REVIEW ARTICLE

Mechanisms, Risk factors and Preventive Measures Associated with Drug-Induced Nephrotoxicity

Rakshita S Naik*1, Neelakanth. M. Jeedi²

Publication history: Received on 15th Mar 2025; Revised on 2nd April 2025; Accepted on 9th April 2025

Article DOI: 10.69613/bak0e927

Abstract: Drug-induced nephrotoxicity represents a major clinical challenge, manifesting as both acute kidney injury (AKI) and chronic kidney disease (CKD). Multiple therapeutic agents, including aminoglycosides, nonsteroidal anti-inflammatory drugs (NSAIDs), cisplatin, immunosuppressants, radiocontrast media, and various herbal products can impair renal function through diverse pathophysiological mechanisms. These mechanisms encompass direct tubular toxicity, glomerular injury, interstitial nephritis, vascular compromise, oxidative stress, and crystal nephropathy. The proximal tubules serve as the primary site of injury for many nephrotoxic agents due to their role in drug metabolism and transport. Risk factors such as advanced age, pre-existing kidney disease, dehydration, and concurrent use of multiple nephrotoxic medications increase susceptibility to renal injury. Early recognition of nephrotoxicity involves monitoring serum creatinine, blood urea nitrogen, electrolytes, and novel biomarkers. Prevention strategies include appropriate drug selection, dose adjustment based on renal function, therapeutic drug monitoring, and adequate hydration. Management approaches focus on discontinuing the offending agent when possible, maintaining fluid and electrolyte balance, and implementing renal replacement therapy in severe cases. Recent advances in imaging techniques and biomarker development have enhanced the ability to detect and monitor drug-induced kidney injury. Given the increasing prevalence of kidney disease and the expanding arsenal of potentially nephrotoxic medications, vigilant monitoring and implementation of preventive strategies remain crucial for preserving renal function and optimizing patient outcomes.

Keywords: Drug-induced nephrotoxicity; Acute kidney injury; Tubular toxicity; Nephroprotection; Renal biomarkers.

1. Introduction

Drug-induced nephrotoxicity represents a significant clinical challenge in modern medicine, affecting up to 25% of hospitalized patients and contributing substantially to both acute kidney injury (AKI) and chronic kidney disease (CKD) [1]. The kidney's vulnerability to drug-induced injury stems from its unique physiological characteristics: it receives approximately 25% of cardiac output, concentrates potentially toxic substances during filtration, and serves as a major site of drug metabolism and excretion [2]. Current patient populations present more challenges, characterized by advanced age, multiple comorbidities, and exposure to numerous diagnostic and therapeutic interventions that may compromise renal function [3].

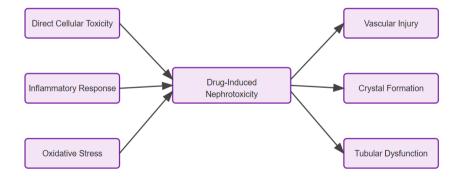


Figure 1. Pathways of Nephrotoxic Injury

¹ Research Scholar, Department of Pharmacology, KLE College of Pharmacy (A constituent unit of KLE Academy of Higher Education and Research, Belagavi), Hubbali, Karnataka, India

² Associate Professor, Department of Pharmacology, KLE College of Pharmacy (A constituent unit of KLE Academy of Higher Education and Research, Belagavi), Hubbali, Karnataka, India

^{*} Corresponding author: Rakshita S Naik

The spectrum of nephrotoxic agents has also expanded, encompassing not only traditional pharmaceutical agents but also newer therapeutic modalities, herbal products, and environmental toxins [4]. Nephrotoxic medications generate adverse effects through multiple pathogenic pathways, often exploiting the kidney's intrinsic physiological mechanisms. The manifestations of drug-induced kidney injury can range from subtle functional changes to severe organ dysfunction requiring renal replacement therapy [5]. The identification of high-risk patients, implementation of preventive strategies, and early recognition of kidney injury are crucial elements in managing drug-induced nephrotoxicity [6].

2. Pathophysiological Mechanisms

2.1. Proximal Tubular Injury

The proximal tubule emerges as the predominant site of drug-induced nephrotoxicity, primarily due to its role in solute reabsorption and xenobiotic processing [7]. Studies indicate that approximately 30% of pediatric patients exposed to nephrotoxic medications develop proximal tubular dysfunction, potentially progressing to Renal Fanconi Syndrome (RFS) [8]. The proximal tubule's vulnerability stems from its high metabolic demands and expression of numerous transport proteins that facilitate drug accumulation [9].

2.2. Glomerular Dysfunction

Drug-induced glomerular injury manifests through alterations in glomerular hemodynamics and direct structural damage to glomerular components [10]. Medications such as cyclosporine and cisplatin induce significant reductions in renal blood flow and glomerular filtration rate (GFR) while increasing renal vascular resistance. These effects can occur independently of tubular injury and may persist without apparent structural alterations in glomerular architecture [11].

2.3. Interstitial Nephritis

The inflammatory response in drug-induced interstitial nephritis progresses through three distinct phases [12]. Initially, medications or their metabolites function as haptens, combining with carrier molecules to form neoantigens. The second phase involves antigen presentation to T-cells, while the final effector phase features infiltration of inflammatory cells into the interstitial space [13].

2.4. Vascular Injury

Drug-induced vascular injury particularly affects elderly patients through multiple mechanisms including disrupted electrolyte homeostasis, volume depletion, and arteriolar vasoconstriction [14]. These changes can significantly reduce GFR and renal perfusion, potentially leading to ischemic injury [15].

2.5. Crystal Nephropathy

Crystal-induced kidney injury involves complex interactions between crystalline deposits and renal tissue [16]. The process begins with crystal adhesion to tubular epithelial cells via specific molecular mediators such as CD44 and annexin II. Subsequent inflammation and obstruction can lead to progressive renal damage [17].

2.6. Oxidative Stress

Oxidative injury represents a crucial mechanism in drug-induced nephrotoxicity [18]. Medications like cisplatin generate excessive reactive oxygen species (ROS), leading to lipid peroxidation, DNA damage, and depletion of cellular antioxidant systems. These events initiate a cascade of cellular dysfunction ultimately resulting in renal cell death [19].

3. Major Nephrotoxic Agents

3.1. Pharmaceutical Agents

3.1.1. Nonsteroidal Anti-inflammatory Drugs (NSAIDs)

NSAIDs exhibit nephrotoxic effects primarily through their inhibition of cyclooxygenase (COX) enzymes, disrupting the synthesis of prostaglandins crucial for renal homeostasis [20]. The risk escalates in elderly patients and those with pre-existing renal impairment. NSAID-induced nephrotoxicity manifests through several mechanisms: hemodynamically-mediated acute kidney injury, acute interstitial nephritis, and chronic kidney disease with prolonged use [21]. Recent studies indicate that even short-term NSAID use can reduce glomerular filtration rate by 15-20% in susceptible individuals [22].

3.1.2. Aminoglycosides

Aminoglycoside nephrotoxicity occurs in 20-33% of exposed patients, with severity correlating with treatment duration and cumulative dose [23]. These antibiotics accumulate in proximal tubular cells through megalin-mediated endocytosis, subsequently disrupting mitochondrial function and cellular metabolism. Aminoglycosides also affect glomerular function by inducing mesangial cell contraction and altering renal blood flow through various mediators including platelet-activating factor and endothelin-1 [24].

3.1.3. Amphotericin B

Amphotericin B induces nephrotoxicity in up to 80% of treated patients, with 15% requiring renal replacement therapy [25]. The drug's mechanism of toxicity involves disruption of cell membrane permeability through interaction with cholesterol, leading to electrolyte imbalances and cellular dysfunction. The liposomal formulation demonstrates reduced nephrotoxicity but remains associated with significant risk at higher doses [26].

3.1.4. Cisplatin

Cisplatin accumulates preferentially in proximal tubular cells through specific transporters including organic cation transporter 2 (OCT2) and copper transporter 1 (CTR1) [27]. The drug initiates both extrinsic and intrinsic apoptotic pathways, activates multiple stress-response kinases, and generates significant oxidative stress. Recent research has identified novel molecular targets including p53 and microRNAs in cisplatin-induced nephrotoxicity [28].

3.1.5. Radiocontrast Agents

Contrast-induced acute kidney injury (CI-AKI) occurs in 2-15% of patients receiving iodinated contrast media, with higher rates in high-risk populations [29]. The pathophysiology involves renal medullary hypoxia from vasoconstriction and direct tubular epithelial cell toxicity. New evidence suggests that oxidative stress and inflammatory mediators play crucial roles in perpetuating renal injury [30].

3.1.6. ACE Inhibitors and ARBs

While not directly nephrotoxic, these agents can precipitate functional acute kidney injury by disrupting renal hemodynamics, particularly in patients with compromised renal perfusion [31]. Recent studies have identified specific patient populations at heightened risk, including those with bilateral renal artery stenosis or severe heart failure [32].

3.1.7. Calcineurin Inhibitors

Cyclosporine and tacrolimus induce both acute and chronic nephrotoxicity through vasoconstriction, oxidative stress, and fibrogenic mechanisms [33]. The chronic form manifests as progressive interstitial fibrosis and arteriolar hyalinosis, affecting nearly all transplant recipients within ten years of therapy [34].

Drug Class	Examples	Primary Site of Injury	Mechanism of Toxicity
NSAIDs	Ibuprofen, Diclofenac	Vasculature, Interstitium	Prostaglandin inhibition, Interstitial nephritis
Aminoglycosides	Gentamicin, Tobramycin	Proximal tubules	Lysosomal dysfunction, Mitochondrial damage
Antifungals	Amphotericin B	Tubules, Vasculature	Membrane permeability alteration
Chemotherapeutics	Cisplatin, Methotrexate	Proximal tubules	DNA cross-linking, Oxidative stress
Calcineurin inhibitors	Cyclosporine, Tacrolimus	Vasculature, Tubules	Vasoconstriction, Fibrosis
Contrast media	Iodinated agents	Medullary region	Vasoconstriction, Direct tubular toxicity

Table 1. Classification of Common Nephrotoxic Agents and Their Primary Mechanisms of Injury

3.2. Herbal and Natural Products

Herbal medicine usage has increased globally, with approximately 75% of the population in developing countries relying on traditional remedies [35]. Despite widespread perception of safety, numerous herbal products demonstrate significant nephrotoxic potential. Aristolochic acid nephropathy serves as a prime example, causing progressive tubulointerstitial fibrosis and urothelial carcinoma [36]. Traditional Chinese medicines, Ayurvedic preparations, and various botanical supplements may contain nephrotoxic compounds or heavy metal contaminants. The mechanisms of herbal nephrotoxicity include direct tubular toxicity, interstitial inflammation, and crystal formation [37]. Notably, interactions between herbal products and conventional medications can amplify nephrotoxic effects, particularly in patients with pre-existing renal dysfunction [38].

3.3. Environmental and Industrial Toxins

Heavy metals represent significant nephrotoxic agents, with lead, cadmium, mercury, and arsenic being particularly problematic [39]. These metals accumulate in proximal tubular cells through shared transport mechanisms with essential elements like calcium and zinc. The resultant toxicity of heavy metals is due to interconnected pathways that progressively damage renal tissue. Initially, these

metals generate significant quantities of reactive oxygen species, which overwhelm the natural cellular antioxidant defense mechanisms. Simultaneously, they interfere with mitochondrial enzyme function, leading to compromised cellular energy metabolism and ATP depletion. Metal ions also cause widespread disruption of essential transport systems, particularly the Na+/K+-ATPase pump, disturbing cellular homeostasis. With continued exposure, these mechanisms culminate in chronic tissue damage characterized by tubular atrophy and the development of interstitial fibrosis [40]

4. Diagnosis

4.1. Traditional Biomarkers

Serum creatinine remains the primary marker for detecting nephrotoxicity, despite its limitations as a late indicator of injury [41]. The assessment of drug-induced kidney injury involves serial measurements of serum creatinine and blood urea nitrogen serve as primary indicators of renal function, while glomerular filtration rate is estimated through various validated formulae to assess kidney performance. Additionally, careful evaluation of urinary parameters, with particular attention to protein excretion patterns, provides crucial insights into the nature and extent of renal damage. This assessment is complemented by regular monitoring of serum electrolytes and acid-base status, offering a complete picture of renal homeostasis and potential metabolic derangements [42]

Biomarker	Location	Time to Detection	Clinical Significance
KIM-1	Proximal tubule	12-24 hours	High specificity for tubular injury
NGAL	Distal tubule	2-4 hours	Early marker of AKI
IL-18	Proximal tubule	12-24 hours	Inflammatory marker
NAG	Proximal tubule	12-24 hours	Lysosomal enzyme release
Cystatin C	Glomerulus	24-48 hours	GFR marker
Serum creatinine	Glomerulus	>48 hours	Traditional marker
L-FABP	Proximal tubule	4-8 hours	Oxidative stress marker

Table 2. Biomarkers for Early Detection of Drug-Induced Kidney Injury

4.2. Novel Biomarkers

Several promising biomarkers were discovered that enable early detection of kidney injury, significantly improving our diagnostic capabilities. Kidney Injury Molecule-1 (KIM-1) has emerged as a highly specific indicator of proximal tubular damage. Neutrophil Gelatinase-Associated Lipocalin (NGAL) demonstrates remarkable sensitivity in detecting acute kidney injury, often preceding traditional markers by several hours. Interleukin-18 (IL-18), an inflammatory mediator, serves as an effective early indicator of tubular stress, while N-acetyl-β-D-glucosaminidase (NAG) provides valuable information about lysosomal dysfunction in tubular cells. These novel biomarkers collectively offer enhanced sensitivity and specificity for early detection of kidney injury compared to conventional markers [43]. These molecules demonstrate superior sensitivity and specificity for early detection of tubular injury compared to traditional markers [43]. Studies indicate that KIM-1 can detect nephrotoxicity up to 48 hours before changes in serum creatinine become apparent [44].

4.3. Imaging Techniques

Modern imaging techniques provide valuable information about drug-induced kidney injury:

4.3.1. Conventional Imaging

Ultrasonography and computed tomography help evaluate structural changes and rule out obstructive causes. Doppler studies can assess renal perfusion changes associated with nephrotoxicity [45].

4.3.2. Advanced Imaging

Magnetic resonance imaging enables assessment of renal blood flow and perfusion patterns, offering dynamic visualization of vascular changes. The protocols also allow precise measurement of tissue oxygenation, providing crucial information about metabolic status and cellular viability. Furthermore, these imaging modalities can detect and monitor the development of fibrosis, a key indicator of chronic kidney damage. This technique also helps in identifying inflammatory changes within the renal parenchyma, making it an invaluable tool for monitoring disease progression and therapeutic response [46]

4.4. Histopathological examination

Renal biopsy remains the gold standard for definitive diagnosis, particularly in cases of immune-mediated nephrotoxicity. Biopsy findings guide therapeutic decisions and provide prognostic information [47]. Recent advances in molecular pathology have enhanced our ability to characterize specific injury patterns and mechanisms [48].

5. Preventive Measures

5.1. Risk Assessment and Prevention

Prevention of drug-induced nephrotoxicity begins with comprehensive risk assessment. Advanced age, pre-existing renal dysfunction, diabetes mellitus, cardiovascular disease, and volume depletion represent significant risk factors that warrant careful consideration [49]. The assessment should encompass both patient-specific factors and medication-related variables, including dosing frequency, duration of therapy, and the concurrent use of other nephrotoxic agents [50]. Preventive strategies must be tailored to specific medications and patient populations. For aminoglycosides, extended-interval dosing has demonstrated reduced nephrotoxicity while maintaining antimicrobial efficacy. Implementation of therapeutic drug monitoring enables dose optimization and minimizes toxic accumulation [51]. In the context of contrast-induced nephrotoxicity, pre-procedure volume expansion with isotonic saline remains a cornerstone of prevention, particularly in high-risk patients [52].

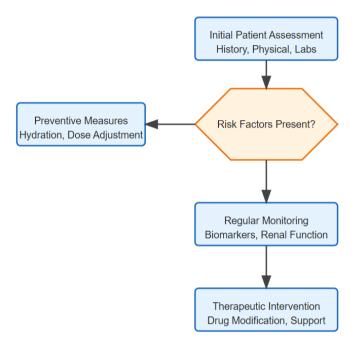


Figure 1. Risk assessment of Drug-Induced Nephrotoxicity

Table 3. Risk Factors for Drug-Induced Nephrotoxicity

Category	Risk Factors	Impact Level
	Age >65 years	High
Patient-Related	Pre-existing CKD	High
	Diabetes mellitus	Moderate
	Heart failure	Moderate
	Dehydration	High
Drug-Related	High cumulative dose	High
	Multiple nephrotoxic agents	High
	Extended duration of therapy	Moderate
	IV administration	Moderate
Environmental	Volume depletion	High
	Sepsis	High
	Surgery	Moderate
	ICU admission	Moderate

5.2. Therapeutic Interventions

The management of established nephrotoxicity requires a multifaceted approach. Immediate discontinuation or dose adjustment of the offending agent represents the primary intervention when feasible. Maintenance of adequate renal perfusion through careful fluid management proves crucial, with special attention to volume status and hemodynamic parameters [53]. Specific therapeutic interventions vary based on the mechanism of injury. In cases of contrast-induced nephropathy, N-acetylcysteine administration

has shown variable benefit in some patient populations. For crystal nephropathy, aggressive hydration and urinary alkalinization may prevent crystal formation and deposition [54].

5.3. Supportive Care

Supportive measures include careful management of fluid and electrolyte disturbances, optimization of nutritional status, and dose adjustment of concomitant medications based on altered renal function. Regular monitoring of acid-base status, electrolytes, and fluid balance guides ongoing therapeutic decisions [55]

Stage	Intervention	Expected Outcome	Level of Evidence
Prevention	Risk assessment	Risk stratification	High
	Hydration protocols	Reduced AKI incidence	High
Prevenuon	Drug dose adjustment	Reduced toxicity	High
	Alternative drug selection	Avoided nephrotoxicity	Moderate
Early Management	Drug discontinuation	Prevented progression	High
	Volume optimization	Maintained GFR	High
	Electrolyte correction	Reduced toxicity Avoided nephrotoxicity Prevented progression Maintained GFR Homeostasis restoratio Life support Prevention of CKD	Moderate
Late Management	Renal replacement therapy	Life support	High
	Long-term monitoring	Prevention of CKD	Moderate
	Rehabilitation	Functional recovery	Moderate

Table 4. Prevention and Management of Drug-Induced Nephrotoxicity

6. Conclusion

Drug-induced nephrotoxicity requires careful consideration of patient-specific factors, medication characteristics, and preventive measures. Thorough knowledge of pathophysiological mechanisms has enabled more targeted approaches to prevention and treatment. Usage of novel biomarkers and imaging techniques helps in early detection, while emerging therapeutic agents offer promise for improved outcomes. Continued research on genetic factors and molecular mechanisms will likely yield more personalized treatment to managing drug-induced kidney injury.

References

- [1] Mehta RL, Pascual MT, Soroko S, Savage BR, Himmelfarb J, Ikizler TA, et al. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004;66(4):1613-21.
- [2] Perazella MA. Drug-induced nephropathy: an update. Expert Opin Drug Saf. 2014;13(10):1319-31.
- [3] Naughton CA. Drug-induced nephrotoxicity. Am Fam Physician. 2008;78(6):743-50.
- [4] Kim SY, Moon A. Drug-induced nephrotoxicity and its biomarkers. Biomol Ther. 2012;20(3):268-72.
- [5] Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. 2011;79(1):33-45.
- [6] Perazella MA, Markowitz GS. Drug-induced acute interstitial nephritis. Nat Rev Nephrol. 2010;6(8):461-70.
- [7] Cummings BS, Schnellmann RG. Pathophysiology of nephrotoxic cell injury. In: Schrier RW, editor. Diseases of the Kidney and Urinary Tract. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 1016-45.
- [8] McWilliam SJ, Antoine DJ, Smyth RL, Pirmohamed M. Aminoglycoside-induced nephrotoxicity in children. Pediatr Nephrol. 2017;32(11):2015-25.
- [9] Malhotra A, Dhutia H. Drug-induced kidney injury. Medicine. 2019;47(9):592-8.
- [10] Markowitz GS, Perazella MA. Drug-induced renal failure: a focus on tubulointerstitial disease. Clin Chim Acta. 2005;351(1-2):31-47.
- [11] Martínez-Salgado C, López-Hernández FJ, López-Novoa JM. Glomerular nephrotoxicity of aminoglycosides. Toxicol Appl Pharmacol. 2007;223(1):86-98.
- [12] Raghavan R, Shawar S. Mechanisms of drug-induced interstitial nephritis. Adv Chronic Kidney Dis. 2017;24(2):64-71.
- [13] Perazella MA. Clinical approach to diagnosing acute and chronic tubulointerstitial disease. Adv Chronic Kidney Dis. 2017;24(2):57-63.

- [14] Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380(9843):756-66.
- [15] Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol. 2012;2(2):1303-53.
- [16] Mulay SR, Anders HJ. Crystal nephropathies: mechanisms of crystal-induced kidney injury. Nat Rev Nephrol. 2017;13(4):226-40.
- [17] Moledina DG, Perazella MA. Drug-induced acute interstitial nephritis. Clin J Am Soc Nephrol. 2017;12(12):2046-9.
- [18] Dennis JM, Witting PK. Protective role for antioxidants in acute kidney disease. Nutrients. 2017;9(7):718.
- [19] Saifi MA, Sangomla S, Khurana A, Godugu C. Protective effect of nanoceria on cisplatin-induced nephrotoxicity by amelioration of oxidative stress and pro-inflammatory mechanisms. Biol Trace Elem Res. 2019;189(1):145-56.
- [20] Lucas GNC, Leitão ACC, Alencar RL, Xavier RMF, Daher EDF, Silva Junior GBD. Pathophysiological aspects of nephropathy caused by non-steroidal anti-inflammatory drugs. J Bras Nefrol. 2019;41(1):124-30.
- [21] Zhang X, Donnan PT, Bell S, Guthrie B. Non-steroidal anti-inflammatory drug induced acute kidney injury in the community dwelling general population and people with chronic kidney disease: systematic review and meta-analysis. BMC Nephrol. 2017;18(1):256.
- [22] Dreischulte T, Morales DR, Bell S, Guthrie B. Combined use of nonsteroidal anti-inflammatory drugs with diuretics and/or renin-angiotensin system inhibitors in the community increases the risk of acute kidney injury. Kidney Int. 2015;88(2):396-403.
- [23] McWilliam SJ, Antoine DJ, Smyth RL, Pirmohamed M. Aminoglycoside-induced nephrotoxicity in children. Pediatr Nephrol. 2017;32(11):2015-25.
- [24] Wargo KA, Edwards JD. Aminoglycoside-induced nephrotoxicity. J Pharm Pract. 2014;27(6):573-7.
- [25] Personett HA, Kayhart BM, Barreto EF, Tosh P, Dierkhising R, Mara K, et al. Renal recovery following liposomal amphotericin B-induced nephrotoxicity. Int J Nephrol. 2019;2019:8629891.
- [26] Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26(4):223-7.
- [27] Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73(9):994-1007.
- [28] Volarevic V, Djokovic B, Jankovic MG, Harrell CR, Fellabaum C, Djonov V, et al. Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. J Biomed Sci. 2019;26(1):25.
- [29] Mohammed NMA, Mahfouz A, Achkar K, Rafie IM, Hajar R. Contrast-induced nephropathy. Heart Views. 2013;14(3):106-16.
- [30] Rear R, Bell RM, Hausenloy DJ. Contrast-induced nephropathy following angiography and cardiac interventions. Heart. 2016;102(8):638-48.
- [31] Kellum JA, Lameire N, KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 2013;17(1):204.
- [32] Mann JFE, Schmieder RE, McQueen M, Dyal L, Schumacher H, Pogue J, et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet. 2008;372(9638):547-53.
- [33] Naesens M, Kuypers DR, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol. 2009;4(2):481-508.
- [34] Nankivell BJ, Borrows RJ, Fung CL, O'Connell PJ, Chapman JR, Allen RD. Calcineurin inhibitor nephrotoxicity: longitudinal assessment by protocol histology. Transplantation. 2004;78(4):557-65.
- [35] Jha V. Herbal medicines and chronic kidney disease. Nephrology (Carlton). 2010;15(Suppl 2):10-7.
- [36] Yang L, Su T, Li XM, Wang X, Cai SQ, Meng LQ, et al. Aristolochic acid nephropathy: variation in presentation and prognosis. Nephrol Dial Transplant. 2012;27(1):292-8.
- [37] Debelle FD, Vanherweghem JL, Nortier JL. Aristolochic acid nephropathy: a worldwide problem. Kidney Int. 2008;74(2):158-69.
- [38] Isnard Bagnis C, Deray G, Baumelou A, Le Quintrec M, Vanherweghem JL. Herbs and the kidney. Am J Kidney Dis. 2004;44(1):1-11.
- [39] Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Exp Suppl. 2012;101:133-64
- [40] Sabath E, Robles-Osorio ML. Renal health and the environment: heavy metal nephrotoxicity. Nefrologia. 2012;32(3):279-86.

- [41] Parikh CR, Mansour SG. Perspective on clinical application of biomarkers in AKI. J Am Soc Nephrol. 2017;28(6):1677-85.
- [42] Ostermann M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup. Crit Care. 2016;20(1):299.
- [43] Siew ED, Ware LB, Ikizler TA. Biological markers of acute kidney injury. J Am Soc Nephrol. 2011;22(5):810-20.
- [44] Vaidya VS, Ferguson MA, Bonventre JV. Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol. 2008;48:463-93.
- [45] O'Neill WC. Renal relevant radiology: use of ultrasound in kidney disease and nephrology procedures. Clin J Am Soc Nephrol. 2014;9(2):373-81.
- [46] Grenier N, Merville P, Combe C. Radiologic imaging of the renal parenchyma structure and function. Nat Rev Nephrol. 2016;12(6):348-64.
- [47] Perazella MA. The urine sediment as a biomarker of kidney disease. Am J Kidney Dis. 2015;66(5):748-55.
- [48] Colvin RB, Chang A. Diagnostic Pathology: Kidney Diseases. 3rd ed. Philadelphia: Elsevier; 2019.
- [49] Fusco S, Garasto S, Corsonello A, Vena S, Mari V, Gareri P, et al. Medication-induced nephrotoxicity in older patients. Curr Drug Metab. 2016;17(6):608-25.
- [50] Mehta RL, Awdishu L, Davenport A, Murray PT, Macedo E, Cerda J, et al. Phenotype standardization for drug-induced kidney disease. Kidney Int. 2015;88(2):226-34.
- [51] Barza M, Ioannidis JP, Cappelleri JC, Lau J. Single or multiple daily doses of aminoglycosides: a meta-analysis. BMJ. 1996;312(7027):338-45.
- [52] Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS, et al. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med. 2018;378(7):603-14.
- [53] Goldstein SL, Kirkendall E, Nguyen H, Schaffzin JK, Bucuvalas J, Bracke T, et al. Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics. 2013;132(3):e756-67.
- [54] Ozkok S, Ozkok A. Contrast-induced acute kidney injury: a review of practical points. World J Nephrol. 2017;6(3):86-99.
- [55] Kellum JA, Lameire N, Aspelin P, Barsoum RS, Burdmann EA, Goldstein SL, et al. Kidney disease: improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2(1):1-138