REVIEW ARTICLE

Current Status and Development of Vinca Alkaloids in Cancer Treatment

Akash Kannepogu*

UG Scholar, Department of Pharmacology, GIET School of Pharmacy, Rajahmundry, Andhra Pradesh, India

Publication history: Received on 27th Mar 2025; Revised on 19th April 2025; Accepted on 23td April 2025

Article DOI: 10.69613/p1kb6g93

Abstract: Cancer is as a paramount global health challenge, characterized by uncontrolled cellular proliferation and metastatic spread. Recent molecular and genomic discoveries have led to further understanding about the mechanisms underlying cancer initiation and progression, leading to novel therapeutic approaches. The evolution of cancer treatment spans millennia, from ancient Egyptian documentation to modern precision medicine. Contemporary treatment protocols include various modalities, including targeted molecular interventions, immunomodulation, and natural product-derived compounds such as vinca alkaloids from *Catharanthus roseus*. While vinca alkaloids show remarkable efficacy in specific malignancies, their clinical application faces limitations due to narrow therapeutic indices and significant adverse effects. Current research focuses on overcoming these challenges through innovative drug delivery systems and combination therapies. The combination of artificial intelligence, genetic editing, and personalized medicine approaches shows promise in enhancing treatment outcomes. Nevertheless, obstacles do exist in early detection, therapeutic resistance, and minimizing treatment-related toxicities. Emerging treatments focus on transforming cancer into a manageable chronic condition, indicating the need for continued scientific investigation and global healthcare accessibility.

Keywords: Cancer therapeutics; Vinca alkaloids; Personalized medicine; Drug resistance; Tumor biology.

1. Introduction

Cancer has been documented throughout human history, with evidence dating back to ancient civilizations. The disease is characterized by abnormal cellular growth and invasion [1]. Modern scientific evidence has revealed cancer as a genetic disease, arising from accumulated mutations that disturb normal cellular regulatory mechanisms [2]. The earliest documented evidence of cancer emerges from ancient Egyptian medical texts and mummified remains. Archaeological findings have revealed metastatic bone lesions in Egyptian mummies, with radiological evidence suggesting the presence of various malignancies, including what appears to be prostate cancer [3]. These discoveries provide crucial information about the historical presence and patterns of cancer in human populations.

The conceptual understanding of cancer has evolved significantly since Hippocrates' humoral theory in 400 BCE. His attribution of cancer to an excess of black bile dominated medical thought until the medieval period [4]. The revolutionary work of Rudolf Virchow in the 1840s established the cellular basis of cancer, demonstrating that malignant cells retain characteristics of their tissue of origin [5]. The 20th century marked a turning point in cancer treatment with the discovery of natural products as potential therapeutic agents. Among these, the isolation of vinca alkaloids from *Catharanthus roseus* (Madagascar periwinkle) in the 1950s represented a significant breakthrough. Initially investigated for its traditional use in diabetes treatment, the plant showed unexpected antineoplastic properties through systematic scientific trials. The identification of vincristine and vinblastine as active constituents opened new doors in cancer chemotherapy.

Current understanding of cancer biology has revealed cellular signaling networks and molecular pathways involved in carcinogenesis. The hallmarks of cancer, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, and metastatic capability, provide a framework for therapeutic intervention. This knowledge has led to the development of targeted therapies, including refined applications of traditional chemotherapeutic agents like vinca alkaloids. The combination of molecular biology, genetics, and pharmacology has transformed cancer treatment from empirical cytotoxic approaches to more rational, mechanism-based strategies. Natural products continue to play a crucial role in this evolution, with vinca alkaloids ebeing the successful translation of botanical medicines into standardized therapeutic agents. However, challenges remain in optimizing their clinical utility, particularly regarding drug resistance and adverse effects.

^{*} Corresponding author: Akash Kannepogu

Table 1. Historical	Timeline of Ma	ajor Discoveries ir	Cancer Researc	h and Treatment

Period	Discovery/Development	Significance
3000 BCE	Egyptian documentation of cancer	First written evidence of cancer in humans
400 BCE	Hippocrates' humoral theory	First theoretical framework for cancer
1840s	Virchow's cellular theory	Established cellular basis of cancer
1895	X-ray discovery	Led to radiation therapy development
1940s	First chemotherapy agents	Nitrogen mustard use in lymphomas
1960s	Vinca alkaloids isolation	Natural product-based chemotherapy
1970s	DNA sequencing development	Enhanced understanding of cancer genetics
1990s	Targeted therapy emergence	Imatinib for CML treatment
2010s	Immunotherapy revolution	Checkpoint inhibitors development

2. Risk Factors and Epidemiology

2.1. Genetic Factors

2.1.1. Inherited Syndromes

The hereditary aspects of cancer manifest through various mechanisms, including inherited mutations in tumor suppressor genes and oncogenes [6]. High-penetrance mutations, such as those in BRCA1 and BRCA2 genes, significantly elevate lifetime cancer risk, particularly for breast and ovarian cancers. Lynch syndrome, caused by mutations in DNA mismatch repair genes, predisposes individuals to colorectal, endometrial, and other cancers [7].

2.1.2. Familial Cancer Patterns

Beyond classic inherited syndromes, family history plays a crucial role in cancer risk assessment. Multiple first-degree relatives affected by cancer, early age of onset, and bilateral disease in paired organs suggest hereditary predisposition. Genetic counseling and testing enable identification of at-risk individuals and implementation of surveillance protocols.

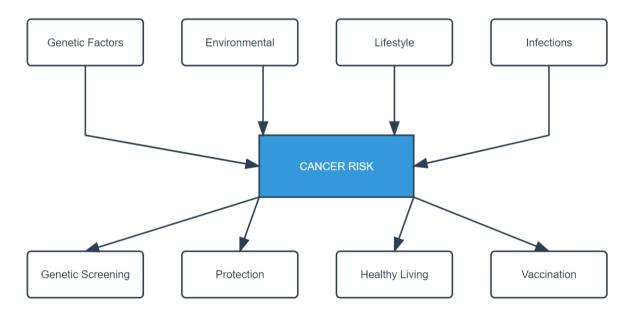


Figure 1. Cancer Risk Factors and Prevention

2.1.3. Epigenetic Modifications

Heritable changes in gene expression without DNA sequence alterations contribute to cancer risk. DNA methylation patterns, histone modifications, and chromatin remodeling can be transmitted across generations, affecting cancer susceptibility and progression.

Table 2. Risk Factors and Their Associated Cancer Types

Risk Category	Specific Factor	Associated Cancer Types	
Genetic	BRCA1/2 mutations	Breast, ovarian	
Environmental	UV radiation	Melanoma, skin cancer	
Lifestyle	Tobacco use	Lung, throat, bladder	
Infectious	HPV	Cervical, oropharyngeal	
Occupational	Asbestos exposure	Mesothelioma	

2.2. Environmental and Lifestyle Factors

2.2.1. Physical Carcinogens

Multiple environmental exposures contribute to carcinogenesis. Ultraviolet radiation induces DNA damage leading to melanoma and non-melanoma skin cancers [8]. Occupational exposures to carcinogens like asbestos, benzene, and ionizing radiation present significant risks in industrial settings [9].

2.2.2. Chemical Carcinogens

Industrial pollutants, pesticides, and synthetic chemicals contribute to cancer risk through various mechanisms. These include direct DNA damage, formation of DNA adducts, generation of reactive oxygen species, and disruption of cellular signaling pathways. The cumulative exposure to multiple chemical carcinogens often compounds their detrimental effects on cellular homeostasis.

2.2.3. Lifestyle-Related Factors

Tobacco use remains the leading preventable cause of cancer, associated with numerous malignancies beyond lung cancer [10]. Alcohol consumption significantly contributes to various cancers, particularly when combined with tobacco use. Physical inactivity, poor dietary habits, and obesity represent modifiable risk factors that influence cancer development through metabolic and inflammatory pathways. Chronic stress may also impact cancer risk through immunological and neuroendocrine mechanisms.

2.3. Infections

2.3.1. Viral Oncogenesis

Viral infections contribute substantially to global cancer burden through various mechanisms. Human papillomavirus serves as the primary etiologic agent in cervical cancer and contributes to other anogenital and oropharyngeal malignancies [11]. Hepatitis B and C viruses significantly increase hepatocellular carcinoma risk. Epstein-Barr virus shows strong associations with nasopharyngeal carcinoma and certain lymphomas, while Human herpesvirus 8 acts as the causative agent in Kaposi's sarcoma.

2.3.2. Bacterial Carcinogenesis

Bacterial infections promote cancer development through multiple pathways. Helicobacter pylori predisposes to gastric cancer and MALT lymphoma [12]. The mechanisms involve chronic inflammatory responses, production of carcinogenic metabolites, and disruption of host cell signaling. The persistent presence of certain bacteria creates a microenvironment conducive to neoplastic transformation.

2.3.3. Parasitic Infections

Certain parasitic infections increase cancer risk through chronic inflammation and tissue damage. *Schistosoma haematobium* shows strong associations with bladder cancer, while *Opisthorchis viverrini* and *Clonorchis sinensis* increase the risk of cholangiocarcinoma and biliary tract cancer through chronic inflammation and mechanical irritation of the biliary epithelium.

2.4. Interaction Between Risk Factors

2.4.1. Synergistic Effects

Multiple risk factors often interact to enhance cancer risk. Gene-environment interactions play a crucial role in determining individual susceptibility. The combined effects of multiple carcinogens can produce synergistic impacts on cellular systems, while interactions between infections and host genetic susceptibility influence disease progression.

2.4.2. Population-Specific Variations

Risk factor prevalence and impact vary across populations due to genetic background differences, environmental exposure patterns, and cultural and lifestyle factors. Healthcare access and preventive measures significantly influence the manifestation of these risk factors in different populations.

2.4.3. Temporal Trends

Cancer risk factors demonstrate temporal variations influenced by industrialization and urbanization. Changes in lifestyle patterns, implementation of preventive measures, and evolution of pathogenic organisms contribute to shifting patterns of cancer risk across generations and geographic regions

3. Therapeutic Interventions

3.1. Conventional Chemotherapy

3.1.1. Alkylating Agents

Cytotoxic chemotherapy remains fundamental in cancer treatment protocols. Classical alkylating agents such as cyclophosphamide and melphalan form covalent bonds with DNA bases, preventing cell division. These agents demonstrate activity across a broad spectrum of malignancies, though their use requires careful monitoring due to potential long-term complications including secondary malignancies [13].

 Table 3. Major Classes of Cancer Therapeutics and Their Mechanisms

Drug Class	Examples	Primary Mechanism	Main Applications
Alkylating Agents	Cyclophosphamide, Cisplatin	DNA cross-linking	Multiple cancers
Antimetabolites	5-Fluorouracil, Methotrexate	DNA/RNA synthesis inhibition	Breast, colorectal cancer
Vinca Alkaloids	Vincristine, Vinblastine	Microtubule disruption	Lymphomas, leukemia
Targeted Therapies	Imatinib, Trastuzumab	Specific molecular targeting	Various specific cancers
Immunotherapies	Pembrolizumab, CAR-T cells	Immune system activation	Multiple cancer types

3.1.2. Antimetabolites

These agents interfere with cellular metabolism by competing with natural substrates. Methotrexate inhibits dihydrofolate reductase, disrupting DNA synthesis, while 5-fluorouracil interferes with thymidylate synthase. The development of newer antimetabolites has improved therapeutic indices and expanded clinical applications.

3.1.3. Cytotoxic Antibiotics

Anthracyclines like doxorubicin intercalate with DNA and inhibit topoisomerase II, while platinum compounds form DNA crosslinks disrupting cellular replication [14]. Bleomycin causes DNA strand breaks through a unique mechanism involving oxygen radical formation. The cumulative dose limitations of these agents necessitate careful monitoring for organ-specific toxicities.

3.2. Targeted Molecular Therapies

3.2.1. Kinase Inhibitors

Molecular targeted therapies represent a paradigm shift in cancer treatment. Small molecule inhibitors specifically target oncogenic pathways [15]. Imatinib revolutionized chronic myeloid leukemia treatment by inhibiting the BCR-ABL tyrosine kinase, establishing a paradigm for precision medicine. Second and third-generation kinase inhibitors address resistance mechanisms and demonstrate improved targeting specificity.

3.2.2. Monoclonal Antibodies

Therapeutic antibodies offer precise targeting of cancer-specific antigens. Trastuzumab targets HER2 in breast cancer [16], while rituximab targets CD20 in lymphomas. Antibody-drug conjugates combine the specificity of antibodies with potent cytotoxic payloads, enhancing therapeutic efficacy while minimizing systemic toxicity.

3.2.3. Signaling Pathway Inhibitors

Agents targeting specific cellular signaling pathways have emerged as effective therapeutic options. BRAF inhibitors in melanoma, EGFR inhibitors in lung cancer, and mTOR inhibitors in various malignancies demonstrate the utility of pathway-specific approaches. Combination strategies addressing multiple pathways show promise in overcoming resistance mechanisms.

3.3. Immunotherapy

3.3.1. Checkpoint Inhibition

Checkpoint inhibitors targeting PD-1/PD-L1 and CTLA-4 pathways have demonstrated remarkable efficacy across multiple cancer types [17]. These agents restore immune system function by blocking inhibitory signals that prevent T-cell activation. The identification of predictive biomarkers has improved patient selection and treatment outcomes.

3.3.2. Cellular Therapies

Chimeric antigen receptor T-cell therapy represents a breakthrough in hematologic malignancies [18]. This personalized approach involves genetic modification of patient T-cells to target specific tumor antigens. The development of "off-the-shelf" cellular products and strategies to minimize cytokine release syndrome continues to advance the field.

3.3.3. Cancer Vaccines

Therapeutic cancer vaccines stimulate immune responses against tumor-specific antigens. Both personalized neoantigen vaccines and targeted approaches against shared tumor antigens show promise. The integration of vaccine strategies with other immunotherapy modalities may enhance therapeutic efficacy.

3.4. Combination Therapy

3.4.1. Multimodal Therapy

The integration of different treatment modalities often provides superior outcomes. Combined chemotherapy and immunotherapy protocols demonstrate synergistic effects. Sequential and concurrent treatment strategies require careful consideration of timing and potential interactions.

3.4.2. Resistance Management

Therapeutic combinations address potential resistance mechanisms through multiple targeting approaches. Alternative dosing schedules and drug sequencing strategies help optimize treatment outcomes while managing toxicities.

Figure 2. Drug Resistance Mechanisms

3.4.3. Supportive Care

Advances in supportive care have improved the tolerability of intensive treatment regimens. Management of side effects and complications enables delivery of optimal therapy while maintaining quality of life.

4. Vinca Alkaloids

4.1. Botanical Source and Chemisry

4.1.1. Plant Origin and Distribution

Catharanthus roseus, native to Madagascar, produces over 130 terpenoid indole alkaloids, with vincristine and vinblastine being pharmacologically significant [19]. The plant, also known as Madagascar periwinkle, has adapted to various climatic conditions, though alkaloid content varies significantly based on environmental factors and genetic variations.

Table 4. Clinical Properties of Major Vinca Alkaloids

Property	Vincristine	Vinblastine	Vinorelbine
Primary Indications	ALL, NHL	Hodgkin's lymphoma, testicular cancer	NSCLC, breast cancer
Dose-Limiting Toxicity	Peripheral neuropathy	Myelosuppression	Neutropenia
Administration Route	Intravenous	Intravenous	IV or Oral
Typical Dosing Interval	Weekly	Weekly	Weekly
Major Drug Interactions	CYP3A4 inhibitors	CYP3A4 inhibitors	CYP3A4 inhibitors

4.1.2. Chemical Structure

These compounds possess complex pentacyclic structures derived from the coupling of vindoline and catharanthine units [20]. The unique molecular architecture includes multiple chiral centers and intricate ring systems, contributing to their specific biological activities and challenging synthetic accessibility.

4.1.3. Biosynthetic Pathways

The stereospecific biosynthesis involves multiple enzymatic steps, contributing to their limited natural abundance and high production costs [21]. The pathway encompasses both early and late-stage modifications, including complex oxidative coupling reactions and precise stereochemical control mechanisms.

4.2. Mechanism of Action

4.2.1. Tubulin Binding

Vinca alkaloids exert their antineoplastic effects primarily through interaction with tubulin proteins. They bind specifically to β -tubulin at the vinca-binding domain, preventing microtubule formation and disrupting mitotic spindle assembly [22].

4.2.2. Effects on Cell Cycle

This interaction leads to metaphase arrest and subsequent apoptosis in actively dividing cells [23]. The compounds demonstrate phase-specific cytotoxicity, with greatest activity during M-phase of the cell cycle.

4.2.3. Secondary Mechanisms

Beyond microtubule disruption, vinca alkaloids influence cellular signaling pathways, affect membrane fluidity, and modulate various cellular processes including autophagy and vascular function.

4.3. Clinical Applications

4.3.1. Vincristine

Vincristine demonstrates particular efficacy in hematological malignancies. It serves as a cornerstone in acute lymphoblastic leukemia protocols, especially in pediatric cases [24]. The drug also plays a crucial role in treating non-Hodgkin's lymphoma and neuroblastoma [25]. Its utility extends to various combination chemotherapy regimens and salvage protocols.

4.3.2. Vinblastine

Vinblastine shows significant activity against both solid tumors and lymphomas. It forms an essential component of protocols for testicular cancer, breast cancer, and Hodgkin's lymphoma [26]. The drug demonstrates particular efficacy in combination regimens and maintenance therapy protocols.

4.3.3. Novel Formulations

Recent developments include liposomal preparations, targeted delivery systems, and modified analogs designed to enhance therapeutic index and overcome resistance mechanisms.

4.4. Therapeutic Limitations

4.4.1. Toxicity

The primary dose-limiting toxicity of vincristine manifests as peripheral neuropathy, characterized by sensory and motor dysfunction [27]. Vinblastine predominantly causes myelosuppression, necessitating careful hematological monitoring [28]. Additional toxicities include autonomic neuropathy, gastrointestinal disturbances, and local tissue damage from extravasation.

4.4.2. Resistance

Cancer cells develop resistance through P-glycoprotein overexpression mediating drug efflux. Alterations in tubulin structure affect drug binding efficacy. Changes in microtubule dynamics reduce sensitivity to vinca alkaloids. Activation of anti-apoptotic pathways provides additional resistance mechanisms [29].

4.4.3. Pharmacological Challenges

Limited water solubility affects drug formulation and delivery. Drug-drug interactions complicate combination therapy protocols. Individual variability in drug metabolism influences therapeutic outcomes.

5. Recent Trends in Cancer Therapy

5.1. Advanced Drug Delivery Systems

5.1.1. Nanocarriers

Advanced delivery systems utilizing nanoparticles demonstrate enhanced therapeutic potential through improved drug solubility, targeted delivery, and controlled release characteristics [30]. Lipid-based nanocarriers, polymeric nanoparticles, and inorganic nanoplatforms offer diverse approaches for optimizing vinca alkaloid delivery.

5.1.2. Targeted Delivery

Antibody-drug conjugates and receptor-targeted systems enable selective drug delivery to cancer cells. Surface modification strategies enhance cellular uptake and tissue penetration. Active targeting mechanisms exploit unique characteristics of the tumor microenvironment.

5.1.3. Stimulus-Responsive Systems

Smart delivery systems responding to specific biological triggers enable precise spatial and temporal control of drug release. pH-sensitive, enzyme-responsive, and thermosensitive delivery systems provide enhanced therapeutic selectivity.

5.2. Genetic Engineering

5.2.1. CRISPR Technology

Gene editing technologies, particularly CRISPR-Cas9, offer potential for precise genetic modification in cancer treatment [31]. Applications include correction of oncogenic mutations, enhancement of immune cell function, and modification of drug resistance mechanisms.

5.2.2. Gene Therapy

Viral and non-viral vectors enable therapeutic gene delivery. Strategies include replacement of tumor suppressor genes, knockdown of oncogenes, and modification of drug metabolism pathways.

5.2.3. Epigenetic Modifications

Targeted approaches for modulating epigenetic mechanisms show promise in cancer therapy. Combination strategies incorporating epigenetic modulators with conventional therapeutics enhance treatment outcomes.

5.3. Personalized Medicine

5.3.1. Molecular Profiling

Molecular profiling enables treatment selection based on individual tumor characteristics. Integration of genomic, transcriptomic, and proteomic data guides therapeutic decision-making [32]. Real-time monitoring of molecular markers enables dynamic treatment adaptation.

5.3.2. Artificial Intelligence

Integration of artificial intelligence with genomic data facilitates more accurate prediction of treatment responses and outcomes. Machine learning algorithms enhance patient stratification and treatment selection. Computational approaches accelerate drug discovery and development processes.

5.3.3. Pharmacogenomics

Genetic variations affecting drug metabolism and response guide individualized dosing strategies. Biomarker-based patient selection improves therapeutic outcomes. Monitoring of molecular responses enables early detection of resistance development.

5.4. Emerging Therapeutic Options

Development of next-generation biological therapeutics expands treatment options. Bispecific antibodies, engineered cytokines, and novel cellular therapies demonstrate promising clinical potential. Rational combination strategies targeting multiple pathways enhance therapeutic efficacy. Integration of conventional and novel therapies optimizes treatment outcomes. Sequential and concurrent treatment protocols address resistance mechanisms. Investigation of photodynamic therapy, sonodynamic therapy, and other physical treatment modalities expands therapeutic options. Novel energy-based treatments provide localized therapeutic effects.

6. Conclusion

The development of vinca alkaloids from *Catharanthus roseus* shows the value of natural products in cancer therapy, despite their limitations. Modern therapeutic interventions increasingly emphasize personalized interventions based on molecular and genetic profiles. The integration of multiple treatment modalities, including conventional chemotherapy, targeted therapies, and immunotherapy, offers improved outcomes for many cancer patients. However, challenges in drug resistance, toxicity management, and treatment accessibility remain significant concerns. Advanced drug delivery systems, genetic engineering, and artificial intelligence-driven approaches hold promise for improving therapeutic efficacy while minimizing adverse effects. The transformation of cancer into a manageable chronic condition appears increasingly achievable through continued scientific investigation and global collaboration in healthcare delivery.

References

- [1] Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646-674.
- [2] Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789-799.
- [3] David AR, Zimmerman MR. Cancer: an old disease, a new disease or something in between? Nat Rev Cancer. 2010;10(10):728-733.
- [4] Sudhakar A. History of Cancer, Ancient and Modern Treatment Methods. J Cancer Sci Ther. 2009;1(2):1-4.
- [5] Rather RB. The Genesis of Cancer: A Study in the History of Ideas. Baltimore: Johns Hopkins University Press; 1978.
- [6] Knudson AG. Two genetic hits (more or less) to cancer. Nat Rev Cancer. 2001;1(2):157-162.
- [7] Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348(10):919-932.
- [8] Armstrong BK, Kricker A. The epidemiology of UV induced skin cancer. J Photochem Photobiol B. 2001;63(1-3):8-18.
- [9] Boffetta P, Nyberg F. Contribution of environmental factors to cancer risk. Br Med Bull. 2003;68(1):71-94.
- [10] Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst. 1999;91(14):1194-1210.
- [11] zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342-350.
- [12] Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118(12):3030-3044.
- [13] DeVita VT Jr, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68(21):8643-8653.

- [14] Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185-229.
- [15] Druker BJ. Molecular therapeutics in practice: resistance to targeted therapies. Oncologist. 2011;16(suppl 2):3-10.
- [16] Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783-792.
- [17] Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252-264.
- [18] June CH, O'Connor RS, Kawalekar OU, et al. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361-1365.
- [19] van Der Heijden R, Jacobs DI, Snoeijer W, et al. The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem. 2004;11(5):607-628.
- [20] Noble RL. The discovery of the vinca alkaloids--chemotherapeutic agents against cancer. Biochem Cell Biol. 1990;68(12):1344-1351.
- [21] Kutchan TM. Alkaloid biosynthesis the basis for metabolic engineering of medicinal plants. Plant Cell. 1995;7(7):1059-
- [22] Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4(4):253-265.
- [23] Kruczynski A, Hill BT. Vinflunine, the latest Vinca alkaloid in clinical development. Expert Opin Investig Drugs. 2001;10(10):1815-1827.
- [24] Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354(2):166-178.
- [25] Gidding CE, Kellie SJ, Kamps WA, et al. Vincristine revisited. Crit Rev Oncol Hematol. 1999;29(3):267-287.
- [26] Johnson IS, Armstrong JG, Gorman M, et al. The vinca alkaloids: a new class of oncolytic agents. Cancer Res. 1963;23:1390-1427.
- [27] Legha SS. Vincristine neurotoxicity. Pathophysiology and management. Med Toxicol. 1986;1(6):421-427.
- [28] Rowinsky EK, Donehower RC. The clinical pharmacology and use of antimicrotubule agents in cancer chemotherapeutics. Pharmacol Ther. 1991;52(1):35-84.
- [29] Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer. 2010;10(3):194-204.
- [30] Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751-760.
- [31] Komor AC, Badran AH, Liu DR. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell. 2017;168(1-2):20-36.
- [32] Schwaederle M, Kurzrock R. Actionable mutations and immunotherapy: advances in precision medicine in cancer treatment. Cancer Treat Rev. 2015;41(10):890-896