REVIEW ARTICLE

Classification of Stem Cells and Their Uses in Regenerative Medicine

Mahalakshmi R*1, Deepa N2, Dhanusri J3, Tamilselvan N3, Mythra R3

¹Assistant Professor, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sree Balaji Medical College and Hospital, BIHER, Chromepet, Chennai, Tamil Nadu, India

²Dean, Faculty of Pharmacy, Sree Balaji Medical College and Hospital, BIHER, Chromepet, Chennai, Tamil Nadu, India ³UG Scholar, Faculty of Pharmacy, Sree Balaji Medical College and Hospital, BIHER, Chromepet, Chennai, Tamil Nadu, India

Publication history: Received on 2nd April 2025; Revised on 27th April 2025; Accepted on 28th April 2025

Article DOI: 10.69613/d4gctd78

Abstract: Stem cell therapy stands as a modern biomedical innovation with transformative solutions for degenerative, autoimmune, genetic, and hematological disorders. These remarkable cells, distinguished by their self-renewal capacity and multipotent differentiation abilities, form the basis for regenerative medicine. Various stem cell types like embryonic, adult, induced pluripotent, and perinatal cells, each account for unique therapeutic option. The main applications range from tissue regeneration and cardiac repair to neurological disorder treatment and oncology. Hematopoietic stem cell transplantation has demonstrated particular success in treating blood disorders, including leukemia and thalassemia. The clinical implementation of stem cell therapies faces several challenges, including immune rejection risks, ethical considerations, tumorigenic potential, and technical challenges in cell culture and preservation. Recent advances in three-dimensional culture systems, cryopreservation methods, and genetic reprogramming have expanded research capabilities and therapeutic potential. Evolving techniques include through precision medicine integration, immunomodulation innovations, and cellular engineering breakthroughs. Current research is centered around optimizing therapeutic outcomes while overcoming safety concerns and standardization. Stem cell therapy can unlock the closed doors for treatment of diseases which are otherwise impossible with conventional medicine and personalized healthcare.

Keywords: Cellular therapy; Regenerative medicine; Tissue engineering; Therapeutic applications; Stem cell differentiation.

1. Introduction

Stem cell therapy is a significant advancement in medicine, marking a transformative shift from traditional treatment methods to regenerative medicine. This is a paradigm shift in medical treatment, moving beyond symptom management to address the root cause of diseases through cellular regeneration and repair. These cells, characterized by their capacity for self-renewal and differentiation, offer unprecedented opportunities for treating previously incurable conditions. Their ability to develop into various cell types while maintaining their population through self-replication has opened new frontiers in therapeutic interventions. The last two decades have witnessed remarkable progress in translating laboratory findings into clinical applications, particularly in treating spinal cord injuries, cardiac disorders, and hematological diseases [1]. This has been facilitated by improved understanding of stem cell biology, advanced isolation techniques, and refined culture methods. The therapeutic potential extends beyond direct cell replacement, encompassing paracrine effects, immunomodulation, and tissue repair mechanisms.

Stem cell therapy is changed significantly since the first successful bone marrow transplant in 1956, expanding into diverse therapeutic applications. This historical milestone, achieved by Dr. E. Donnall Thomas, demonstrated the feasibility of using stem cells for treating blood disorders. The subsequent decades saw exponential growth in understanding stem cell behavior, differentiation pathways, and therapeutic mechanisms. Modern stem cell research encompasses multiple cell types, each with distinct properties and potential applications. While initial studies focused primarily on embryonic stem cells, the field now includes adult stem cells, induced pluripotent stem cells, and perinatal stem cells [2].

The evolution of stem cell therapy has been marked by significant technological advancements in cell manipulation, preservation, and delivery methods. Research has progressed from simple cell transplantation to sophisticated approaches involving genetic modification, tissue engineering, and targeted delivery systems. This progression has enabled more precise and effective treatments, with improved outcomes across various medical conditions.

^{*} Corresponding author: Mahalakshmi R

Clinical application of stem cell therapy faces several challenges, including optimal cell delivery methods, immune response management, and cell survival in host tissues. The complexity of cell delivery requires consideration of factors such as route of administration, timing of intervention, and cell dose optimization. Immune compatibility remains a critical concern, particularly in allogeneic transplantations. Cell survival in the hostile environment of damaged tissues presents another significant challenge, often complicated by inflammation and reduced blood supply. These challenges have spurred innovative research in biomaterial development, immunomodulation strategies, and cell modification techniques [3]. Additionally, regulatory standards and protocols continue to evolve to ensure treatment safety and efficacy [4]. These regulations address crucial aspects such as cell processing, quality control, documentation, and clinical trial design, while adapting to rapid technological advances and emerging therapeutic applications. The ongoing development of stem cell therapy represents a dynamic interface between basic science and clinical medicine, with continuous refinement of techniques and expansion of applications. This evolving field promises to revolutionize the treatment of various diseases, offering hope for conditions previously considered untreatable through conventional medical approaches.

2. Classification and Characteristics of Stem Cells

2.1. Embryonic Stem Cells

Embryonic stem cells (ESCs), derived from the inner cell mass of blastocysts, represent the most versatile stem cell type. These cells, isolated between days 3-5 post-fertilization, possess true pluripotency, capable of differentiating into any cell type from all three germ layers. Their isolation involves careful extraction from the blastocyst's inner cell mass, typically containing approximately 150 cells [5]. The isolation process requires precise microsurgical techniques under strictly controlled conditions. The zona pellucida is first removed using enzymatic or mechanical methods, followed by careful separation of the inner cell mass from the trophectoderm. This delicate procedure demands expertise to maintain cell viability and prevent contamination. The derivation process requires accurate timing and specialized culture conditions to maintain pluripotency. These cells express specific markers including Oct4, Nanog, and Sox2, which regulate their pluripotent state. Their therapeutic potential extends across various medical applications, though their use necessitates careful ethical considerations [6].

ESCs require specific culture conditions including specialized growth media containing essential growth factors, feeder layers traditionally composed of mouse embryonic fibroblasts, and precise environmental controls. The maintenance of these cells demands careful monitoring of temperature and CO2 levels, along with regular assessment of pluripotency markers to prevent spontaneous differentiation.

Their characterization involves comprehensive analysis of surface markers such as SSEA-3, SSEA-4, and TRA-1-60. Verification of pluripotency is demonstrated through embryoid body formation, while genetic stability is confirmed through karyotype analysis. Additional characterization includes assessment of telomerase activity and verification of differentiation potential into all three germ layers.

Stem Cell Type	Source	Properties	Clinical Applications	
Embryonic Stem	Blastocyst inner cell mass	Pluripotent, high proliferation rate,	Neurological disorders, cardiac	
Cells		complex ethical considerations	repair, diabetes treatment	
Adult Stem Cells	Bone marrow, adipose	Multipotent, tissue-specific, limited	Blood disorders, orthopedic	
	tissue, dental pulp	differentiation capacity	conditions, wound healing	
Induced Pluripotent	Reprogrammed adult cells	Similar to embryonic properties,	Disease modeling, drug	
Stem Cells		patient-specific	fic screening, personalized medicine	
Perinatal Stem Cells	Umbilical cord, placenta	Intermediate potency, readily available	Blood disorders, immune	
	_		conditions, tissue regeneration	
Neural Stem Cells	Brain tissue, derived from	Neuron-specific differentiation,	Parkinson's disease, spinal cord	
	iPSCs	limited availability	injury, stroke	

Table 1. Classification and Properties of Stem Cells

2.2. Adult Stem Cells

Adult stem cells, present in various tissue niches throughout the body, maintain tissue homeostasis and repair. These cells demonstrate more restricted differentiation potential compared to embryonic stem cells, typically limited to cell types within their tissue of origin. The most extensively studied adult stem cells include:

2.2.1. Hematopoietic Stem Cells

Located primarily in bone marrow, these cells generate all blood cell types and have been successfully used in treating various blood disorders [7]. HSCs exist in distinct populations, including long-term HSCs that maintain self-renewal capacity and short-term HSCs with limited self-renewal ability. These cells are characterized by the expression of CD34+ marker and maintain a low proliferation rate in steady state. The differentiation is regulated by specific bone marrow niche requirements, and these cells possess remarkable mobilization capability under stress conditions.



Figure 1. Steps Involved in Stem Cell Processing

2.2.2. Mesenchymal Stem Cells

Found in multiple tissues including bone marrow, adipose tissue, and dental pulp, these cells can differentiate into bone, cartilage, fat, and muscle cells. Their immunomodulatory properties make them particularly valuable for therapeutic applications [8]. MSCs demonstrate plastic adherence in culture and express specific surface markers including CD73, CD90, and CD105, while lacking hematopoietic markers. Their therapeutic value is enhanced by trilineage differentiation potential and the secretion of bioactive molecules. These cells possess significant anti-inflammatory properties and demonstrate the ability to migrate to sites of injury.

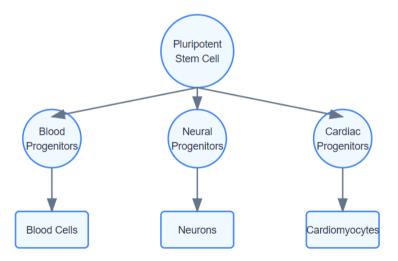


Figure 2. Pathways for Stem Cell Differentiation

2.3. Induced Pluripotent Stem Cells

The development of induced pluripotent stem cells (iPSCs) through genetic reprogramming of adult somatic cells represents a significant breakthrough in stem cell research. This technology, pioneered by Shinya Yamanaka, involves introducing specific transcription factors to revert differentiated cells to a pluripotent state [9]. The reprogramming process involves sophisticated genetic manipulation of somatic cells, typically fibroblasts, through the introduction of specific transcription factors including Oct4, Sox2, Klf4, and c-Myc. This process triggers stepwise epigenetic modifications leading to cellular reprogramming. Successfully

reprogrammed colonies undergo rigorous selection and validation of pluripotency characteristics. The significance of iPSCs lies in their ability to generate patient-specific cells, circumvent ethical concerns associated with embryonic stem cells, and provide valuable platforms for disease modeling and drug screening. Their potential for autologous transplantation represents a major advancement in personalized medicine.

3. Therapeutic Applications

3.1. Hematological Disorders

Hematopoietic stem cell transplantation (HSCT) has established itself as a standard treatment for various blood disorders. In leukemia treatment, HSCT functions through dual mechanisms: restoration of normal hematopoiesis and the graft-versus-leukemia effect. The success of HSCT depends on proper HLA matching, conditioning regimens, and post-transplant care protocols [10].

Thalassemia treatment through HSCT demonstrates particularly promising outcomes. The procedure involves replacing defective hematopoietic stem cells with healthy donor cells capable of normal erythropoiesis. This approach has shown significant success in young patients with matched sibling donors, achieving cure rates exceeding 80% in optimal conditions [11].

Medical Condition	Stem Cell Type Used	Major Challenges
Leukemia	Hematopoietic stem cells	Graft rejection, GVHD
Thalassemia	Hematopoietic stem cells	HLA matching, conditioning
Spinal Cord Injury	Neural stem cells, MSCs	Limited functional recovery
Myocardial Infarction	Mesenchymal stem cells	Cell survival, integration
Type 1 Diabetes	Pancreatic progenitors	Autoimmune response

Table 2. Clinical Applications

3.2. Cardiovascular Diseases

Stem cell therapy in cardiovascular medicine focuses on myocardial regeneration and vascular repair. Mesenchymal stem cells and cardiac progenitor cells have shown potential in treating myocardial infarction and chronic heart failure. These cells promote cardiac repair through multiple mechanisms including direct differentiation into cardiac tissue, paracrine effects stimulating endogenous repair, angiogenesis promotion, and reduction of inflammatory responses [12].

3.3. Neurological Disorders

3.3.1. Parkinson's Disease

Neural stem cells and iPSC-derived dopaminergic neurons show promise in replacing lost neurons and restoring dopamine production. Clinical trials have demonstrated improved motor function in some patients [13].

3.3.2. Spinal Cord Injury

Stem cell interventions focus on neural regeneration and remyelination. Combined approaches using multiple cell types and bioengineered scaffolds have shown enhanced therapeutic outcomes [14].

4. Culture and Storage

4.1. Advanced Culture Systems

4.1.1. Three-Dimensional Culture

Modern 3D culture systems better mimic natural cellular environments through incorporation of biocompatible scaffolds, dynamic perfusion systems, and controlled oxygen gradients. These advanced systems significantly enhance cell survival, proliferation, and differentiation compared to traditional 2D cultures. The three-dimensional environment provides crucial spatial organization and cell-to-cell interactions that more accurately reflect in vivo conditions [15].

4.1.2. Bioreactor Technology

Automated bioreactor systems enable large-scale cell production while maintaining sterility and optimal growth conditions. Advanced monitoring systems ensure consistent quality control throughout the culture process. These systems incorporate real-time monitoring of crucial parameters including pH, oxygen levels, nutrient concentrations, and metabolic byproducts [16].

4.2. Preservation Methods

4.2.1. Cryopreservation

Modern cryopreservation protocols utilize controlled-rate freezing and specialized cryoprotectants to maintain cell viability. Recent advances in preservation technology incorporate novel cryoprotective agents with reduced toxicity, improved thawing protocols, and automated storage systems with real-time monitoring capabilities. These developments have significantly enhanced long-term cell viability and reduced the risk of contamination during storage [17].

Storage Method	Temperature Range (°C)	Maximum Storage Duration	Viability (%)
Liquid Nitrogen	-196	>20 years	70-90
Vapor Phase	-150 to -180	>10 years	65-85
Programmed Freezing	-80 to -120	2-5 years	60-80
Short-term Storage	2 to 8	48-72 hours	90-95

Table 3. Storage Parameters for Stem Cells

5. Current Advances in Stem Cell Therapy

5.1. Advanced Gene Editing

The usage of CRISPR-Cas9 and other gene editing tools with stem cell therapy opens new avenues for treating genetic disorders. This combination enables precise genetic modifications in patient-derived stem cells before transplantation. Recent developments in base editing and prime editing technologies have enhanced the accuracy and efficiency of genetic modifications, reduced off-target effects and improved therapeutic outcomes [18].

The CRISPR-Cas9 system has revolutionized genetic modification approaches through its programmable nature and high specificity. This technology allows researchers to correct disease-causing mutations, insert therapeutic genes, or modify regulatory sequences with unprecedented precision. The system employs guide RNAs that direct the Cas9 endonuclease to specific DNA sequences, enabling targeted modifications. Base editing technology represents an advancement beyond traditional CRISPR systems, allowing direct conversion of one nucleotide to another without creating double-strand breaks. This approach significantly reduces the risk of unwanted mutations and chromosomal rearrangements. Prime editing further extends these capabilities by enabling more complex edits, including small insertions and deletions, with minimal off-target effects. The integration of gene editing with stem cell therapy has enabled the development of enhanced cellular products. Modified stem cells can be engineered to express therapeutic proteins, resist immune rejection, or possess improved survival capabilities. This approach has shown particular promise in treating monogenic disorders, where single gene corrections can potentially cure the disease.

5.2. Artificial Intelligence and Machine Learning

The incorporation of artificial intelligence in stem cell research facilitates better prediction of cell behavior, optimization of culture conditions, and identification of potential therapeutic targets. Machine learning algorithms assist in analyzing complex datasets from single-cell sequencing, helping researchers understand cellular differentiation pathways and regulatory networks. These technological advances enable more precise control over stem cell fate and function [19].

Deep learning algorithms have transformed the analysis of cellular imaging data, enabling automated identification of cell types, assessment of differentiation status, and prediction of cell behavior. These systems can process vast amounts of microscopy data to identify subtle patterns and relationships that might escape human observation. Neural networks have been developed to predict optimal culture conditions for specific cell types, considering multiple variables simultaneously. These systems analyze historical data to recommend media compositions, growth factor concentrations, and environmental parameters that maximize desired outcomes. The application of AI in single-cell genomics has revealed previously unknown cell states and transition pathways. Advanced algorithms can now map cellular trajectories during differentiation, identify key regulatory molecules, and predict cell fate decisions

5.3. Novel Delivery Systems

Advanced delivery mechanisms for stem cell therapeutics include bioengineered scaffolds and smart materials that enhance cell survival and integration. The development of injectable hydrogels with tunable properties provides better control over cell distribution and retention at target sites. These delivery systems incorporate growth factors and other bioactive molecules to create optimal microenvironments for transplanted cells [20].

Bioengineered scaffolds have evolved to include sophisticated features such as controlled degradation rates, mechanical properties matching target tissues, and spatially organized bioactive cues. These scaffolds provide structural support while gradually degrading

as new tissue forms, ensuring optimal integration of transplanted cells. Smart hydrogels respond to environmental stimuli such as temperature, pH, or mechanical forces, enabling controlled release of cells and bioactive molecules. These materials can be designed to gel in situ, allowing minimally invasive delivery while providing a supportive environment for transplanted cells. The incorporation of nanotechnology has enhanced delivery system capabilities through the development of nanoparticle-modified scaffolds. These systems can provide sustained release of growth factors, protect sensitive molecules from degradation, and enhance cellular responses through surface modifications. Biomimetic approaches have led to the development of delivery systems that recreate aspects of the natural stem cell niche. These systems incorporate elements such as cell adhesion molecules, matrix proteins, and tissue-specific mechanical properties to support cell survival and function.

6. Clinical Implementation

6.1. Quality Control and Standardization

The establishment of rigorous quality control measures ensures the safety and efficacy of stem cell treatments. Standardization protocols encompass cell characterization, potency assays, and validation of manufacturing processes. The implementation of good manufacturing practices (GMP) guidelines ensures consistency in cell product quality across different facilities [21].

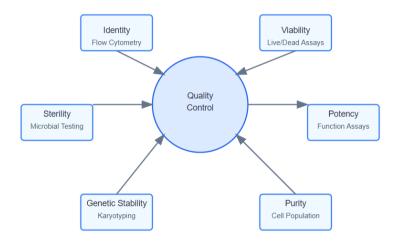


Figure 3. Overview of Quality Control Parameters involved in Manufacturing of Stem Cells

ParameterTest MethodsAcceptance CriteriaCell ViabilityFlow cytometry, Trypan blue>70% viable cellsIdentityFlow cytometry, Immunophenotyping>90% marker positiveSterilityBacterial/fungal cultureNo growth after 14 daysGenetic StabilityKaryotyping, NGS analysisNormal karyotype

Cell type specific

Differentiation assays

Table 4. Quality Control Parameters

6.2. Regulatory Compliance

Potency

International harmonization efforts aim to establish consistent standards while maintaining safety and efficacy requirements. The development of expedited approval pathways for promising treatments balances the need for thorough evaluation with timely access to innovative therapies [22].

7. Emerging Applications

7.1. Organoids

7.1.1. Structure

Stem cell-derived organoids represent a significant advancement in disease modeling and drug development. These three-dimensional structures mimic organ functionality and organization, providing valuable insights into developmental processes and disease mechanisms. Recent advances in organoid technology have enabled the creation of more complex tissue structures with

multiple cell types and functional vasculature [23]. Organoid formation follows key developmental principles, beginning with the self-organization of stem cells into primitive tissue structures. The process involves careful manipulation of signaling pathways that guide tissue patterning and cellular differentiation. Advanced protocols now incorporate matrix components that support proper tissue architecture and mechanical properties similar to native organs.

7.1.2. Types

Cerebral Organoids: These structures recapitulate aspects of human brain development and have proven valuable in studying neurodevelopmental disorders [19]. They exhibit distinct regional organization and contain multiple neural cell types, allowing investigation of complex neural circuits and disease mechanisms.

Intestinal Organoids: These systems mirror the complex architecture of the intestinal epithelium, including functional crypts and villi. They have become essential tools for studying host-microbe interactions and intestinal diseases [15].

Hepatic Organoids: Liver organoids have demonstrated potential in modeling metabolic diseases and drug toxicity studies. They exhibit key liver functions including protein production and xenobiotic metabolism [20].

7.2. Personalized Medicine

7.2.1. Patient-Specific Modeling

The combination of stem cell therapy with personalized medicine enables tailored treatment strategies based on individual patient characteristics. Patient-specific iPSCs allow for disease modeling and drug screening, leading to more effective therapeutic interventions. This method also facilitates the development of autologous cell therapies, reducing immune rejection risks [24].

7.2.2. Therapeutic Screening

Individual patient response prediction has become possible through the development of personalized drug screening platforms. These systems utilize patient-derived cells to evaluate treatment efficacy and potential side effects before clinical administration [22]. The screening process incorporates multiple parameters including drug response, toxicity profiles, and cellular behavior under various conditions.

7.2.3. Genetic Modification

Custom genetic modifications can be implemented based on individual patient mutations. The approach enables correction of disease-causing mutations through precise genetic engineering. Enhancement of therapeutic cell functions can be achieved through targeted modifications. Implementation of safety mechanisms ensures controlled cell behavior post-transplantation. Optimization of cell survival and integration is achieved through genetic enhancement of cellular resilience.

7.3. Integration with Existing Therapies

7.3.1. Combination Treatment

Modern treatment increasingly combines stem cell therapy with other therapeutic modalities. Gene therapy integration enhances therapeutic effects through targeted genetic modifications. Immunotherapy combination improves treatment outcomes by modulating immune responses. Conventional pharmaceutical interventions complement cellular therapies. Tissue engineering applications provide structural support and enhance tissue regeneration.

7.3.2. Monitoring and Optimization

Advanced imaging and tracking methods enable real-time assessment of cell distribution throughout the body. Evaluation of therapeutic response can be conducted through sophisticated monitoring systems. Optimization of delivery timing and dosing ensures maximum therapeutic benefit. Long-term outcome prediction helps in treatment planning and modification [24].

8. Conclusion

The convergence of multiple disciplines, including molecular biology, materials science, and bioengineering, has broadened the scope of applications of stem cell therapy. While challenges remain in scaling up production, ensuring consistent quality, and optimizing delivery methods, ongoing research and technological developments provide promising solutions. The success of stem cell therapies in treating various disorders, particularly in hematological and neurological conditions, demonstrates their significant therapeutic potential. The combination of advanced technologies and personalized medicine suggests a future where stem cell therapeutics become increasingly precise and effective. The coming years will likely witness further breakthroughs in stem cell research, leading to more effective treatments for currently intractable diseases.

References

- [1] Trounson A, McDonald C. Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell. 2021;28(1):17-28.
- [2] Yamanaka S. Pluripotent Stem Cell-Based Cell Therapy: Promise and Challenges. Cell Stem Cell. 2020;27(4):523-531.
- [3] Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells. 2019;8(8):886.
- [4] Rivière I, Roy K. Perspectives on Manufacturing of High-Quality Cell Therapies. Mol Ther. 2020;28(5):1237-1246.
- [5] Ratzka A, Baron O, Grothe C. Advances in Embryonic Stem Cell Therapy. J Mol Med. 2021;99(5):637-654.
- [6] Takahashi K, Yamanaka S. A Decade of Transcription Factor-Mediated Reprogramming to Pluripotency. Nat Rev Mol Cell Biol. 2021;17(3):183-193.
- [7] Copelan EA, Chojecki A, Lazarus HM, Avalos BR. Allogeneic Hematopoietic Cell Transplantation; the Current Renaissance. Blood Rev. 2019;34:34-44.
- [8] Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal Stem Cell Perspective: Cell Biology to Clinical Progress. NPJ Regen Med. 2019;4:22.
- [9] Takahashi K, Lin YC, Nakamura M, Yamanaka S. Induced Pluripotent Stem Cells: Opportunities and Challenges. Cell Stem Cell. 2022;29(1):10-12.
- [10] Mohty M, Malard F, Abecasis M, et al. Hematopoietic Cell Transplantation and Cellular Therapies in Hematologic Malignancies. Nat Rev Clin Oncol. 2020;17(9):573-591.
- [11] Angelucci E, Matthes-Martin S, Baronciani D, et al. Hematopoietic Stem Cell Transplantation in Thalassemia Major and Sickle Cell Disease: Indications and Management Recommendations. Haematologica. 2021;99(5):811-820.
- [12] Chien KR, Frisén J, Fritsche-Danielson R, Melton DA, Murry CE, Weissman IL. Regenerating the Field of Cardiovascular Cell Therapy. Nat Biotechnol. 2019;37(3):232-237.
- [13] Parmar M, Grealish S, Henchcliffe C. The Future of Stem Cell Therapies for Parkinson Disease. Nat Rev Neurosci. 2020;21(2):103-115.
- [14] Assinck P, Duncan GJ, Hilton BJ, Plemel JR, Tetzlaff W. Cell Transplantation Therapy for Spinal Cord Injury. Nat Neurosci. 2019;20(5):637-647.
- [15] Jensen C, Teng Y. Is It Time to Start Transitioning From 2D to 3D Cell Culture? Front Mol Biosci. 2020;7:33.
- [16] Sart S, Agathos SN, Li Y. Engineering Stem Cell Fate with Biochemical and Biomechanical Properties of Microcarriers in Bioreactors. Biotechnol Prog. 2020;36(1):e2933.
- [17] Hunt CJ. Technical Considerations in the Freezing, Low-Temperature Storage and Thawing of Stem Cells for Cellular Therapies. Transfus Med Hemother. 2019;46(3):134-150.
- [18] Doudna JA, Charpentier E. The New Frontier of Genome Engineering with CRISPR-Cas9. Science. 2020;346(6213):1258096.
- [19] Winkler DA, Burden FR, Halley JD. Predictive Modeling of Stem Cell Behaviors Using Machine Learning. Methods Mol Biol. 2021;2239:139-152.
- [20] Wang Y, Wu S, Kuss MA, Streubel PN, Duan B. Effects of Hydroxyapatite and Hypoxia on Chondrogenesis and Hypertrophy in 3D Bioprinted ADMSC Laden Constructs. ACS Biomater Sci Eng. 2019;5(4):1911-1920.
- [21] Carmen J, Burger SR, McCaman M, Rowley JA. Developing Assays to Address Identity, Potency, Purity and Safety: Cell Characterization in Cell Therapy Process Development. Regen Med. 2019;7(1):85-100.
- [22] Mount NM, Ward SJ, Kefalas P, Hyllner J. Cell-Based Therapy Technology Classifications and Translational Challenges. Philos Trans R Soc Lond B Biol Sci. 2020;370(1680):20150017.
- [23] Lancaster MA, Huch M. Disease Modelling in Human Organoids. Dis Model Mech. 2019;12(7):dmm039347.
- [24] Rowe RG, Daley GQ. Induced Pluripotent Stem Cells in Disease Modelling and Drug Discovery. Nat Rev Genet. 2019;20(7):377-388.

Author's short biography

Mrs. Mahalakshmi R

Mrs. Mahalakshmi R is an Assistant Professor with two years of academic teaching experience. Her professional background includes experience as a Quality Control Officer at Caplin Steriles Limited. She has published three research articles in peer-reviewed journals, authored six book chapters, and holds two patents in pharmaceutical sciences.

