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Abstract: Transdermal drug delivery (TDD) has emerged as a promising alternative to conventional drug administration routes, 
offering advantages of controlled release and reduced systemic side effects. The primary challenge in TDD lies in overcoming 
the stratum corneum barrier, which restricts drug permeation through the skin. Ultrasound-assisted drug delivery (sonophoresis) 
employs acoustic energy to enhance drug penetration through mechanisms including cavitation, acoustic streaming, and thermal 
effects. These mechanisms temporarily disrupt the skin's lipid structure, facilitating improved drug distribution. Simultaneously, 
laser-based TDD utilizes photothermal, photomechanical, and ablative processes to create precise microchannels in the skin, 
enabling enhanced drug absorption. Both technologies have demonstrated efficacy in delivering various therapeutic agents, from 
small molecules to macromolecules like peptides, proteins, and vaccines. Ultrasound-based delivery systems, particularly low-
frequency sonophoresis, have shown remarkable success in transporting molecules across the skin barrier, while laser systems 
offer precise control over penetration depth and treatment areas. Recent developments in these technologies have led to 
innovative combinations with other delivery methods, smart device integration, and real-time monitoring capabilities. However, 
challenges persist, including the need for parameter optimization, potential skin irritation, and equipment costs. Current research 
focuses on improving safety profiles, developing cost-effective devices, and exploring synergistic approaches to enhance 
therapeutic outcomes. 
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1. Introduction 

Transdermal drug delivery (TDD) represents a significant advancement in pharmaceutical administration, offering numerous 
advantages over traditional delivery methods [1]. Despite its potential, the primary challenge in TDD remains the formidable barrier 
presented by the stratum corneum, which limits the range and quantity of drugs that can effectively penetrate the skin. The evolution 
of physical enhancement techniques, particularly ultrasound and laser-based technologies, has opened new horizons in overcoming 
these biological barriers [2]. These methods offer distinct advantages over chemical enhancers and conventional delivery systems, 
as they provide controlled and reversible disruption of the stratum corneum while maintaining the integrity of deeper skin layers. 
Ultrasound-mediated drug delivery, or sonophoresis, employs acoustic waves to create temporary pathways through the skin barrier. 
The technique operates through multiple mechanisms, including cavitation effects, thermal changes, and acoustic streaming, which 
collectively enhance drug permeation [3]. The versatility of ultrasound technology allows for both continuous and pulsed wave 
applications, accommodating various therapeutic agents ranging from small molecules to large proteins. 

Laser-based delivery systems represent another innovative approach, utilizing precisely controlled light energy to create 
microchannels in the skin. These systems can be tailored to specific depths and dimensions, offering unprecedented control over 
drug delivery parameters [4]. The advancement in laser technology has led to the development of both ablative and non-ablative 
systems, each serving distinct therapeutic purposes. Recent developments have focused on combining these technologies with 
emerging drug delivery platforms, including smart materials and nanocarriers. The integration of real-time monitoring systems and 
feedback mechanisms has enhanced the precision and safety of these delivery methods [5]. Furthermore, advances in materials 
science have contributed to the development of specialized drug formulations optimized for ultrasound and laser-assisted delivery. 
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The clinical significance of these technologies extends beyond conventional drug delivery applications. They show promise in areas 
such as vaccine administration, protein therapeutics, and targeted cancer treatments. However, successful implementation requires 
careful consideration of various parameters, including drug properties, tissue characteristics, and delivery system specifications [6]. 
The main aim of this paper is to present the fundamental principles, current applications, and future directions of ultrasound and 
laser-based TDD technologies. 

2. Ultrasound-Guided Transdermal Drug Delivery (Sonophoresis) 

2.1. Principles 

Ultrasound-mediated drug delivery represents a sophisticated approach to enhance transdermal drug permeation. The technique 
utilizes acoustic waves at frequencies ranging from 20 kHz to several MHz, with each frequency range offering distinct advantages 
for specific therapeutic applications [7]. The interaction between ultrasonic waves and biological tissues creates multiple effects that 
collectively enhance drug penetration through the stratum corneum. 

2.2. Classification of Ultrasound Systems 

2.2.1. Low-Frequency Ultrasound (20-100 kHz) 

Low-frequency ultrasound systems generate powerful cavitation effects, making them particularly effective for disrupting the 
stratum corneum barrier. These systems demonstrate superior penetration capabilities for larger molecular weight compounds, 
including proteins and peptides. The enhanced cavitation at lower frequencies creates temporary channels in the skin structure, 
facilitating drug transport through both transcellular and intercellular pathways [8]. 

2.2.2. High-Frequency Ultrasound (1-16 MHz) 

High-frequency systems primarily operate through thermal mechanisms and are particularly suitable for superficial drug delivery 
applications. These systems produce more focused and controlled effects, making them ideal for dermatological treatments and 
localized drug delivery. The reduced cavitation at higher frequencies minimizes tissue disruption while maintaining therapeutic 
efficacy [9]. 

2.3. Mechanisms of Action 

2.3.1. Acoustic Cavitation 

Acoustic cavitation serves as the primary mechanism for enhanced drug delivery in sonophoresis. The process involves the 
formation, oscillation, and collapse of gaseous cavities in response to ultrasonic pressure waves. These events create localized high-
pressure regions and microstreaming effects that temporarily disrupt the lipid bilayers of the stratum corneum [10]. 

2.3.2. Thermal Effects 

Ultrasonic energy absorption generates controlled thermal effects in the tissue, leading to increased molecular kinetic energy and 
enhanced drug diffusion. The temperature elevation, typically maintained within physiologically acceptable limits, causes temporary 
changes in membrane fluidity and local blood flow, facilitating drug absorption and distribution [11]. 

2.3.3. Acoustic Streaming 

The propagation of ultrasonic waves generates fluid currents within the coupling medium and interstitial spaces. These streaming 
effects contribute to enhanced drug transport by creating convective forces that supplement passive diffusion mechanisms [12]. 

2.4. Factors Influencing Ultrasound-Mediated Drug Delivery 

Several critical parameters determine the effectiveness of ultrasound-mediated drug delivery: 

2.4.1. Acoustic Parameters 

The frequency, intensity, and duty cycle of ultrasonic waves significantly influence the extent of skin permeabilization. These 
parameters must be optimized based on the specific drug properties and desired therapeutic outcomes [13]. 

2.4.2. Treatment Duration 

The duration of ultrasound application affects both the degree of skin permeabilization and potential tissue effects. Optimal 
treatment durations balance enhanced drug delivery with minimal tissue disruption [14]. 
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2.4.3. Coupling Medium  

The composition and properties of the coupling medium influence ultrasound transmission and cavitation effects. Proper selection 
of coupling media enhances treatment efficacy while maintaining skin hydration [15]. 

3. Laser-Based Transdermal Drug Delivery 

3.1. Principle 

Laser-assisted drug delivery capitalizes on the precise control of light-tissue interactions to enhance transdermal drug penetration. 
The technology employs specific wavelengths and energy parameters to create controlled microscopic channels in the skin, 
facilitating drug transport across the stratum corneum barrier. The selection of laser parameters significantly influences the depth, 
width, and pattern of these channels, allowing for customized treatment approaches [16]. 

3.2. Types of Therapeutic Laser Systems 

3.2.1. Ablative Laser Systems 

Carbon dioxide (CO2) lasers operating at 10,600 nm and Erbium:YAG lasers at 2,940 nm represent the primary ablative systems. 
These lasers target water molecules in the skin, causing controlled vaporization of tissue and creating precise microscopic channels. 
CO2 lasers generate additional thermal effects that can enhance drug penetration through temporary disruption of skin barrier 
properties [17]. 

3.2.2. Non-Ablative Laser Systems 

Operating in the near-infrared spectrum, non-ablative lasers modify skin permeability without substantial tissue removal. These 
systems induce thermal effects that temporarily alter the stratum corneum's structure, enhancing drug penetration while maintaining 
skin integrity. The approach proves particularly valuable for applications requiring minimal recovery time [18]. 

3.2.3. Fractional Laser Technology 

Fractional lasers create microscopic treatment zones while leaving surrounding tissue intact. This approach optimizes the balance 
between enhanced drug delivery and rapid healing. The technology allows for precise control over treatment density and depth, 
enabling customized drug delivery protocols for various therapeutic applications [19]. 

3.3. Mechanism 

3.3.1. Photomechanical Effects 

Laser-induced pressure waves create temporary disruptions in the stratum corneum, facilitating drug penetration through mechanical 
stress. These effects depend on pulse duration, energy density, and spot size parameters [20]. 

3.3.2. Photothermal Mechanisms 

Controlled thermal effects from laser exposure lead to temporary alterations in skin barrier properties. The heat-induced changes in 
lipid organization and protein structures enhance drug permeability while maintaining tissue viability [21]. 

3.3.3. Photochemical Processes 

Specific wavelengths can trigger photochemical reactions that modify skin barrier properties or activate photo-responsive drug 
carriers, providing additional control over drug delivery kinetics [22]. 

3.4. Clinical Applications 

3.4.1. Local Anesthesia  

Laser-assisted delivery of topical anesthetics demonstrates enhanced efficacy and reduced onset time compared to conventional 
applications. The approach proves particularly valuable in dermatological procedures requiring rapid and effective local anesthesia 
[23]. 

3.4.2. Dermatological Therapeutics 

The technology facilitates enhanced delivery of various dermatological agents, including corticosteroids, antifungals, and 
photosensitizers. Precise control over penetration depth allows for targeted treatment of specific skin conditions [24]. 
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3.4.3. Macromolecular Drug Delivery 

Laser-created channels enable the transport of large molecular weight compounds, including proteins, peptides, and nucleic acids. 
This capability expands the range of therapeutic agents suitable for transdermal delivery [25]. 

Table 1. Clinical Applications 

Application Technology Success Rate Patient Satisfaction Clinical Adoption 
Local Anesthesia Laser 85-95% High Widespread 
Peptide Delivery Ultrasound 70-85% Moderate Growing 
Vaccine Delivery Both 75-90% High Emerging 
Protein Therapeutics Laser 65-80% Moderate Limited 
Anti-inflammatory Drugs Ultrasound 80-90% High Established 
Cancer Therapeutics Combined 60-75% Moderate Experimental 

4. Ultrasound Versus Laser-Based Drug Delivery Systems 

4.1. Characteristics and Performance 

The fundamental differences between ultrasound and laser-based systems manifest in their operational mechanisms, tissue 
interactions, and delivery capabilities. Ultrasound systems primarily rely on acoustic energy to enhance skin permeability through 
cavitation and thermal effects, while laser systems create precise micropathways through controlled photothermolysis or ablation 
[26]. 

 

Figure 1. Mechanism of ultrasound and laser-based systems 

4.1.1. Penetration Depth and Control 

Laser systems offer superior precision in controlling treatment depth, with capabilities ranging from superficial epidermal targeting 
to deeper dermal penetration. Ultrasound systems, while demonstrating good tissue penetration, provide less precise spatial control 
but offer broader treatment areas [27]. 



Journal of Pharma Insights and Research, 2025, 03(02), 063-072 

  
Jayaramakani N et al 67 

 

4.1.2. Treatment Duration and Efficiency 

Laser treatments typically require shorter application times but may necessitate multiple passes for optimal results. Ultrasound-based 
delivery often requires longer treatment durations but provides more uniform enhancement of skin permeability across the treatment 
area [28]. 

Table 2. Comparison of Ultrasound and Laser-Based Drug Delivery Systems 

Parameter Ultrasound-Based Systems Laser-Based Systems 
Penetration Depth 0.5-5 mm (frequency dependent) 0.1-2 mm (wavelength dependent) 
Treatment Duration 5-20 minutes 2-10 minutes 
Energy Type Acoustic waves (20 kHz-16 MHz) Light energy (various wavelengths) 
Primary Mechanism Cavitation, thermal effects Ablation, photomechanical effects 
Cost Range $10,000-50,000 $30,000-150,000 
Maintenance Requirements Moderate High 
Patient Comfort High Moderate to High 
Recovery Time Minimal Variable (treatment dependent) 

 
Figure 2. Comparison between Ultrasound-based and laser-based TDDS 

4.2. Drug compatibility 

4.2.1. Molecular Weight  

Laser systems demonstrate superior capability in delivering high molecular weight compounds through precisely created 
microchannels. Ultrasound systems show optimal performance with small to medium-sized molecules, although low-frequency 
applications can facilitate larger molecule delivery [29]. 

Table 3. Drug Delivery Enhancement Capabilities by Molecular Weight 

Molecular Weight  Ultrasound Guided Laser Guided Optimal Technology 
< 500 Da +++ ++ Ultrasound 
500-1000 Da ++ +++ Either 
1-10 kDa + +++ Laser 
10-100 kDa +/- ++ Laser 
> 100 kDa - + Laser     

Legend: +++ (Excellent), ++ (Good), + (Fair), +/- (Limited), - (Poor) 
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4.2.2. Tissue-Specific Considerations 

The selection between ultrasound and laser technologies often depends on target tissue characteristics, therapeutic objectives, and 
specific drug properties. Laser systems excel in treating superficial conditions with precise targeting, while ultrasound offers 
advantages for deeper tissue drug delivery [30]. 

4.3. Practical Considerations 

4.3.1. Cost and Infrastructure  

Laser systems generally require higher initial investment and maintenance costs compared to ultrasound devices. However, laser 
treatments may offer better cost-effectiveness for certain applications due to shorter treatment times and precise targeting 
capabilities [31]. 

4.3.2. Safety Profile and Risk Management 

Both technologies demonstrate favorable safety profiles when properly implemented. Laser systems require careful parameter 
selection to prevent thermal injury, while ultrasound applications necessitate monitoring of cavitation effects and thermal build-up 
[32]. 

4.3.3. Patient Compliance and Comfort 

Ultrasound treatments generally offer better patient comfort due to their non-ablative nature. Laser treatments may require local 
anesthesia depending on the parameters used but often provide shorter recovery times compared to traditional interventions [33]. 

4.4. Optimization Strategies 

4.4.1. Parameter Optimization 

The effectiveness of both technologies depends significantly on parameter optimization, including energy levels, exposure duration, 
and treatment intervals. Customization based on individual patient characteristics and therapeutic objectives enhances treatment 
outcomes [34]. 

4.4.2. Synergistic combinations 

Emerging research indicates potential benefits in combining ultrasound and laser technologies, leveraging their complementary 
mechanisms to enhance drug delivery while minimizing adverse effects [35] 

5. Current trends 

5.1. Technological Innovation 

5.1.1. Smart Delivery Systems 

The integration of artificial intelligence and machine learning algorithms with transdermal delivery systems enables real-time 
monitoring and adjustment of treatment parameters. These smart systems optimize drug delivery based on individual patient 
responses and physiological parameters, incorporating feedback mechanisms for enhanced therapeutic outcomes [36]. 

5.1.2. Miniaturization and Portability 

Advanced manufacturing techniques facilitate the development of compact, portable devices for both ultrasound and laser-based 
delivery systems. These developments improve accessibility and enable home-based treatments for chronic conditions, potentially 
revolutionizing patient care approaches [37]. 

5.2. Novel Therapeutic Applications 

5.2.1. Targeted Cancer Therapy 

Enhanced delivery systems show promising applications in cancer treatment, enabling targeted delivery of chemotherapeutic agents 
with reduced systemic exposure. The combination of precise laser ablation with specialized drug formulations offers new 
possibilities for localized cancer therapy [38]. 
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5.2.2. Vaccine Delivery 

Novel approaches in needle-free vaccination utilize ultrasound and laser technologies to enhance immune responses through 
controlled antigen delivery to skin immune cells. These methods potentially improve vaccination efficiency while reducing associated 
pain and anxiety [39]. 

5.3. Integration with Other Drug Formulations 

5.3.1. Nanocarrier Systems 

The development of specialized nanocarriers designed for ultrasound and laser-enhanced delivery improves drug stability and 
penetration. These carriers respond to specific stimuli, enabling controlled release at target sites [40]. 

5.3.2. Responsive Drug Formulations 

Photo-responsive and ultrasound-sensitive drug formulations provide additional control over drug release kinetics. These smart 
formulations activate upon exposure to specific energy parameters, optimizing therapeutic efficacy [41]. 

5.4. Clinical Translation and Regulatory Standards 

5.4.1. Standardization  

The establishment of standardized protocols for different therapeutic applications ensures consistent treatment outcomes and 
facilitates regulatory approval processes. These protocols incorporate safety measures and quality control parameters specific to 
each technology [42]. 

5.4.2. Cost-Effectiveness  

Economic evaluation of enhanced delivery systems considers both direct costs and long-term benefits, including improved 
therapeutic outcomes and reduced healthcare utilization. This analysis guides implementation strategies in various healthcare settings 
[43]. 

5.5. Environmental Sustainability 

5.5.1. Energy Efficiency 

Development of energy-efficient devices reduces operational costs and environmental impact. Advanced power management 
systems optimize energy utilization while maintaining therapeutic efficacy [44]. 

5.5.2. Sustainable Materials 

Integration of environmentally friendly materials in device construction and drug formulation aligns with global sustainability goals. 
Biodegradable components and recycling protocols minimize environmental impact [45]. 

6. Conclusion 

The evolution of ultrasound and laser-based transdermal drug delivery systems represents a significant advancement in therapeutic 
medicine. These technologies offer compelling solutions to traditional drug delivery challenges, providing enhanced control, 
efficiency, and patient compliance. The complementary nature of these approaches, combined with emerging smart technologies 
and advanced formulations, presents unprecedented opportunities for personalized medicine and targeted therapeutics. 
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