REVIEW ARTICLE

A Systematic Review of AI-Driven Innovations in Drug Development, Precision Medicine, and Healthcare

Sri Venkatesh Uriti

Associate Professor, Department of Pharmacology, Sri Sivani College of Pharmacy, Etcherla, Srikakulam, Andhra Pradesh, India

Publication history: Received on 5th April 2025; Revised on 1st May 2025; Accepted on 2nd May 2025

Article DOI: 10.69613/nvj8x122

Abstract: Artificial Intelligence (AI) is a huge transformation in pharmaceutical research and healthcare delivery, changing traditional approaches to drug development and patient care. This review discusses about the use of AI across the pharmaceutical value chain, from early-stage drug discovery to personalized therapeutic interventions. The implementation of machine learning algorithms has significantly enhanced target identification, molecular design, and clinical trial optimization, reducing both time and cost investments in drug development. In the realm of precision medicine, AI applications have advanced patient stratification, treatment response prediction, and pharmacogenomic analyses, enabling more personalized therapeutic strategies. The review also discusses emerging trends in deep learning, natural language processing, and generative AI models, which have demonstrated remarkable potential in drug discovery and healthcare applications. The adoption of explainable AI frameworks has addressed transparency concerns, while conversational AI has improved patient engagement and healthcare delivery. Additionally, AI applications in pharmaceutical manufacturing have optimized production processes and quality control measures. However, challenges remain in data governance, privacy protection, and ethical considerations. All these findings indicate that AI has substantially improved efficiency and accuracy in drug development and healthcare delivery, while demanding the need for continued development of robust guidelines for responsible AI implementation in clinical settings.

Keywords: Artificial Intelligence; Drug Discovery; Precision Medicine; Machine Learning; Healthcare Innovation.

1. Introduction

The application of Artificial Intelligence (AI) in pharmaceutical research and healthcare has marked a huge shift in how we approach drug development and patient care. The exponential growth in biological data, coupled with advances in computational capabilities, has created unprecedented opportunities for AI applications in clinical pharmacology [1]. Recent developments in machine learning algorithms have demonstrated remarkable potential in accelerating drug discovery processes, optimizing clinical trials, and enabling personalized therapeutic approaches [2].

Traditional drug development pipelines, characterized by lengthy timelines and high failure rates, are being transformed through AI-driven solutions. The average time required to bring a drug to market historically spans 10-15 years, with associated costs exceeding \$2.6 billion [3]. AI technologies have emerged as powerful tools to address these challenges, offering more efficient and cost-effective approaches to drug development and clinical implementation [4].

The pharmaceutical industry has witnessed a surge in AI adoption, with major pharmaceutical companies establishing dedicated AI divisions and forming strategic partnerships with technology firms [5]. These collaborations have yielded promising results in various areas, including target identification, lead optimization, and clinical trial design [6]. Furthermore, the application of AI in precision medicine has enabled more accurate patient stratification and treatment selection, leading to improved therapeutic outcomes [7].

The evolution of AI in pharmaceutical research can be traced back to early computational chemistry applications in the 1960s [8]. However, recent advances in machine learning algorithms, particularly deep learning and neural networks, have dramatically expanded the scope and capabilities of AI applications [9]. The current landscape is characterized by sophisticated AI systems capable of processing complex biological data, predicting molecular properties, and generating novel drug candidates [10, 11]. The main objective of this review is to discuss the current state of AI applications in drug development and precision medicine and evaluate the impact of AI on pharmaceutical research.

^{*} Corresponding author: Sri Venkatesh Uriti

2. Drug Discovery and Development

2.1. Target Discovery

The identification and validation of drug targets represent crucial initial steps in the drug development process. AI algorithms have revolutionized this phase by efficiently processing vast amounts of biological data from multiple sources [12]. Machine learning models can now integrate information from genomics, proteomics, and metabolomics studies to identify novel therapeutic targets with higher precision [13]. Advanced neural networks have demonstrated remarkable accuracy in predicting protein-ligand interactions and identifying potential drug targets [14]. These systems analyze complex patterns in biological networks, considering factors such as protein-protein interactions, gene expression profiles, and pathway analyses [15]. The integration of AI with structural biology has enabled more accurate predictions of protein structures and their potential druggability [16]. AI algorithms excel in analyzing biological networks to identify disease-relevant targets. These systems can predict the most promising therapeutic targets by incorporating data from multiple sources, including literature-derived knowledge, experimental data, and clinical observations [17]. Network-based approaches have been particularly successful in identifying targets for complex diseases where multiple pathways are involved [18].

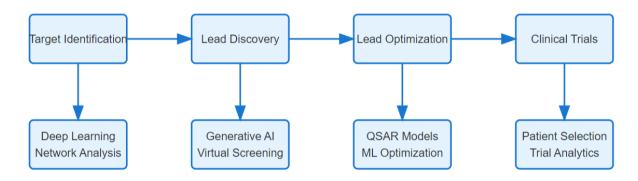


Figure 1. AI-Driven Drug Discovery Pipeline

2.2. Target Validation

Modern AI approaches have enhanced target validation processes through sophisticated predictive modeling. Machine learning algorithms evaluate target-disease associations by analyzing large-scale experimental data, including CRISPR screens, RNA interference studies, and phenotypic assays [19]. These methods have significantly improved the success rate of target validation, reducing the likelihood of failure in later development stages [20].

Phase	AI Technology	Applications	Impact Metrics	
Target	Deep Learning	Protein-protein interaction	40-60% reduction in target identification	
Discovery	Networks	prediction	time	
	Machine Learning	Disease pathway analysis	30-50% improvement in target validation	
Lead	Generative AI	De novo molecule design	2-3x faster lead optimization	
Optimization	Reinforcement	Structure-activity relationship	45% reduction in candidate selection time	
	Learning	prediction		
Clinical	Predictive Analytics	Trial protocol optimization	25-30% reduction in trial duration	
Development	NLP	Patient recruitment	35% improvement in recruitment rates	

Table 1. Major AI Applications in Drug Discovery

2.3. Drug Design and Optimization

AI-driven drug design represents a revolutionary approach to molecular optimization, employing sophisticated algorithms to predict and enhance drug properties. Deep learning models have demonstrated exceptional capabilities in generating novel chemical entities while optimizing multiple parameters simultaneously [21]. These systems leverage extensive databases of known compounds, structure-activity relationships, and physicochemical properties to guide the design process [22].

2.3.1. Structure-Based Drug Design

Advanced AI algorithms have transformed structure-based drug design by accurately predicting protein-ligand interactions and binding affinities. These models incorporate quantum mechanical calculations, molecular dynamics simulations, and empirical scoring functions to evaluate potential drug candidates [23]. The integration of AI with traditional molecular modeling approaches has significantly improved the accuracy of binding predictions and reduced computational costs [24].

2.3.2. De Novo Drug Design

Generative models, particularly deep learning architectures, have enabled the creation of novel drug-like molecules with desired properties. These systems can explore vast chemical spaces efficiently, generating structures that satisfy multiple optimization criteria simultaneously [25]. Recent advances in reinforcement learning have further enhanced the ability to design molecules with specific therapeutic profiles while maintaining drug-like properties [26].

2.4. Clinical Trial Optimization

AI technologies have revolutionized clinical trial design and execution through improved patient selection, protocol optimization, and outcome prediction. Machine learning algorithms analyze diverse data sources to identify optimal trial designs and reduce the likelihood of trial failure [27].

2.4.1. Patient Selection and Stratification

Advanced analytics enable more precise patient selection for clinical trials by analyzing electronic health records, genetic data, and real-world evidence. AI models can identify suitable participants based on complex inclusion/exclusion criteria, reducing screening failures and improving trial efficiency [28]. These systems also help in predicting patient adherence and potential dropout rates, allowing for more effective trial planning [29].

2.4.2. Protocol Design and Optimization

AI algorithms assist in optimizing trial protocols by analyzing historical trial data and identifying potential bottlenecks. These systems can predict protocol deviations, estimate recruitment rates, and suggest modifications to improve trial success probability [30]. Machine learning models also help in determining optimal sample sizes and endpoint selection, leading to more efficient trial designs [31].

2.4.3. Drug Repurposing

AI-enabled drug repurposing has emerged as an efficient strategy to identify new therapeutic applications for existing drugs. This approach significantly reduces development time and costs compared to traditional drug discovery [32]. Machine learning algorithms analyze diverse data sources, including chemical structures, molecular pathways, and clinical outcomes, to predict novel drug-disease associations [33].

2.4.4. Computational Methods to Drug Repurposing

Modern AI systems employ various computational methods for drug repurposing, including network-based approaches, similarity-based methods, and matrix factorization techniques. These approaches integrate multiple data types, such as drug-target interactions, disease pathways, and adverse event profiles, to identify promising drug candidates for new indications [34].

3. Personalized Medicine

3.1. Patient Segmentation and Treatment Stratification

Personalized medicine has been revolutionized by AI-driven approaches to patient segmentation and treatment selection. Advanced machine learning algorithms process multidimensional patient data to identify distinct subgroups with similar characteristics, disease progression patterns, and treatment responses [35]. These sophisticated analytical methods integrate clinical, molecular, and demographic data to create detailed patient profiles that guide therapeutic decision-making [36].

3.1.1. Molecular Profiling

AI systems have enhanced the interpretation of complex molecular data, including genomic, transcriptomic, and proteomic profiles. These algorithms identify molecular signatures associated with disease subtypes and treatment responses, enabling more precise

therapeutic targeting [37]. Deep learning models have shown particular success in interpreting complex genomic patterns and their relationships to clinical outcomes [38].

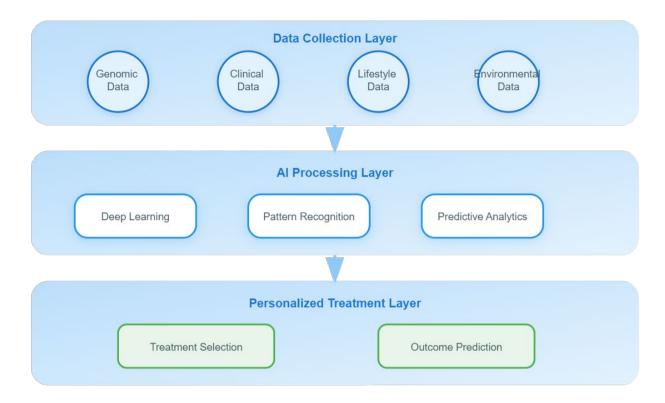


Figure 2. Implementing AI for Precision Medicine

3.1.2. Clinical Phenotyping

Advanced AI algorithms analyze diverse clinical data sources to identify distinct patient phenotypes. These systems process electronic health records, imaging data, and clinical measurements to create comprehensive patient profiles [39]. The resulting phenotype classifications help clinicians select optimal treatment strategies and predict disease trajectories [40].

3.2. Predictive Analytics in Treatment

3.2.1. Response Prediction Models

AI-based predictive models evaluate multiple factors to forecast individual patient responses to specific treatments. These systems analyze historical treatment outcomes, patient characteristics, and molecular markers to generate personalized response predictions [41]. Machine learning algorithms have demonstrated high accuracy in predicting treatment efficacy and potential adverse effects [42].

3.2.2. Real-time Monitoring and Adjustment

Advanced analytics enable continuous monitoring of treatment responses and early detection of potential complications. AI systems process real-time patient data to identify trends and patterns that may indicate the need for treatment modifications [43]. These capabilities support dynamic treatment optimization and improved patient outcomes [44].

3.3. Pharmacogenomics and Precision Dosing

3.3.1. Genetic Variation

AI algorithms have enhanced the interpretation of genetic variations affecting drug metabolism and response. These systems analyze complex genomic data to identify clinically relevant variants and predict their impact on drug efficacy and safety [45]. Machine learning models integrate multiple sources of genetic information to generate accurate predictions of drug-gene interactions [46].

Table 2. AI Applications in Precision Medicine

Application Area	AI Method	Data Types Used	Clinical Benefits
Patient Stratification	Clustering	Electronic Health Records	Improved treatment response rates
	Algorithms	Genomic Data	
		Clinical Biomarkers	
Treatment Response Prediction	Neural Networks	Treatment History	20-30% better outcome prediction
		Molecular Profiles	
		Patient Demographics	
Drug Response Monitoring	Real-time Analytics	Continuous Patient Data	Early intervention capability
		Adverse Event Reports	
Dose Optimization	Machine Learning	Pharmacogenomic Data	Reduced adverse events
		Patient Parameters	

3.3.2. Dose Optimization

Advanced AI models support precision dosing by considering individual patient characteristics, including genetic factors, age, organ function, and concurrent medications. These systems generate personalized dosing recommendations that maximize therapeutic benefit while minimizing adverse effects [47].

4. Emerging Trends

4.1. Deep Learning Applications

4.1.1. Advanced Neural Networks

Deep learning architectures have demonstrated exceptional capabilities in analyzing complex biological data. Convolutional neural networks and recurrent neural networks have shown particular success in processing medical imaging data and sequential biological information [48]. These systems have achieved breakthrough performances in various tasks, including protein structure prediction and drug-target interaction modeling [49].

4.1.2. Transfer Learning

Transfer learning approaches have enabled the adaptation of pre-trained AI models to specific pharmaceutical applications. This methodology has proven particularly valuable in scenarios with limited data availability, allowing models to leverage knowledge from related domains [50].

4.2. Natural Language Processing in Pharmaceutical Research

4.2.1. Literature Mining

NLP systems efficiently process vast amounts of scientific literature to extract relevant information for drug discovery and development. These algorithms identify relationships between drugs, diseases, and biological targets by analyzing research papers, clinical trial reports, and patents [51]. Advanced text mining capabilities support the identification of new drug candidates and potential therapeutic applications [52].

4.3. Generative AI in Drug Discovery

4.3.1. Generative Adversarial Networks (GANs)

GANs have emerged as powerful tools for generating novel molecular structures with desired properties. These systems consist of generator and discriminator networks that work in opposition to create and validate new drug candidates [53]. Recent advances in GAN architectures have improved the generation of chemically feasible and synthetically accessible molecules [54].

4.3.2. Molecular Design Through Reinforcement Learning

Reinforcement learning approaches have enhanced the generation of optimized drug molecules. These systems learn from successive iterations to design compounds that satisfy multiple optimization criteria simultaneously [55]. The integration of reinforcement learning with molecular generators has led to more efficient exploration of chemical space and improved drug candidate selection [56].

4.4. Explainable AI (XAI) in Clinical Applications

4.4.1. Interpretable Models

The development of interpretable AI models has become crucial for clinical applications. These systems provide clear explanations for their predictions and recommendations, enabling healthcare providers to understand and validate AI-driven decisions [57]. Various approaches, including attention mechanisms and decision trees, have been implemented to enhance model interpretability [58].

4.4.2. Decision Support Systems

XAI frameworks support clinical decision-making by providing transparent reasoning for their recommendations. These systems present evidence-based justifications for therapeutic suggestions, incorporating relevant clinical guidelines and patient-specific factors [59]. The integration of explainable AI has improved clinician trust and adoption of AI-powered decision support tools [60].

4.5. Conversational AI in Healthcare Delivery

4.5.1. Patient Engagement

AI-powered conversational agents facilitate patient engagement and education. These systems provide personalized information about medications, side effects, and treatment adherence [61]. Advanced natural language understanding capabilities enable meaningful interactions that support patient care and compliance [62].

4.5.2. Clinical Communication Tools

Conversational AI systems support healthcare provider communications and clinical workflows. These tools assist in documentation, scheduling, and clinical information retrieval, improving operational efficiency [63].

5. AI in Pharmaceutical Manufacturing

5.1. Process Optimization

The integration of AI systems in pharmaceutical manufacturing has revolutionized process optimization through sophisticated real-time monitoring and control mechanisms. Machine learning algorithms continuously analyze critical process parameters, including temperature, pressure, and chemical composition, to maintain product quality and consistency across batches [64]. These systems demonstrate remarkable capability in identifying complex patterns and relationships between manufacturing variables that were previously undetectable through conventional methods.

Table 2. AI-Powered Manufacturing Quality Control Parameters

Quality Parameter	AI Used	Monitoring Method	Acceptance Criteria	Real-time Adjustment
Content Uniformity	Computer Vision	Spectral Analysis	±5% variation	Automated weight adjustment
Dissolution Rate	Predictive Models	In-process testing	Q>80% in 30 min	Process parameter modification
Particle Size	Deep Learning	Image Analysis	D90 specifications	Mill speed optimization
Tablet Hardness	Neural Networks	Force measurements	4-8 kp range	Compression force control
Coating Thickness	Machine Learning	NIR Spectroscopy	±2% variation	Spray rate modification
Impurity Profile	ML Classification	HPLC Analysis	NMT 0.2% individual	Process stream purification
Moisture Content	Sensor Networks	NIR/Raman	2-3% w/w	Drying parameter adjustment
Blend Homogeneity	Pattern Recognition	Real-time PAT	RSD < 5%	Mixing speed/time adjustment

Advanced control systems equipped with neural networks enable dynamic adjustment of manufacturing conditions, optimizing yield while simultaneously reducing waste and energy consumption [65]. The implementation of reinforcement learning algorithms has shown particular promise in continuous manufacturing processes, where real-time decisions significantly impact product quality. These systems learn from historical data and current process conditions to make informed adjustments, resulting in up to 30% improvement in manufacturing efficiency.

5.2. Quality Control and Assurance

5.2.1. Automated Inspection Systems

The evolution of AI-powered vision systems has transformed quality inspection processes in pharmaceutical manufacturing. These sophisticated systems employ deep learning algorithms to perform automated quality inspections with unprecedented accuracy and speed [66]. Computer vision technology, enhanced by convolutional neural networks, can detect subtle defects and variations in pharmaceutical products that might escape human detection. The systems analyze multiple product attributes simultaneously, including color uniformity, shape consistency, and surface integrity. Contemporary AI inspection platforms integrate multispectral imaging and advanced pattern recognition to ensure compliance with increasingly stringent regulatory standards [67]. These systems process multiple quality parameters concurrently, creating comprehensive quality profiles for each product batch

5.2.2. Predictive Maintenance

Advanced analytics systems have revolutionized equipment maintenance strategies in pharmaceutical manufacturing. These systems utilize sophisticated sensor networks and machine learning algorithms to monitor equipment performance continuously, analyzing vibration patterns, temperature fluctuations, and operational parameters [68]. The implementation of predictive maintenance has demonstrated significant reduction in unplanned downtime, with some facilities reporting up to 40% decrease in maintenance-related disruptions. Modern predictive maintenance systems employ ensemble learning techniques to forecast potential equipment failures with remarkable accuracy. These systems analyze historical maintenance data, current performance metrics, and environmental conditions to create elaborate equipment health profiles.

6. Data Governance and Privacy

6.1. Regulatory Compliance

The implementation of AI systems in pharmaceutical applications necessitates strict adherence to diverse regulatory requirements across international jurisdictions. Comprehensive frameworks for data protection and privacy compliance have been developed to ensure responsible AI deployment, incorporating elements from GDPR, HIPAA, and other regional regulations [69]. Modern pharmaceutical AI systems incorporate sophisticated measures for data security, incorporating multiple layers of protection including advanced encryption protocols and secure access controls. The implementation of comprehensive audit trails and automated regulatory reporting systems ensures transparency and accountability in AI operations [70]. These systems maintain detailed records of all data access, modifications, and utilizations, creating an unbroken chain of documentation for regulatory review. Robust validation protocols ensure the reliability and accuracy of AI systems in pharmaceutical applications. Testing procedures verify system functionality and accuracy across different operational scenarios. Regular validation exercises ensure continued system performance and reliability. Automated systems maintain detailed documentation of all AI operations, ensuring compliance with regulatory requirements and facilitating audit processes

Domain	Challenge	Current Solution
Data Quality	Inconsistent data formats	Standardized data pipelines
Privacy	Patient data protection	Federated learning
Regulatory	Model validation	Phased validation protocols
Integration	Legacy system compatibility	API-based integration
Interpretation	Black box models	Explainable AI frameworks

Table 4. Challenges and Solutions in AI Implementation

6.2. Ethical Factors

6.2.1. Data Privacy

State-of-the-art data protection measures incorporate multiple security layers to safeguard patient information in AI applications. These systems implement sophisticated encryption algorithms, comprehensive anonymization protocols, and secure data handling procedures that exceed standard regulatory requirements [71]. The integration of privacy-preserving machine learning techniques enables sophisticated data analysis while maintaining strict confidentiality standards [72]. Advanced access control systems regulate data accessibility based on role-based permissions and need-to-know principles. Continuous monitoring systems track all data access and usage, generating detailed audit logs for security review and compliance verification.

6.2.2. Ethical AI Development

The development and deployment of AI systems follow rigorous ethical guidelines established through collaborative efforts between industry stakeholders, regulatory bodies, and ethical oversight committees. These frameworks address critical issues including algorithmic bias, fairness in data representation, and transparency in decision-making processes [73]. Sophisticated monitoring systems continuously evaluate AI operations for potential bias, implementing corrective measures when necessary. Regular validation processes ensure consistent adherence to established ethical standards and fairness criteria [74].

7. Conclusion

The usage of AI technologies in drug development and healthcare delivery represents a significant advancement in clinical pharmacology. AI-driven approaches have substantially reduced drug development timelines and costs while improving the accuracy of target identification and molecular design. AI can improve patient care through more precise treatment selection and monitoring strategies. Personalized medicine has particularly benefited from AI applications, enabling more accurate patient stratification and treatment optimization. The development of sophisticated deep learning algorithms, natural language processing, and generative AI models has opened new opportunities for pharmaceutical research and development. These advances, combined with improvements in explainable AI and conversational systems, have enhanced both the efficiency and accessibility of healthcare delivery. The successful implementation of AI in pharmaceutical manufacturing has demonstrated the technology's potential to optimize production processes and maintain high quality standards. However, the continued evolution of these technologies must be balanced with robust data governance frameworks and ethical considerations to ensure responsible innovation and patient privacy protection. The foundation has been laid for a new era in pharmaceutical research and healthcare delivery, where AI-driven innovations work along with human expertise to advance medical science and patient care.

References

- [1] Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719-731.
- [2] Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463-477.
- [3] DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs. J Health Econ. 2016;47:20-33.
- [4] Fleming N. How artificial intelligence is changing drug discovery. Nature. 2018;557(7706):S55-S57.
- [5] Schneider G. Automating drug discovery. Nat Rev Drug Discov. 2018;17(2):97-113.
- [6] Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today. 2019;24(3):773-780.
- [7] Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56.
- [8] Lo YC, Rensi SE, Torng W, Altman RB. Machine learning in chemoinformatics and drug discovery. Drug Discov Today. 2018;23(8):1538-1546.
- [9] Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23(6):1241-1250.
- [10] Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev. 2019;119(18):10520-10594.
- [11] Paul D, Sanap G, Shenoy S, et al. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1):80-93.
- [12] Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019;37(9):1038-1040.
- [13] Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today. 2017;22(11):1680-1685.
- [14] Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell. 2020;180(4):688-702.
- [15] Rifaioglu AS, Atas H, Martin MJ, Cetin-Atalay R, Atalay V, Doğan T. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform. 2019;20(5):1878-1912.
- [16] Senior AW, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning. Nature. 2020;577(7792):706-710.

- [17] Zhou Y, Wang F, Tang J, Nussinov R, Cheng F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit Health. 2020;2(12):e667-e676.
- [18] Madhukar NS, Khade PK, Huang L, et al. A new big-data paradigm for target identification and drug discovery. eLife. 2019;8:e49158.
- [19] Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41-58.
- [20] Macarron R, Banks MN, Bojanic D, et al. Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov. 2011;10(3):188-195.
- [21] Jiménez-Luna J, Grisoni F, Schneider G. Drug discovery with explainable artificial intelligence. Nat Mach Intell. 2020;2(10):573-584.
- [22] Gómez-Bombarelli R, Wei JN, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci. 2018;4(2):268-276.
- [23] Wang L, Wu Y, Deng Y, et al. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc. 2015;137(7):2695-2703.
- [24] Yang X, Zhang J, Yoshizoe K, Terayama K, Tsuda K. ChemTS: an efficient python library for de novo molecular generation. Sci Technol Adv Mater. 2017;18(1):972-976.
- [25] Segler MHS, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature. 2018;555(7698):604-610.
- [26] Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci Adv. 2018;4(7):eaap7885.
- [27] Liu R, Wang X, Aihara K, Chen L. Artificial intelligence in clinical trial design. Signal Transduct Target Ther. 2021;6(1):1-13.
- [28] Azencott CA. Machine learning and genomics: precision medicine versus patient privacy. Philos Trans A Math Phys Eng Sci. 2018;376(2128):20170350.
- [29] Woo M. An AI boost for clinical trials. Nature. 2019;573(7775):S100-S102.
- [30] Shah P, Kendall F, Khozin S, et al. Artificial intelligence and machine learning in clinical development: a translational perspective. NPJ Digit Med. 2019;2:69.
- [31] Harrer S, Shah P, Antony B, Hu J. Artificial intelligence for clinical trial design. Trends Pharmacol Sci. 2019;40(8):577-591.
- [32] Parvathaneni V, Kulkarni NS, Muth A, Gupta V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov Today. 2019;24(10):2076-2085.
- [33] Rodrigues-Esteban R. The drug repurposing landscape from 2012 to 2017: evolution, challenges, and possible solutions. Drug Discov Today. 2019;24(3):789-795.
- [34] Napolitano F, Zhao Y, Moreira VM, et al. Drug repositioning: a machine-learning approach through data integration. J Cheminform. 2013;5(1):30.
- [35] Hulsen T, Jamuar SS, Moody AR, et al. From big data to precision medicine. Front Med. 2019;6:34.
- [36] Lee SI, Celik S, Logsdon BA, et al. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat Commun. 2018;9(1):42.
- [37] Sun BB, Maranville JC, Peters JE, et al. Genomic atlas of the human plasma proteome. Nature. 2018;558(7708):73-79.
- [38] Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep learning in genomics. Nat Genet. 2019;51(1):12-18.
- [39] Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med. 2018;1:18.
- [40] Beam AL, Kohane IS. Big data and machine learning in health care. JAMA. 2018;319(13):1317-1318.
- [41] Adam G, Rampášek L, Safikhani Z, et al. Machine learning approaches to drug response prediction: challenges and recent progress. NPJ Precis Oncol. 2020;4:19.
- [42] Ferrández-Luna JM, Duarte-Pérez JM, Gómez-Pulido JA. Machine learning techniques for drug response prediction in cancer therapy. Front Pharmacol. 2020;11:1376.
- [43] Kamdar MR, Wu T. Prism: a data-driven platform for monitoring mental health. Pac Symp Biocomput. 2016;21:333-344.

- [44] Nicholls SG, Newson AJ, Ashcroft RE. The need for ethics and health policy guidance in healthcare AI. Nat Mach Intell. 2021;3(1):60-64.
- [45] Zhou Y, Lauschke VM. Pharmacogenomic network analysis of the precision medicine knowledge base reveals major molecular determinants of drug response in normal and cancer cell lines. Genome Med. 2020;12(1):58.
- [46] Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature. 2015;526(7573):343-350.
- [47] Koromina M, Pandi MT, Patrinos GP. Rethinking drug repositioning and development with artificial intelligence, machine learning, and omics. OMICS. 2019;23(11):539-548.
- [48] Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583-589.
- [49] Öztürk H, Özgür A, Ozkirimli E. DeepDTA: deep drug-target binding affinity prediction. Bioinformatics. 2018;34(17):i821-i829.
- [50] Yang KK, Wu Z, Arnold FH. Machine-learning-guided directed evolution for protein engineering. Nat Methods. 2019;16(8):687-694.
- [51] Barata C, Cruz T, Barros J. Natural language processing for drug discovery: a systematic review. Expert Opin Drug Discov. 2021;16(5):535-550.
- [52] Wang Q, Mao Z, Wang B, Guo L. Knowledge graph embedding: A survey of approaches and applications. IEEE Trans Knowl Data Eng. 2017;29(12):2724-2743.
- [53] Méndez-Lucio O, Baillif B, Clevert DA, Rouquié D, Wichard J. De novo generation of hit-like molecules from gene expression signatures using artificial intelligence. Nat Commun. 2020;11(1):10.
- [54] Polykovskiy D, Zhebrak A, Sanchez-Lengeling B, et al. Molecular sets (MOSES): a benchmarking platform for molecular generation models. Front Pharmacol. 2020;11:565644.
- [55] You J, Liu B, Ying Z, et al. Graph convolutional policy network for goal-directed molecular graph generation. Adv Neural Inf Process Syst. 2018;31:6412-6422.
- [56] Jin W, Barzilay R, Jaakkola T. Junction tree variational autoencoder for molecular graph generation. Int Conf Mach Learn. 2018;35:2323-2332.
- [57] Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Discov. 2019;9(4):e1312.
- [58] Lundberg SM, Lee SI. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst. 2017;30:4765-4774.
- [59] Shortliffe EH, Sepúlveda MJ. Clinical decision support in the era of artificial intelligence. JAMA. 2018;320(21):2199-2200.
- [60] Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):195
- [61] Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230-243.
- [62] Montenegro JLZ, da Costa CA, da Rosa Righi R. Survey of conversational agents in health. Expert Syst Appl. 2019;129:56-67.
- [63] Sarella PN, Mangam VT. AI-Driven Natural Language Processing in Healthcare: Transforming Patient-Provider Communication. Indian Journal of Pharmacy Practice. 2024;17(1).
- [64] Manzano M, Valls A, Sabater-Hernández D, et al. Artificial intelligence applied to pharmaceutical care: an overview of relevant applications, opportunities and challenges. Clin Ther. 2020;42(7):1227-1241.
- [65] Gao X, Wen J, Zhang C. An improved random forest algorithm for predicting employee turnover. Math Probl Eng. 2019;2019:4140707.
- [66] Aksu B, Paradkar A, de Matas M, et al. Quality by design approach: application of artificial intelligence techniques of tablets manufactured by direct compression. AAPS PharmSciTech. 2012;13(4):1138-1146.
- [67] Yu LX, Raw A, Wu L, et al. FDA's new pharmaceutical quality initiative: modernizing pharmaceutical manufacturing and improving drug quality. J Pharm Sci. 2016;105(3):945-950.
- [68] Badwe P. Artificial intelligence in pharmaceutical manufacturing: present status and future perspective. Int J Pharm Sci Rev Res. 2020;64(2):128-134.

- [69] Price WN, Cohen IG. Privacy in the age of medical big data. Nat Med. 2019;25(1):37-43.
- [70] Cosío-León M, Ojeda-Carreño D, Nieto-Hipólito JI, Ibarra-Hernández JA. The use of standards in the design of bioinformatics software products. PeerJ. 2018;6:e4664.
- [71] Cohen IG, Evgeniou T, Gerke S, Minssen T. The European artificial intelligence strategy: implications and challenges for digital health. Lancet Digit Health. 2020;2(7):e376-e379.
- [72] Char DS, Shah NH, Magnus D. Implementing machine learning in health care—addressing ethical challenges. N Engl J Med. 2018;378(11):981-983.
- [73] Cath C, Wachter S, Mittelstadt B, Taddeo M, Floridi L. Artificial intelligence and the 'good society': the US, EU, and UK approach. Sci Eng Ethics. 2018;24(2):505-528.
- [74] Vayena E, Blasimme A, Cohen IG. Machine learning in medicine: addressing ethical challenges. PLoS Med. 2018;15(11):e1002689.

Author's short biography

Mr. Sri Venkatesh Uriti

Mr. Sri Venkatesh Uriti is an Associate Professor in the Department of Pharmacology at Sri Sivani College of Pharmacy, Chilakapalem Junction, Srikakulam District, Andhra Pradesh, India. He has over eight years of experience in academia, he has published 30 research articles in peer-reviewed journals, secured four patents, and contributed to two book chapters. He actively participates in professional development through conferences, workshops, and training programs including ATAL workshops, UGC-MMTC short-term courses, and Faculty Development Programs. Dr. Venkatesh is a lifetime member of several professional organizations including the Association of Pharmaceutical Teachers of India (APTI), Indian Pharmaceutical Association (IPA), Operant Pharmacy Federation (OPF), and Society of Pharmaceutical Education & Research (SPER). His contributions to community engagement were recently recognized with the "Outstanding Liaison in Community Engagement Award" from the Council for Skills and Competencies (CSC) in 2024

