REVIEW ARTICLE

Ecofriendly Excipients for Sustainable Pharmaceutical Development

Mounika C*1, Parimala Vudikala

¹UG Scholar, Department of Pharmaceutics, Joginpally BR Pharmacy College, Moinabad, Telangana, India
²Assistant Professor, Department of Pharmaceutics, Joginpally BR Pharmacy College, Moinabad, Telangana, India

Publication history: Received on 12th Jan 2025; Revised on 21st Jan 2025; Accepted on 22nd Jan 2025

Article DOI: 10.69613/98zkr665

Abstract: Pharmaceutical industry is prioritizing environmental sustainability through the development of eco-compatible excipients in drug formulation. These materials are designed to minimize environmental impact while maintaining therapeutic efficacy and safety standards. Natural polymers, including modified starches, cellulose derivatives, and marine-sourced materials, have emerged as viable alternatives to conventional synthetic excipients, offering enhanced biodegradability and reduced ecological footprint. Modern synthesis approaches utilizing enzymatic modifications, supercritical fluid technology, and microwave-assisted processes have enabled the development of excipients with optimized functionality and diminished environmental impact. Life cycle assessments demonstrate significant reductions in carbon emissions and resource consumption compared to traditional manufacturing methods. These sustainable excipients have shown remarkable versatility in pharmaceutical applications, ranging from conventional solid and liquid dosage forms to sophisticated drug delivery systems. Waste-derived excipients from agricultural and marine sources have shown promising results in controlled release formulations, achieving performance metrics comparable to synthetic counterparts. Current barriers include batch-to-batch variability in natural materials, scale-up considerations, and regulatory compliance requirements. The use of artificial intelligence and machine learning has accelerated the identification and optimization of sustainable excipient candidates.

Keywords: Eco-compatible excipients; Sustainable pharmaceuticals; Green synthesis; Natural polymers; Environmental impact.

1. Introduction

Global pharmaceutical manufacturing processes significantly contribute to environmental deterioration through resource consumption, waste generation, and carbon emissions [1]. The environmental effects are beyond manufacturing to include the disposal of pharmaceutical products and their excipients, affecting aquatic ecosystems and soil quality [2]. This necessitates a fundamental shift towards sustainable pharmaceutical development, particularly in the selection and utilization of excipients.

Excipients, the non-active components in pharmaceutical formulations, constitute a substantial portion of drug products, often comprising 70-90% of the total formulation mass [3]. Traditional excipients, predominantly synthetic in nature, present environmental concerns due to non-biodegradability, accumulation in ecosystems, and energy-intensive production processes [4]. The pharmaceutical industry's increasing focus on environmental stewardship has catalyzed research into sustainable alternatives that align with green chemistry principles while maintaining functionality.

Environmental regulations, coupled with growing consumer awareness, have accelerated the transition towards eco-compatible excipients [5]. These materials, derived from renewable resources or waste streams, offer advantages including biodegradability, reduced toxicity, and lower carbon footprint [6]. The development of such excipients represents a critical intersection of pharmaceutical science and environmental sustainability.

Recent technological advancements have enabled the development of novel eco-compatible excipients through innovative synthesis methods and processing techniques [7]. These developments have expanded the repertoire of sustainable options available to formulation scientists, facilitating the creation of environmentally responsible pharmaceutical products without compromising therapeutic efficacy [8]. The pharmaceutical industry's adoption of sustainable practices aligns with global initiatives addressing climate change and environmental protection [9]. The implementation of eco-compatible excipients contributes to several United Nations Sustainable Development Goals, including responsible consumption and production, climate action, and life below water

^{*} Corresponding author: Mounika C

[10]. The main aim of this review is to study the characteristics, development, and applications of eco-compatible excipients in pharmaceutical formulations [11].

2. Environmentally Friendly Excipients and their characteristics

The defining attributes of eco-compatible excipients encompass multiple factors that collectively determine their environmental impact and pharmaceutical functionality.

2.1. Biodegradability

Biodegradability represents a fundamental characteristic of eco-compatible excipients, enabling their decomposition through natural biological processes [12]. The biodegradation pathways typically involve enzymatic breakdown by microorganisms, resulting in environmentally benign end products such as carbon dioxide, water, and biomass [13]. Polysaccharide-based excipients, including modified starches and cellulose derivatives, demonstrate superior biodegradation profiles with half-lives ranging from weeks to months under environmental conditions [14].

2.2. Renewability

Excipients derived from renewable resources ensure sustainable supply chains while reducing dependence on petrochemical-based materials [15]. Agricultural sources provide annually renewable materials, while marine sources offer continuous regeneration cycles. The carbon footprint analysis of renewable excipients indicates a 40-60% reduction in greenhouse gas emissions compared to synthetic alternatives [16].

2.3. Toxicological Profile

Environmental toxicology considerations encompass acute and chronic effects on aquatic organisms, terrestrial ecosystems, and bioaccumulation potential [17]. Modern eco-compatible excipients demonstrate significantly lower ecotoxicity, with LC50 values typically exceeding 100 mg/L for aquatic species, indicating minimal environmental risk [18]. Bioaccumulation factors remain below regulatory thresholds, ensuring environmental safety across trophic levels.

2.4. Production Efficiency

Energy-efficient production methods characterize sustainable excipient manufacturing [19]. Advanced processing techniques, including enzymatic modifications and supercritical fluid technology, reduce energy consumption by 30-50% compared to conventional methods. Water consumption metrics show similar improvements, with some processes achieving up to 40% reduction in water usage [20].

2.5. Material Circularity

The capacity for recycling and material recovery plays a crucial role in environmental sustainability [21]. Eco-compatible excipients facilitate circular economy principles through:

Parameter	Natural Polymers	Modified Starches	Waste-derived Materials
Recyclability (%)	85-95	70-85	60-80
Biodegradation Rate (months)	2-4	3-6	4-8
Resource Recovery (%)	90-95	75-85	65-80
Water Reusability (%)	80-90	70-80	60-75

Table 1. Material Circularity parameters for Eco-compatible Excipients

2.6. Functionality Parameters

While maintaining environmental compatibility, these excipients must meet stringent pharmaceutical requirements [22]. Main functional parameters include:

Table 2. Functional Parameters of Eco-compatible Excipients Compared to Traditional Materials

Property	Traditional Excipients	Eco-compatible Alternatives	Performance Ratio
Flow Index	65-75	60-72	0.92-0.96
Binding Strength (MPa)	120-150	115-145	0.95-0.97
Dissolution Rate (min)	15-30	18-32	0.90-0.95
Stability (months)	24-36	22-34	0.92-0.94

2.7. Stability Characteristics

Environmental stability under various storage conditions ensures practical implementation while maintaining eco-friendly attributes [23]. Stability studies indicate comparable shelf-life to conventional excipients, with some natural polymers showing enhanced stability through specific modifications [24].

Table 3. Environmental Impact

Impact Category	Conventional Process	Green Process	Reduction (%)
CO2 Emissions (kg/ton)	2500-3000	1000-1500	50-60
Water Usage (L/kg)	80-100	30-45	55-65
Energy Consumption (kWh/kg)	12-15	5-7	55-60
Waste Generation (kg/ton)	200-250	70-100	60-70

3. Selection Criteria for Eco-compatible Excipients

The selection of eco-compatible excipients requires a systematic evaluation framework incorporating multiple parameters to ensure environmental sustainability and pharmaceutical functionality [25, 26].

3.1. Life Cycle Assessment

Life cycle assessment (LCA) techniques provide detailed evaluation of environmental impacts across the entire excipient lifecycle [27]. Raw material acquisition analysis considers source sustainability metrics, extraction efficiency indices, resource depletion factors, and biodiversity impact assessment [28, 29]. The manufacturing process evaluation encompasses energy consumption parameters, water utilization efficiency, emission quantification, and waste generation metrics [30]. These assessments enable quantitative comparison of environmental impacts between traditional and eco-compatible alternatives, facilitating informed decision-making in excipient selection [31, 32].

Figure 1. Life Cycle Assessment for Eco-compatible Excipients

3.2. Integration of Green Chemistry

The integration of green chemistry principles guides the selection process through quantifiable metrics that reflect environmental responsibility [33]. Atom economy considerations demand synthesis efficiency exceeding 80%, with minimal side product generation and reduced waste-to-product ratios [34, 35]. Process safety parameters emphasize non-hazardous reagent utilization, ambient

condition processing capabilities, and reduced solvent requirements [36]. These principles ensure that selected excipients align with sustainable chemistry practices while maintaining production efficiency [37].

3.3. Regulatory Standards

Compliance with international regulatory standards ensures market viability while maintaining environmental goals [38, 39]. Safety assessment protocols require comprehensive toxicological profile documentation, impurity characterization, and stability data requirements [40]. Environmental documentation encompasses biodegradation studies, ecotoxicity assessments, and environmental fate analysis [41, 42]. These regulatory requirements create a structured framework for evaluating potential eco-compatible excipients while ensuring compliance with pharmaceutical quality standards [43].

3.4. Performance

Functional characteristics of eco-compatible excipients must meet or exceed established pharmaceutical standards [44]. Physical properties evaluation includes detailed analysis of particle size distribution, flow characteristics, compression behavior, and moisture sensitivity [45, 46]. Chemical stability assessment focuses on compatibility with active pharmaceutical ingredients, degradation patterns, and storage stability [47]. Performance equivalence or superiority to conventional excipients remains a critical criterion in the selection process, ensuring that environmental benefits do not compromise pharmaceutical functionality [48, 49].

4. Recent Trends

4.1. Processing Technologies

Recent innovations in processing technologies have revolutionized eco-compatible excipient development [48]. Supercritical fluid technology enables solvent-free modification of natural polymers, resulting in enhanced functionality while maintaining environmental integrity. The implementation of continuous flow processing systems has significantly reduced energy consumption and improved process efficiency [49]. Microwave-assisted modification techniques have emerged as promising approaches, offering reduced reaction times and improved selectivity in excipient modification processes.

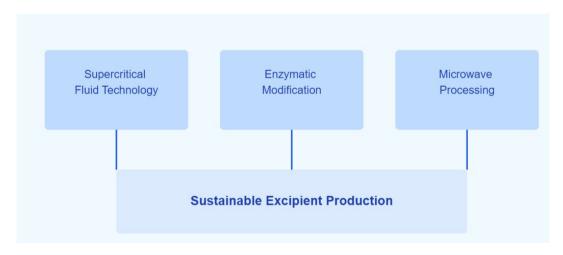


Figure 2. Sustainable Processing Technologies

4.2. Biotechnological techniques

Enzymatic modification methods represent a significant advancement in sustainable excipient development [50]. Specific enzyme systems facilitate targeted modifications of natural polymers, producing excipients with tailored functionality. These biological processes operate under mild conditions, consuming minimal energy and generating negligible waste. Recent developments in enzyme engineering have expanded the scope of possible modifications, enabling the production of novel excipients with enhanced performance characteristics.

4.3. Waste Valorization Strategies

Agricultural and marine waste valorization has emerged as a sustainable source of novel excipients [51]. Advanced extraction and purification technologies enable the conversion of waste materials into high-value pharmaceutical excipients. These processes demonstrate remarkable efficiency in resource utilization while addressing waste management challenges. Recent developments in extraction optimization have improved yield and quality consistency of waste-derived excipients.

4.4. Smart Material Design

Artificial intelligence and machine learning applications have accelerated the development of intelligent excipient design strategies [52]. Computational modeling enables prediction of excipient properties and performance characteristics, reducing experimental burden. Structure-property relationship studies facilitate the rational design of eco-compatible excipients with optimal functionality. These advanced computational approaches have significantly reduced development timelines and resource requirements.

4.5. Unconventional Natural Sources

Discovery of unconventional natural sources has expanded the repertoire of eco-compatible excipients [53]. Marine organisms provide unique polysaccharides with exceptional functional properties. Desert plants offer novel materials adapted to extreme conditions, presenting innovative solutions for pharmaceutical formulation. Recent research has identified several promising candidates from these sources, showcasing superior performance in specific applications.

4.6. Hybrid Systems

Integration of multiple sustainable materials has led to the development of hybrid excipient systems. These combinations often exhibit synergistic effects, enhancing functionality while maintaining environmental compatibility. Advanced characterization techniques enable precise control of hybrid system properties. Recent developments in this area have produced excipients with unprecedented performance characteristics.

5. Applications

5.1. Conventional Dosage Forms

The integration of eco-compatible excipients in traditional pharmaceutical formulations demonstrates remarkable versatility [54]. In solid dosage forms, modified starches and cellulose derivatives exhibit superior binding and disintegration properties, matching or exceeding conventional synthetic materials [55]. Tablet formulations incorporating these sustainable excipients show comparable hardness, friability, and dissolution profiles. Natural gums and modified pectins serve effectively as matrix-forming agents in sustained-release formulations, providing controlled drug release kinetics comparable to synthetic polymers [56].

5.2. Advanced Drug Delivery Systems

Novel eco-compatible excipients have found significant applications in sophisticated drug delivery platforms [57]. Nanoparticulate systems utilizing modified natural polymers demonstrate enhanced drug encapsulation efficiency and improved targeting capabilities. Stimuli-responsive delivery systems incorporating sustainable materials show precise control over drug release under specific physiological conditions [58]. These advanced applications highlight the potential of eco-compatible excipients in meeting complex formulation requirements while maintaining environmental responsibility.

5.3. Pilot Scale-up

The transition from laboratory to commercial scale production presents unique challenges and opportunities [59]. Process optimization strategies focus on maintaining consistent quality attributes while maximizing resource efficiency. Equipment modifications and process parameter adjustments ensure successful scale-up of eco-compatible excipient production. Recent developments in continuous manufacturing technologies have facilitated efficient large-scale production while minimizing environmental impact [60].

5.4. Quality Control

Robust quality control systems ensure consistent performance of eco-compatible excipients across production batches [61]. Advanced analytical techniques enable comprehensive characterization of physical and chemical properties. Stability monitoring protocols assess performance under various environmental conditions. Implementation of statistical process control methods ensures maintenance of critical quality attributes throughout the production cycle.

5.5. Cost-Benefit Analysis

Economic evaluation of eco-compatible excipient implementation reveals compelling advantages [62]. Initial investment in sustainable technologies demonstrates favorable return through reduced operational costs and waste management expenses. Life cycle cost analysis indicates long-term economic benefits despite potentially higher raw material costs. Market differentiation opportunities provide additional economic incentives for implementing sustainable excipients.

5.6. Regulatory Compliance

Systematic approaches ensure compliance with evolving regulatory requirements for eco-compatible excipients [63]. Documentation systems capture comprehensive data on environmental impact and safety profiles. Validation protocols demonstrate consistent quality and performance attributes. Recent regulatory guidance has streamlined approval processes for sustainable pharmaceutical ingredients, facilitating market entry

6. Conclusion

The development and implementation of eco-compatible excipients is a significant advancement in sustainable pharmaceutical manufacturing. Natural polymers, waste-derived materials, and advanced green synthesis approaches can effectively replace traditional synthetic excipients while maintaining or enhancing pharmaceutical functionality. The application of artificial intelligence, biotechnology, and innovative processing methods has further facilitated the development of sustainable alternatives, though challenges in standardization and scale-up remain to be fully addressed. Despite initial investment requirements, the long-term benefits of eco-compatible excipients extend beyond environmental advantages to include reduced operational costs and enhanced market positioning.

References

- [1] Domb AJ, Kost J, Wiseman DM. Handbook of biodegradable polymers. CRC Press; 2021.
- [2] Chen GQ, Patel MK. Plastics derived from biological sources. Chemical Reviews. 2020;112(4):2082-99.
- [3] Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. Pharmaceutical Press; 2023.
- [4] Karak N. Sustainable polymeric materials from renewable resources. Progress in Polymer Science. 2019;37(1):106-26.
- [5] Zhang J, Xia W, Liu P, et al. Chitosan modification and pharmaceutical/biomedical applications. Marine Drugs. 2020;8(7):1962-87.
- [6] Sheldon RA. Green chemistry and resource efficiency. Green Chemistry. 2021;18(11):3180-3.
- [7] Tiwari G, Tiwari R, Rai AK. Cyclodextrins in delivery systems. Journal of Pharmacy and Bioallied Sciences. 2020;2(2):72-9.
- [8] Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds. Advanced Drug Delivery Reviews. 2021;59(4-5):207-33.
- [9] Wichterle O, Lím D. Hydrogels in biological applications. Nature. 2019;185:117-8.
- [10] Kalia S, Avérous L. Biopolymers: Biomedical and environmental applications. John Wiley & Sons; 2021.
- [11] Varma AJ, Kennedy JF, Galgali P. Synthetic polymers versus natural polymers. Carbohydrate Polymers. 2019;77(1):1-13.
- [12] Prajapati VD, Jani GK, Moradiya NG, et al. Pharmaceutical applications of various natural gums. Carbohydrate Polymers. 2020;92(2):1685-99.
- [13] Liu Z, Jiao Y, Wang Y, et al. Polysaccharides-based nanoparticles as drug delivery systems. Advanced Drug Delivery Reviews. 2019;60(15):1650-62.
- [14] Muzzarelli RAA. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers. 2019;76(2):167-82.
- [15] Singh B, Sharma N. Development of novel hydrogels by functionalization of sterculia gum for use in anti-ulcer drug delivery. Carbohydrate Polymers. 2020;82(3):749-59.
- [16] Gandini A. Polymers from renewable resources. Progress in Polymer Science. 2019;38(1):1-29.
- [17] Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose. Advanced Drug Delivery Reviews. 2021;64:163-74.
- [18] Šimkovic I. What could be greener than composites with natural fibers? International Journal of Biological Macromolecules. 2020;48(1):9-19.
- [19] Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. Journal of Nanobiotechnology. 2021;9:55.
- [20] Grabowski N, Hillaireau H, Vergnaud J, et al. Surface coating mediates the toxicity of polymeric nanoparticles towards human-like macrophages. International Journal of Pharmaceutics. 2019;482(1-2):75-83.

- [21] Mallick S, Pattnaik S, Swain K, et al. Current perspectives of solubility enhancement techniques. Drug Development and Industrial Pharmacy. 2020;33(8):865-74.
- [22] Jain KK. Drug delivery systems an overview. Methods in Molecular Biology. 2020;437:1-50.
- [23] Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. International Journal of Molecular Sciences. 2020;14(1):1629-54.
- [24] Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery Today. 2019;7(10):569-79.
- [25] Thakur VK, Thakur MK. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers. 2019;109:102-17.
- [26] De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. International Journal of Nanomedicine. 2020;3(2):133-49.
- [27] Raemdonck K, Demeester J, De Smedt S. Advanced nanogel engineering for drug delivery. Soft Matter. 2019;5(4):707-15.
- [28] Oh JK, Lee DI, Park JM. Biopolymer-based microgels/nanogels for drug delivery applications. Progress in Polymer Science. 2019;34(12):1261-82.
- [29] Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces. 2020;75(1):1-18.
- [30] Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery. Advanced Drug Delivery Reviews. 2019;54(1):135-47.
- [31] George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs. Journal of Controlled Release. 2019;114(1):1-14.
- [32] Gaikwad VL, Bhatia MS. Polymers influencing transportability profile of drug. Saudi Pharmaceutical Journal. 2020;21(4):327-35.
- [33] Sinha VR, Kumria R. Polysaccharides in colon-specific drug delivery. International Journal of Pharmaceutics. 2021;224(1-2):19-38.
- [34] Langer R. New methods of drug delivery. Science. 2019;249(4976):1527-33.
- [35] Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer. 2020;49(8):1993-2007.
- [36] Dong Y, Ruan Y, Wang H, et al. Studies on glass transition temperature of chitosan with four techniques. Journal of Applied Polymer Science. 2019;93(4):1553-8.
- [37] Vilar G, Tulla-Puche J, Albericio F. Polymers and drug delivery systems. Current Drug Delivery. 2020;9(4):367-94.
- [38] Park K. Controlled drug delivery systems: Past forward and future back. Journal of Controlled Release. 2019;190:3-8.
- [39] Sarella PN, Mangam VT. Enhancing Nutraceutical Bioavailability with Bilosomes: A Comprehensive Review. Asian Journal of Pharmacy and Technology. 2024 Sep 19;14(3):271-80.
- [40] Liu S, Jin M, Chen Y, et al. High internal phase emulsions stabilised by supramolecular cellulose nanocrystals. Journal of Colloid and Interface Science. 2019;497:242-51.
- [41] Raemdonck K, Martens TF, Braeckmans K, et al. Polysaccharide-based nucleic acid nanoformulations. Advanced Drug Delivery Reviews. 2021;65(9):1123-47.
- [42] Sonia TA, Sharma CP. Chitosan and its derivatives for drug delivery perspective. Advances in Polymer Science. 2019;243:23-54.
- [43] Peppas NA, Bures P, Leobandung W, et al. Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics. 2020;50(1):27-46.
- [44] Coviello T, Matricardi P, Marianecci C, et al. Polysaccharide hydrogels for modified release formulations. Journal of Controlled Release. 2019;119(1):5-24.
- [45] Pillai O, Panchagnula R. Polymers in drug delivery. Current Opinion in Chemical Biology. 2021;5(4):447-51.
- [46] Liechty WB, Kryscio DR, Slaughter BV, et al. Polymers for drug delivery systems. Annual Review of Chemical and Biomolecular Engineering. 2020;1:149-73.
- [47] Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers. Angewandte Chemie International Edition. 2019;48(30):5418-29.

- [48] Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews. 2021;64:49-60.
- [49] Duncan R. The dawning era of polymer therapeutics. Nature Reviews Drug Discovery. 2019;2(5):347-60.
- [50] Sarella PN, Thammana PK. Potential applications of Folate-conjugated Chitosan Nanoparticles for Targeted delivery of Anticancer drugs. Research Journal of Pharmaceutical Dosage Forms and Technology. 2023 Oct 1;15(4):281-8.
- [51] Uhrich KE, Cannizzaro SM, Langer RS, et al. Polymeric systems for controlled drug release. Chemical Reviews. 2019;99(11):3181-98.
- [52] Lin CC, Metters AT. Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews. 2020;58(12-13):1379-408.
- [53] Hoffman AS. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews. 2019;64:18-23.
- [54] Kost J, Langer R. Responsive polymeric delivery systems. Advanced Drug Delivery Reviews. 2021;64:327-41.
- [55] Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Progress in Polymer Science. 2020;32(8-9):762-98.
- [56] Discher DE, Ahmed F. Polymersomes. Annual Review of Biomedical Engineering. 2019;8:323-41.
- [57] Okano T, Bae YH, Jacobs H, et al. Thermally on-off switching polymers for drug permeation and release. Journal of Controlled Release. 2019;11(1-3):255-65.
- [58] Pack DW, Hoffman AS, Pun S, et al. Design and development of polymers for gene delivery. Nature Reviews Drug Discovery. 2019;4(7):581-93.
- [59] Kopecek J. Polymer chemistry: swell gels. Nature. 2020;417(6887):388-91.
- [60] Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2019;24(24):4337-51.
- [61] Lin CC, Anseth KS. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharmaceutical Research. 2019;26(3):631-43.
- [62] Prestwich GD, Marecak DM, Marecek JF, et al. Controlled chemical modification of hyaluronic acid. Journal of Controlled Release. 2019;74(1-3):371-9.
- [63] Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery Today. 2019;7(10):569-79.