REVIEW ARTICLE

Clinical Applications of 3D-Printed Medical Implants

Enibokun Theresa Orobator*1, Osinachi Victor Chukwujama², Olabisi Promise Lawal³, Kingsley Chidera Anyaene⁴, Chukwuemeka George Ochieze⁵

- ¹ Research Scholar, College of Medicine and Veterinary Medicine, University of Edinburgh, Scotland, United Kingdom
- ² PG Scholar, Department of Mechanical Engineering, Federal University of Technology, Owerri, Ijebu-ode, Ogun, Nigeria
- ³ Research scholar, Department of Medical Laboratory Science, University of Benin, Benin, Ogun, Nigeria
- ⁴ Research scholar, Department of Mechatronics Engineering, Federal University of Technology, Owerri, Imo, Nigeria
- ⁵PG Scholar, Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia, United States

Publication history: Received on 16th Mar 2025; Revised on 3rd April 2025; Accepted on 10th April 2025

Article DOI: 10.69613/22dn3m33

Abstract: Three-dimensional (3D) printing has enabled the creation of patient-specific devices with complex geometries and internal architectures previously unattainable through traditional manufacturing methods. Recent clinical studies show significant improvements in surgical outcomes, including improved implant integration, reduced operative times, and notable gains in patient-reported metrics. For instance, patients receiving 3D-printed dental prostheses showed a 19.5-point improvement in Oral Health Impact Profile scores. The technology spans multiple medical domains, from orthopedic and craniomaxillofacial applications to cardiovascular devices, with each field reporting unique advantages and challenges. Current innovations focus on biomimetic material strategies, including functionally graded implants and bioactive surface modifications that promote tissue integration. However, several critical challenges persist, including material interface failures, production variability, and evolving regulatory requirements. The advent of bioprinting, 4D-responsive materials, and artificial intelligence-driven design optimization presents new opportunities for advancing implant technology. While early clinical results are promising, widespread adoption depends on addressing accessibility disparities, establishing standardized quality control protocols, and generating robust long-term outcome data. The usage of these advanced manufacturing capabilities with precise patient-specific design represents a significant step toward truly personalized medical devices, though careful consideration of technical, regulatory, and ethical implications remains essential.

Keywords: Medical implants; Additive manufacturing; Patient-specific devices; Biomaterials; Surgical innovation.

1. Introduction

The paradigm of medical implant design and fabrication has fundamentally shifted with the advent of additive manufacturing (AM). Traditional implant manufacturing relies on subtractive processes, producing standardized sizes that often require intraoperative modifications to accommodate individual patient anatomy [1]. Three-dimensional (3D) printing technology inverts this approach by utilizing patient-specific imaging data to create customized implants through layer-by-layer construction, enabling intricate internal architectures and precise anatomical matching [2]. The evolution of 3D-printed implants traces back to the early 2000s when surgeons primarily utilized AM for anatomical modeling and surgical planning [3]. By the 2010s, technological advances in materials science and manufacturing precision enabled the production of load-bearing implants suitable for clinical use [4]. This progression from prototype to patient care represents a significant milestone in personalized medicine. However, the adoption of 3D-printed implants presents both opportunities and challenges. While early clinical data suggests improved surgical efficiency and enhanced patient outcomes, the long-term performance of these devices compared to traditional implants remains under investigation [5]. The regulatory landscape also continues to evolve, particularly regarding the balance between customization flexibility and quality control requirements [6].

The implementation of 3D printing in medical implant production spans multiple surgical specialties, each with unique requirements and challenges. In orthopedics, patient-specific implants address complex anatomical variations while potentially reducing operative time and improving mechanical compatibility [7]. Dental and craniomaxillofacial applications demonstrate particular promise, as these fields often demand precise geometric matching to achieve optimal functional and aesthetic outcomes [8].

Several critical factors influence the success of 3D-printed implants. Material selection must balance mechanical properties, biocompatibility, and manufacturing constraints [9]. The design process requires sophisticated imaging protocols and computer-aided design expertise to translate anatomical data into printable formats [10]. Additionally, post-processing techniques significantly

^{*} Corresponding author: Enibokun Theresa Orobator

impact surface characteristics and biological response [11]. The aim of this review is to present the current capabilities and future directions of 3D-printed medical implants, while acknowledging the challenges that must be addressed for widespread clinical adoption.

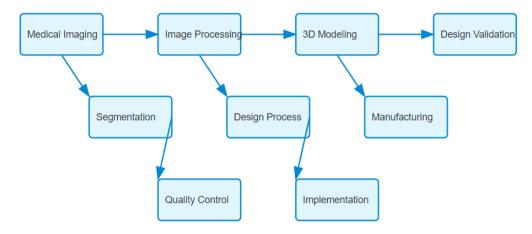


Figure 1. Production of Patient-Specific 3D-Printed Implant

2. Manufacturing

2.1. Manufacturing Processes

The selection of manufacturing processes for medical implants demands careful consideration of precision, material compatibility, and production efficiency. Each technology offers distinct advantages and limitations that influence its clinical applications.

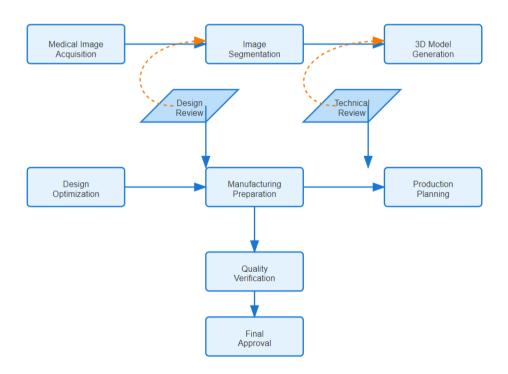


Figure 2. Design to Manufacturing Process of Patient Specific Implants

2.1.1. Direct Metal Laser Sintering (DMLS)

DMLS represents a significant advancement in metallic implant fabrication, particularly for load-bearing applications. The process utilizes high-powered lasers to selectively fuse metal powder particles, creating complex geometries with controlled porosity [16].

Contemporary DMLS systems achieve dimensional accuracies within 50 micrometers, enabling the production of intricate trabecular structures that promote osseointegration [17]. Titanium alloys, particularly Ti6Al4V, remain the predominant material choice due to their exceptional biocompatibility and mechanical properties [18].

2.1.2. Stereolithography (SLA)

SLA technology offers superior surface finish and detail resolution, making it particularly valuable in dental and maxillofacial applications [19]. The process employs photopolymerization of liquid resins, achieving layer thicknesses as low as 25 micrometers. Recent developments in biocompatible resins have expanded the application scope, though challenges persist regarding long-term mechanical stability [20].

2.1.3. Selective Laser Sintering (SLS)

SLS provides versatility in processing polymers and ceramics, offering advantages in terms of material selection and cost-effectiveness [21]. The technology excels in creating porous structures with controlled interconnectivity, essential for tissue integration and drug delivery applications [22].

Technology	Materials	Resolution	Advantages	Limitations	Applications
		Range			
DMLS/SLM	Ti6Al4V, CoCr alloys,	20-100 μm	High strength,	High cost, slow	Load-bearing
	SS316L		complex geometries	process	implants
SLA	Photopolymer resins,	25-50 μm	Excellent surface	Limited material	Surgical guides,
	biocompatible resins	•	finish, high accuracy	options	dental models
SLS	PEEK, PA12, PCL	100-150 μm	Wide material range,	Rough surface	Non-load bearing
		·	no supports needed	finish	implants
FDM	PEEK, PLA, PCL	100-300 μm	Low cost, simple	Limited accuracy,	Prototypes, surgical
		•	operation	visible layers	planning

Table 1. Major Additive Manufacturing Technologies for Medical Implants

2.2. Material Innovations

2.2.1. Metallic Biomaterials

Contemporary metallic implant materials extend beyond traditional titanium alloys. Novel compositions incorporating elements such as zirconium and tantalum demonstrate enhanced osseointegration properties [23]. Surface modifications through plasma treatment or bioactive coatings further improve cellular response and bone formation [24]. Research indicates that precisely controlled surface roughness in the range of 1-10 micrometers optimizes osteoblast adhesion and proliferation [25].

Stage	Software Types	Functions	Output	Integration
				Points
Image Processing	DICOM viewers,	Anatomical reconstruction,	3D anatomical models,	Image acquisition
	Segmentation software	Region identification	Measurement data	protocols
Design	CAD software, Topology	Implant design, Feature	Manufacturing files,	Design validation
	optimization	creation	Technical drawings	tools
Manufacturing	Slicing software, Build	Support generation,	Machine instructions,	Process
Planning	preparation	Parameter optimization	Build files	monitoring
				systems
Quality Control	Inspection software,	Dimensional verification,	Inspection reports,	Quality
	Documentation systems	Data management	Documentation packages	management
				system

Table 2. Software and Digital Components in Medical Implant Production

2.2.2. Polymers and Composites

Polymer development focuses on achieving optimal mechanical properties while maintaining biocompatibility. Recent innovations include:

Reinforced Biomaterials: Integration of carbon nanotubes and ceramic particles enhances mechanical strength while maintaining elasticity comparable to natural tissue [26]. These composites demonstrate fatigue resistance superior to conventional polymers, with some formulations achieving tensile strengths exceeding 100 MPa [27].

Bioresorbable Materials: Advanced polycaprolactone (PCL) and poly(lactic-co-glycolic acid) (PLGA) formulations offer controlled degradation profiles synchronized with tissue regeneration [28]. Incorporation of bioactive glasses and calcium phosphates enhances osteoconductivity while maintaining processability [29].

2.2.3. Functionally Graded Materials

Modern implant designs increasingly utilize gradients in material composition and structure to better mimic natural tissue transitions. This approach minimizes stress shielding and enhances biological integration [30]. For instance, implants featuring graduated porosity from 200 to 500 micrometers demonstrate optimal vascular infiltration while maintaining mechanical integrity [31].

2.3. Surface Engineering and Bioactivation

2.3.1. Topographical Modification

Advanced surface treatments create multi-scale texturing, combining micro- and nano-scale features to enhance cellular response [32]. Laser surface modification techniques achieve precise control over surface roughness and wettability, crucial parameters for protein adsorption and cell attachment [33].

2.3.2. Biochemical Modification

Integration of bioactive molecules, including growth factors and cell-adhesion peptides, transforms implant surfaces into active interfaces that guide tissue regeneration [34]. Novel coating technologies enable controlled release profiles, optimizing the biological response during critical healing phases [35].

Design Aspect Considerations		Critical Parameters	Design Approach	
Anatomical Fit	Patient-specific geometry, Contact	Surface topology, Interface	CT/MRI data conversion,	
	surfaces, Load distribution geometry, Bearing surfaces		Digital anatomical mapping	
Porosity Design	Cell infiltration, Tissue integration,	Pore size, Interconnectivity,	Lattice architecture,	
	Mechanical properties	Gradient structure	Biomimetic patterns	
Surface Features	Osseointegration, Cell adhesion,	Surface roughness, Texture	Multi-scale texturing,	
	Bacterial resistance	patterns, Coating compatibility	Functional gradients	
Manufacturing	Build orientation, Support	Minimum feature size, Overhang	Design for AM guidelines,	
Constraints	structures. Post-processing	angles. Surface accessibility	Process-specific optimization	

Table 3. Design Considerations for 3D-Printed Medical Implants

3. Clinical Application

3.1. Orthopedic Applications

3.1.1. Spinal Implants

Patient-specific spinal implants manufactured through DMLS demonstrate remarkable improvements in surgical outcomes. Recent clinical studies report superior sagittal alignment and accelerated patient mobilization compared to conventional devices [36]. The integration of optimized lattice structures, featuring pore sizes between 300-500 micrometers, promotes robust osseointegration while maintaining mechanical stability [37]. Long-term follow-up studies spanning five years indicate fusion rates exceeding 95% for customized cervical cages, with significantly reduced subsidence compared to traditional implants [38].

3.1.2. Joint Replacements

Custom knee and hip prostheses represent a growing segment of orthopedic applications. Surgical time reductions averaging 23 minutes have been documented when using patient-matched components [39]. Three-dimensional printed acetabular cups with trabecular structures show enhanced bone in-growth patterns, with histomorphometric analyses revealing 45% greater bone-implant contact compared to conventional designs [40].

3.1.3. Complex Reconstruction

For challenging cases involving substantial bone loss or anatomical deformities, 3D-printed implants offer solutions previously unavailable through traditional manufacturing. Success rates exceeding 90% have been reported in limb salvage procedures utilizing custom metallic prostheses [41].

3.2. Craniomaxillofacial Reconstruction

3.2.1. Mandihular Reconstruction

Patient-specific mandibular implants demonstrate superior aesthetic and functional outcomes. Quantitative assessments show deviation from planned positions averaging less than 2 millimeters, significantly better than conventional reconstruction plates [42]. However, interface stability remains crucial, with recent studies identifying stress concentration at bone-implant junctions as a critical factor in long-term success [43].

Table 4. Clinical Implementation

Implementation	Planning	Team	Resource Needs	Success Factors
Aspect	Requirements	Involvement		
Surgical Planning	Digital surgical guides,	Surgical team,	Imaging protocols,	Team communication,
	Anatomical models	Engineering	Planning software	Protocol adherence
		support		
Training	Technical training,	Surgeons, Technical	Training materials,	Competency assessment,
Requirements	Clinical procedures	staff	Practice models	Ongoing education
Infrastructure	Digital workflow,	IT support, Quality	Software systems,	System integration,
Needs	Quality systems	personnel	Documentation tools	Process standardization
Risk Management	Risk assessment,	Clinical team,	Risk management tools,	Proactive monitoring,
_	Mitigation strategies	Quality personnel	Documentation systems	Continuous improvement

3.2.2. Orbital Floor Reconstruction

Custom orbital implants achieve precise anatomical reconstruction while reducing operative time by an average of 32 minutes [44]. Three-dimensional printed titanium meshes show excellent biocompatibility and stability, with complication rates below 5% in large clinical series [45].

3.2.3. Midface Reconstruction

Complex midface defects benefit particularly from patient-specific solutions. Studies report improved symmetry and reduced secondary revision rates when using 3D-printed implants for zygomaticomaxillary reconstruction [46]. Integration of computer-aided surgical planning reduces operative time and improves precision in implant positioning [47].

3.3. Dental Applications

3.3.1. Dental Implants and Prosthetics

Custom dental implants with optimized thread designs and surface characteristics demonstrate enhanced primary stability and accelerated osseointegration [48]. Clinical studies report implant survival rates exceeding 97% at three-year follow-up, with significant improvements in patient satisfaction and functional outcomes [49].

3.3.2. Full-Arch Rehabilitation

Digital workflows incorporating 3D-printed surgical guides and prosthetic frameworks have revolutionized full-arch rehabilitation. Studies demonstrate reduced chair time and improved accuracy in implant positioning, with angular deviations less than 3 degrees from planned positions [50].

3.4. Cardiovascular Applications

3.4.1. Vascular Grafts

Novel approaches in 3D-printed vascular grafts incorporate controlled porosity and bioactive surface modifications. Early clinical trials show promising results, with patency rates comparable to conventional grafts and improved endothelialization [51].

3.4.2. Cardiac Devices

Patient-specific cardiac devices, including occluders and valve scaffolds, demonstrate enhanced hemodynamic performance. Studies report reduced paravalvular leakage and improved anatomical matching in complex congenital cases [52].

3.5. Clinical Outcomes

3.5.1. Patient-Reported Outcomes

Systematic evaluation of patient satisfaction reveals significant improvements across multiple domains. The Oral Health Impact Profile scores show consistent improvements, with mean increases of 19.5 points following 3D-printed prosthetic rehabilitation [53].

3.5.2. Surgical Efficiency

Operational metrics demonstrate consistent improvements in surgical efficiency. Studies report average reductions in operative time ranging from 18 to 45 minutes, with corresponding decreases in blood loss and anesthesia duration [54].

4. Quality Assurance

4.1. Regulatory Guidelines

4.1.1. International Standards

Regulatory bodies worldwide have established specific guidelines for 3D-printed medical devices. The European Medical Device Regulation (MDR 2017/745) introduces stringent requirements for patient-specific implants, mandating comprehensive documentation of design, manufacturing, and validation processes [55]. Similarly, the FDA's guidance framework emphasizes device traceability and quality management systems specific to additive manufacturing [56].

Aspect	FDA Requirements	EU MDR	Quality System	Documentation Needs
	_	Requirements	Elements	
Design Control	Design history file, Risk	Technical	Design verification,	Design specifications,
	analysis, Validation	documentation, Clinical	Process validation	Testing reports
	protocols	evaluation		
Manufacturing	Process validation,	Production quality	In-process controls,	Manufacturing
Process	Equipment qualification	assurance	Monitoring systems	protocols, Validation
				reports
Material Control	Material certification,	Raw material controls,	Incoming inspection,	Material specifications,
	Supplier qualification	Material testing	Traceability	Test certificates
Post-Processing	Process validation,	Sterilization validation,	Environmental	Validation protocols,
	Cleaning validation	Packaging integrity	controls, Process	Process parameters
			monitoring	

Table 5. Regulatory Standards for 3D-Printed Implants

4.1.2. Quality Control Parameters

Manufacturing facilities must implement rigorous quality control protocols encompassing material verification, process validation, and final product testing. Current standards require non-destructive evaluation techniques, including CT scanning and surface metrology, to verify critical quality attributes [57]. Statistical process control methods have been adapted specifically for additive manufacturing, accounting for build-to-build variability [58].

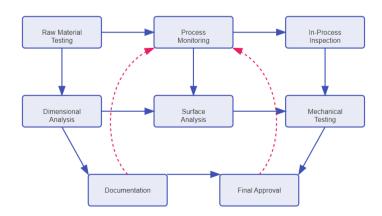


Figure 3. Quality Control Process for 3D-Printed Implants

4.2. Manufacturing Validation

4.2.1. Process Validation

Manufacturing validation for 3D-printed medical implants requires comprehensive protocols that demonstrate consistent reproducibility across multiple production runs. The validation of powder characteristics represents a critical aspect, encompassing particle size distribution, morphology, and flowability metrics, along with established limits for powder recycling to maintain material integrity. Environmental controls within the build chamber must be rigorously monitored and documented, including temperature mapping, humidity levels, and oxygen content to ensure optimal printing conditions. Post-processing standardization encompasses heat treatment parameters, surface finishing procedures, and dimensional verification methods that must be validated to achieve consistent final product specifications. The validation of cleaning and sterilization processes is particularly crucial, requiring demonstration of both cleaning efficacy and material compatibility with sterilization methods [59]

4.2.2. Material Certification

The material qualification process for medical implants involves extensive testing protocols designed to establish comprehensive safety profiles and performance characteristics. Modern certification procedures implement sophisticated chemical analysis techniques, including chromatography, mass spectrometry, and surface analysis methods, to identify and quantify potential leachable compounds. These analytical approaches provide detailed material characterization at both bulk and surface levels. Long-term stability evaluations incorporate accelerated aging studies, mechanical property retention analysis, and biocompatibility assessments under simulated physiological conditions. Recent protocols have expanded to include advanced surface chemistry analyses and degradation studies that evaluate material behavior under various environmental stresses. Additionally, the certification process examines batch-to-batch consistency and establishes acceptable variation limits for critical material properties. This ensures that certified materials maintain their intended characteristics throughout the product lifecycle while meeting stringent requirements for medical device applications [60].

5. Challenges and Applications

5.1. Technical Challenges

5.1.1. Material Interface Stability

Despite advances in manufacturing precision, interface failures remain a significant concern. Recent studies identify micromotion at material boundaries as a primary factor in implant loosening [61]. Novel approaches utilizing gradient materials and optimized surface treatments show promise in addressing these challenges [62].

5.1.2. Production Scalability

Scaling production while maintaining quality consistency presents unique challenges. Advanced monitoring systems incorporating machine learning algorithms enable real-time process control and defect detection [63]. Integration of automated quality control systems reduces variability and increases production efficiency [64].

5.2. Cost Considerations

5.2.1. Production Costs

Initial investment in 3D printing technology remains substantial, with advanced metal printing systems requiring capital expenditure exceeding \$500,000 [65]. However, cost-benefit analyses indicate potential long-term savings through reduced inventory requirements and decreased surgical revision rates [66]. Studies demonstrate that while unit costs for 3D-printed implants average 20-60% higher than traditional devices, total episode-of-care costs often decrease due to shorter operating times and improved outcomes [67].

5.2.2. Healthcare System

Implementation of 3D printing facilities within hospital systems creates new operational paradigms. Centralized printing hubs serving multiple facilities demonstrate economies of scale, with unit costs decreasing by approximately 30% compared to outsourced production [68]. Digital inventory systems reduce storage requirements and enable on-demand production, significantly lowering carrying costs [69]. Insurance coverage for 3D-printed implants varies significantly by region and provider. Studies indicate that out-of-pocket costs can be 2.5 times higher for custom devices compared to standard implants [70]. Development of value-based reimbursement models shows promise in addressing cost barriers [71].

5.3. Global Access

5.3.1. Geographic Distribution

Current distribution of advanced manufacturing capabilities shows significant regional variation. High-income regions dominate access to metal printing technologies, while developing regions often rely on more accessible polymer-based systems [72]. Initiatives to establish regional manufacturing centers in underserved areas demonstrate promising early results [73].

5.3.2. Education and Training

Implementation of 3D printing technology requires specialized expertise. Training programs for surgical teams and technical staff represent significant investment, with comprehensive programs typically requiring 6-12 months for full operational capability [74].

5.4. Ethical Considerations

5.4.1. Data Protection

Digital design files containing detailed anatomical information require robust security protocols. Implementation of blockchain technology for design file tracking ensures traceability while maintaining patient privacy [75]. Standardized protocols for data anonymization and secure file transfer have been developed specifically for additive manufacturing workflows [76].

5.4.2. Intellectual Property

Novel questions regarding design ownership and liability emerge in the context of patient-specific devices. Recent legal frameworks address the distinction between standardized designs and patient-specific modifications [77].

5.5. Clinical Applications

5.5.1. Personalized Medicine

Advanced imaging techniques, including high-resolution CT, MRI, and molecular imaging, combined with comprehensive genetic and molecular profiling, have revolutionized the development of personalized implant solutions. Integration of patient-specific biological parameters now extends beyond anatomical customization to include considerations of bone density, tissue quality, and metabolic factors that influence material selection and surface modification strategies. This approach has proven particularly valuable in complex reconstructive cases, where traditional standardized implants show limitations. Applications include patient-specific cranial implants that account for individual bone healing capacity, spinal fusion devices optimized for local bone quality, and joint replacements designed to accommodate unique loading patterns and tissue characteristics. The incorporation of patient-specific immunological profiles has enabled the development of surface modifications that promote optimal tissue integration while minimizing adverse responses. Recent advances have also enabled the integration of age-related factors and comorbidity considerations into implant design, resulting in improved outcomes in elderly and complex patient populations [78].

5.5.2. Hybrid Treatment

The combination of 3D-printed scaffolds with advanced cell therapy and growth factors represents a significant advancement in regenerative medicine. These hybrid approaches have demonstrated remarkable success across various applications. In orthopedics, 3D-printed titanium scaffolds incorporating mesenchymal stem cells and bone morphogenetic proteins have shown enhanced osseointegration and faster healing in large bone defects. Dental applications include periodontal regeneration using printed scaffolds loaded with platelet-rich plasma and specific growth factors. In craniofacial reconstruction, hybrid constructs combining printed frameworks with autologous cells have demonstrated superior aesthetic and functional outcomes. Recent trials have shown particular promise in:

- Spinal fusion procedures using growth factor-eluting cages
- Maxillofacial reconstruction with cell-seeded scaffolds
- Large bone defect repair using printed constructs with spatially controlled growth factor release
- Cartilage regeneration through printed structures combined with chondrocytes
- Vascular tissue engineering using endothelial cell-seeded printed scaffolds
- Neural tissue regeneration employing printed guides with neural growth factors
- Wound healing applications using printed dressings with controlled release of healing factors

The controlled release of biological factors from printed constructs has been optimized through advanced manufacturing techniques that create specific microarchitectures and surface characteristics. These developments have enabled precise temporal and spatial control of factor release, leading to more predictable and enhanced tissue regeneration outcomes. Integration of smart materials that respond to local biological cues has further improved the therapeutic efficacy of these hybrid approaches [79, 80].

6. Conclusion

The integration of 3D printing technology in medical implant production marks a transformative shift in therapeutic approaches, with clinical evidence demonstrating enhanced surgical precision, improved patient outcomes, and superior treatment customization. Recent advances in materials science and manufacturing processes have broadened applications while enhancing reliability, driven by key developments including bioactive materials integration, AI-powered quality control systems, regional manufacturing networks, and standardized regulatory frameworks for patient-specific devices. While challenges persist regarding long-term performance validation, cost optimization, healthcare system integration, and equitable access, the field's evolution continues through collaborative efforts between clinicians, engineers, and regulatory bodies, suggesting that ongoing technological advancement and cost reduction will facilitate wider implementation through standardized protocols and improved accessibility.

References

- [1] Javaid M, Haleem A. Current status and applications of additive manufacturing in dentistry: A literature-based review. J Oral Biol Craniofac Res. 2019;9(3):179-185.
- [2] Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: A systematic literature review. Biomed Eng Online. 2016;15(1):115.
- [3] Ventola CL. Medical applications for 3D printing: Current and projected uses. P T. 2014;39(10):704-711.
- [4] Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials. 2016;83:127-141.
- [5] Mobbs RJ, Coughlan M, Thompson R, Sutterlin CE, Phan K. The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J Neurosurg Spine. 2017;26(4):513-518.
- [6] Di Prima M, Coburn J, Hwang D, Kelly J, Khairuzzaman A, Ricles L. Additively manufactured medical products the FDA perspective. 3D Print Med. 2016;2:1-6.
- [7] Lal H, Patralekh MK. 3D printing and its applications in orthopaedic trauma: A technological marvel. J Clin Orthop Trauma. 2018;9(3):260-268.
- [8] Martelli N, Serrano C, van den Brink H, Pineau J, Prognon P, Borget I, et al. Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surgery. 2016;159(6):1485-1500.
- [9] Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2017;2(4):224-247.
- [10] Eltorai AEM, Nguyen E, Daniels AH. Three-dimensional printing in orthopedic surgery. Orthopedics. 2015;38(11):684-687.
- [11] Sing SL, An J, Yeong WY, Wiria FE. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. J Orthop Res. 2016;34(3):369-385.
- [12] Zadpoor AA, Malda J. Additive manufacturing of biomaterials, tissues, and organs. Ann Biomed Eng. 2017;45(1):1-11.
- [13] Li Y, Yang W, Li X, Zhang X, Wang C, Meng X, et al. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating. ACS Appl Mater Interfaces. 2015;7(10):5715-5724.
- [14] Popov VV, Muller-Kamskii G, Kovalevsky A, Dzhenzhera G, Strokin E, Kolomiets A, et al. Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomed Eng Lett. 2018;8(4):337-344.
- [15] Morrison RJ, Kashlan KN, Flanangan CL, Wright JK, Green GE, Hollister SJ, et al. Regulatory considerations in the design and manufacturing of implantable 3D-printed medical devices. Clin Transl Sci. 2015;8(5):594-600.
- [16] Mazur M, Leary M, McMillan M, Sun S, Shidid D, Brandt M. Mechanical properties of Ti6Al4V selective laser melted parts with body-centred-cubic lattices of varying cell size. Addit Manuf. 2016;11:51-60.
- [17] Arabnejad S, Johnston RB, Pura JA, Singh B, Tanzer M, Pasini D. High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomater. 2016;30:345-356.
- [18] Liu S, Shin YC. Additive manufacturing of Ti6Al4V alloy: A review. Mater Des. 2019;164:107552.
- [19] Mazzoli A. Selective laser sintering in biomedical engineering. Med Biol Eng Comput. 2013;51(3):245-256.
- [20] Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24):6121-6130

- [21] Shirazi SFS, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HSC, Adib Kadri N, et al. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater. 2015;16(3):033502.
- [22] Yuan L, Ding S, Wen C. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioact Mater. 2019;4:56-70.
- [23] Dai N, Zhang LC, Zhang J, Chen Q, Wu M. Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution. Corros Sci. 2016;102:484-489.
- [24] Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R Rep. 2015;87:1-57.
- [25] Gittens RA, Olivares-Navarrete R, McLachlan T, Cai Y, Hyzy SL, Schneider JM, et al. Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium-aluminum-vanadium alloy surfaces. Biomaterials. 2012;33(35):8986-8994.
- [26] Ramakrishna S, Mayer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol. 2001;61(9):1189-1224.
- [27] Kumar N, Jain S, Dashora A, Maheshwari R, Srivastava A. 3D printing of materials using fused deposition modeling: A review. Mater Today: Proc. 2020;26:1264-1267.
- [28] Woodruff MA, Hutmacher DW. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217-1256.
- [29] Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16(12):496-504.
- [30] Pompe W, Worch H, Epple M, Friess W, Gelinsky M, Greil P, et al. Functionally graded materials for biomedical applications. Mater Sci Eng A. 2003;362(1-2):40-60.
- [31] Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785.
- [32] Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, et al. A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomater. 2014;10(7):2907-2918.
- [33] Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009;20:172-184.
- [34] Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26(23):4817-4827.
- [35] Civantos A, Martínez-Campos E, Ramos V, Elvira C, Gallardo A, Abarrategi A. Titanium coatings and surface modifications: toward clinically useful bioactive implants. ACS Biomater Sci Eng. 2017;3(7):1245-1261.
- [36] McGilvray KC, Easley J, Seim HB, Regan D, Berven SH, Hsu WK, et al. Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J. 2018;18(7):1250-1260.
- [37] Pobloth AM, Checa S, Razi H, Petersen A, Weaver JC, Schmidt-Bleek K, et al. Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep. Sci Transl Med. 2018;10(423):eaam8828.
- [38] Mumith A, Thomas M, Shah Z, Coathup M, Blunn G. Additive manufacturing for bone load bearing applications. 3D Print Med. 2018;4:13.
- [39] Xu N, Wei F, Liu X, Jiang L, Cai H, Li Z, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma. Spine. 2016;41(1):E50-E54.
- [40] Dall'Ava L, Hothi H, Di Laura A, Henckel J, Hart A. 3D printed acetabular cups for total hip arthroplasty: A review article. Metals. 2019;9(7):729.
- [41] Wang K, Wu C, Qian Z, Zhang C, Wang B, Vannan MA. Dual-material 3D printed metamaterials with tunable mechanical properties for patient-specific tissue-mimicking phantoms. Addit Manuf. 2016;12:31-37.
- [42] Wilde F, Hanken H, Probst F, Schramm A, Heiland M, Cornelius CP. Multicenter study on the use of patient-specific CAD/CAM reconstruction plates for mandibular reconstruction. Int J Comput Assist Radiol Surg. 2015;10(12):2035-2051.
- [43] Tarsitano A, Battaglia S, Crimi S, Ciocca L, Scotti R, Marchetti C. Is a computer-assisted design and computer-assisted manufacturing method for mandibular reconstruction economically viable? J Craniomaxillofac Surg. 2016;44(7):795-799.
- [44] Callahan AB, Campbell AA, Petris C, Kazim M. Low-cost 3D printing orbital implant templates in secondary orbital reconstructions. Ophthalmic Plast Reconstr Surg. 2017;33(5):376-380.

- [45] Zhang Y, He Y, Tong Y, Wei L, Zhang Y, Chen G, et al. Virtual surgical planning-guided surgery for the treatment of unilateral complex orbital fractures. J Oral Maxillofac Surg. 2020;78(6):944-955.
- [46] Bosc R, Hersant B, Carloni R, Niddam J, Bouhassira J, De Kermadec H, et al. Mandibular reconstruction after cancer: an in-house approach to manufacturing cutting guides. Int J Oral Maxillofac Surg. 2017;46(1):24-31.
- [47] Jacobs CA, Lin AY. A new classification of three-dimensional printing technologies: systematic review of three-dimensional printing for patient-specific craniomaxillofacial surgery. Plast Reconstr Surg. 2017;139(5):1211-1220.
- [48] Mangano F, Chambrone L, van Noort R, Miller C, Hatton P, Mangano C. Direct metal laser sintering titanium dental implants: a review of the current literature. Int J Biomater. 2014;2014:461534.
- [49] Tahmaseb A, Wu V, Wismeijer D, Coucke W, Evans C. The accuracy of static computer-aided implant surgery: A systematic review and meta-analysis. Clin Oral Implants Res. 2018;29:416-435.
- [50] Colombo M, Mangano C, Mijiritsky E, Krebs M, Hauschild U, Fortin T. Clinical applications and effectiveness of guided implant surgery: a critical review based on randomized controlled trials. BMC Oral Health. 2017;17(1):150.
- [51] Melchiorri AJ, Hibino N, Fisher JP. Strategies and techniques to enhance the in situ endothelialization of small-diameter biodegradable polymeric vascular grafts. Tissue Eng Part B Rev. 2013;19(4):292-307.
- [52] Sun W, Lee J, Sacks MS, Zhang X. Patient-specific heart valve design using 3D printing. Annu Int Conf IEEE Eng Med Biol Soc. 2017;2017:1478-1481.
- [53] Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15(1):115.
- [54] Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT, Hunter-Smith DJ. Emerging applications of bedside 3D printing in plastic surgery. Front Surg. 2015;2:25.
- [55] Iglesias A, Yao J, Sullivan A, Li X, Amin M, Abramowitz J, et al. Medical device regulations: a current perspective. Annu Rev Biomed Eng. 2019;21:417-440.
- [56] FDA. Technical Considerations for Additive Manufactured Medical Devices Guidance for Industry and Food and Drug Administration Staff. US Food and Drug Administration. 2017. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-additive-manufactured-medical-devices
- [57] Bosco F, Zok A, Manfredi D, Ambrosio EP. Quality control of direct metal laser sintering: challenges in additive manufacturing. Procedia Struct Integr. 2019;19:816-824.
- [58] Spears TG, Gold SA. In-process sensing in selective laser melting (SLM) additive manufacturing. Integr Mater Manuf Innov. 2016;5(1):1-25.
- [59] Vandenbroucke B, Kruth JP. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J. 2007;13(4):196-203.
- [60] Mazzoli A, Ferretti C, Gigante A, Salvolini E, Mattioli-Belmonte M. Selective laser sintering manufacturing of polycaprolactone bone scaffolds for applications in bone tissue engineering. Rapid Prototyp J. 2015;21(4):386-392.
- [61] Helguero CG, Amaya JL, Komar J, Pereyra M, Marte O, Deligianni D, et al. Mechanics of 3D printed fracture fixation plates. J Mech Behav Biomed Mater. 2019;97:292-300.
- [62] Eltorai AEM, Nguyen E, Daniels AH. Three-dimensional printing in orthopedic surgery. Orthopedics. 2015;38(11):684-687.
- [63] Jin Z, Zhang Z, Gu GX. Autonomous optimization of 3D printing parameters for the reliability of mechanical properties using machine learning. Adv Sci. 2020;7(10):1901678.
- [64] DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, et al. Additive manufacturing of metallic components Process, structure and properties. Prog Mater Sci. 2018;92:112-224.
- [65] Datta P, Ayan B, Ozbolat IT. Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater. 2017;51:1-20.
- [66] Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915-946.
- [67] Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S. 3D printing of shape memory polymers for flexible electronic devices. Adv Mater. 2016;28(22):4449-4454.
- [68] Mehrpouya M, Vahabi H, Janbaz S, Darafsheh N, Mazinani S, Saed AB. 4D printing of shape memory polymer composites. Mater Today. 2021;47:156-186.
- [69] Liang H, Mei H, Miao Y, Chen L, Shen S, Tao J. Machine learning-based analysis of spinal implant design parameters. World Neurosurg. 2020;138:e450-e458.

- [70] Wang L, Kang J, Sun C, Li D, Cao Y, Jin Z. Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants. Mater Des. 2017;133:62-68.
- [71] Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312-319.
- [72] Prakash KM, Ramakrishna S. Emerging trends in 3D bioprinted scaffolds for tissue engineering and regenerative medicine: a review. Biomed Mater. 2021;16(4):042003.
- [73] Liaw CY, Guvendiren M. Current and emerging applications of 3D printing in medicine. Biofabrication. 2017;9(2):024102.
- [74] Burnard JL, Parr WC, Choy WJ, Walsh WR, Mobbs RJ. 3D-printed spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices. Eur Spine J. 2020;29(6):1248-1260.
- [75] Li Y, Zhou K, Tan J, Tor SB, Yang C. Recent trends and innovations in metal additive manufacturing for customized medical implants. Virtual Phys Prototyp. 2021;16(4):347-370.
- [76] Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O'Donoghue L, Charitidis C. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today. 2018;21(1):22-37.
- [77] Javaid M, Haleem A. Industry 4.0 applications in medical field: A brief review. Curr Med Res Pract. 2019;9(3):102-109.
- [78] Ballard DH, Trace AP, Ali S, Hodgdon T, Zygmont ME, DeBenedectis CM, et al. Clinical applications of 3D printing: primer for radiologists. Acad Radiol. 2018;25(1):52-65.
- [79] Diment LE, Thompson MS, Bergmann JHM. Clinical efficacy and effectiveness of 3D printing: a systematic review. BMJ Open. 2017;7(12):e016891.
- [80] Tino R, Moore R, Antoline S, Ravi P, Wake N, Ionita CN, et al. COVID-19 and the role of 3D printing in medicine. 3D Print Med. 2020;6:11