities and health benefits of wild fruits. Int J Mol Sci. 2016;17(8):1258.
- [41] Sekeroglu V, Aydin B, Sekeroglu ZA. Viscum album L. extract and quercetin reduce cyclophosphamide-induced cardiotoxicity, urotoxicity and genotoxicity in mice. Asian Pac J Cancer Prev. 2011;12:2925-2931.
- [42] Yoo JH, Yang KS. Constituents of *Pyrus pyrifolia* with inhibitory activity on the NO production and the expression of iNOS and COX-2 in macrophages and microglia. Nat Prod Sci. 2012;18(3):183-189.
- [43] Cui T, Li JZ, Kayahara H, Ma L, Wu LX, Nakamura K. Quantification of the polyphenols and triterpene acids in Chinese hawthorn fruit by high-performance liquid chromatography. J Agric Food Chem. 2006;54(13):4574-4581.
- [44] Lee G, Na YJ, Park BG, Kim HJ, Kim JH, Kim YW, et al. Anti-inflammatory activities of *Pyrus pyrifolia* leaf extract in lipopolysaccharide-stimulated RAW 264.7 cells. Molecules. 2019;24(5):912.
- [45] Kim MJ, Kim SS, Park KJ, An HJ, Lee HY, Lee KG, et al. Phenolic compound profiles and antioxidant activities of Korean pear (*Pyrus pyrifolia* Nakai) according to cultivar and flesh color. Food Sci Biotechnol. 2020;29(7):929-937
- [46] Lee HS, Cho YH, Park J, Shin HR, Sung MK. Dietary intake of phytonutrients in relation to fruit and vegetable consumption in Korea. J Acad Nutr Diet. 2013;113(9):1194-1199.

- [47] Yang HY, Yang SC, Chao JC, Chen JR. Beneficial effects of catechin-rich green tea and inulin on the body composition of overweight adults. Br J Nutr. 2012;107(5):749-754.
- [48] Lee KH, Cho JY, Lee HJ, Park KY, Ma YK, Lee SH, et al. Isolation and identification of phenolic compounds from an Asian pear (*Pyrus pyrifolia* Nakai) fruit peel and their antioxidant and anti-inflammatory activities. J Food Biochem. 2014;38(2):98-108.
- [49] Park YK, Choi SH, Kim SH, Han J, Chung HG. Changes in antioxidant activity, total phenolics and vitamin C content during fruit ripening in *Pyrus pyrifolia*. Korean J Plant Res. 2007;20(3):222-227.
- [50] Sharma R, Joshi VK, Rana JC. Nutritional composition and processed products of quince (*Cydonia oblonga* Mill.). Indian J Nat Prod Resour. 2011;2(3):354-357.