REVIEW ARTICLE

A Review of Engineered Bacterial Nanobots for Targeted Cancer Therapy

Saanvi Pratapwant*1, Parimala Vudikala2, Chaitanya B2

¹UG Scholar, Department of Pharmaceutics, Joginpally BR Pharmacy College, Moinabad, Telangana, India
²Assistant Professor, Department of Pharmaceutics, Joginpally BR Pharmacy College, Moinabad, Telangana, India

Publication history: Received on 2nd Jan 2025; Revised on 6th Jan 2025; Accepted on 10th Jan 2025

Article DOI: 10.69613/ctcre938

Abstract: The convergence of synthetic biology and nanotechnology has given rise to bacterial nanobots as innovative therapeutic agents for cancer treatment. These bioengineered microorganisms integrate the inherent capabilities of bacteria with synthetic nanostructures to create autonomous, self-propelled systems capable of precise tumor targeting. The remarkable ability of bacteria to sense environmental cues, penetrate tumor tissues, and colonize hypoxic regions makes them ideal candidates for targeted cancer therapy. Recent advances in bacterial engineering have led to the development of sophisticated systems that can deliver therapeutic payloads, including cytotoxic agents, prodrug-converting enzymes, and immunomodulators. Various bacterial species, such as *Salmonella typhimurium*, *Escherichia coli*, and *Magnetococcus marinus*, have been successfully engineered through surface modification, genetic manipulation, and integration with synthetic nanostructures. These modifications enhance tumor targeting, therapeutic efficacy, and controlled payload delivery. The application of bacterial nanobots has shown promising results in preclinical studies, demonstrating improved tumor penetration, targeted drug delivery, and enhanced immune responses. However, several challenges remain, including safety concerns, immune system interactions, and regulatory considerations. Addressing these challenges through innovative engineering approaches and rigorous safety protocols will be crucial for advancing bacterial nanobots toward clinical applications.

Keywords: Bacterial nanobots; Cancer therapy; Synthetic biology; Targeted drug delivery; Tumor microenvironment.

1. Introduction

Cancer continues to pose a significant global health challenge, with steadily increasing incidence and mortality rates worldwide [1]. Despite substantial advancements in conventional treatment modalities such as chemotherapy, radiation therapy, and immunotherapy, these approaches often face critical limitations including systemic toxicity, drug resistance, and inadequate tumor penetration [2]. The complexity of the tumor microenvironment and the presence of hard-to-reach hypoxic regions further complicate effective treatment delivery [3].

The advent of bacterial nanobots represents a paradigm shift in cancer therapeutics by harnessing the natural capabilities of bacteria combined with cutting-edge nanotechnology [4]. These sophisticated biological machines exploit several unique characteristics of bacteria that make them particularly suited for cancer therapy. These include their ability to specifically target and proliferate within tumors, survive in both oxygen-rich and oxygen-depleted environments, actively penetrate deep into tumor tissues, respond to specific environmental signals [5, 6].

Bacterial nanobots offer distinct advantages over traditional nanocarrier systems. Unlike passive drug delivery platforms, these biological entities can actively navigate through complex biological barriers, multiply at the target site, and produce therapeutic molecules in situ [7]. The ability to genetically modify bacteria adds another layer of functionality, allowing precise control over therapeutic payload production and release [8].

Recent advances in synthetic biology have significantly expanded the capabilities of bacterial nanobots. Scientists have successfully engineered bacteria to express tumor-targeting ligands, produce anticancer compounds, and respond to external stimuli such as magnetic fields or light [9]. The integration of synthetic nanostructures with bacteria has created hybrid systems capable of multimodal imaging and therapy [10]. The tumor microenvironment provides an ideal niche for bacterial colonization due to its unique characteristics, including irregular vasculature, hypoxic regions, and altered metabolism [11]. These features, which typically pose challenges for conventional therapies, actually facilitate the selective accumulation and growth of bacteria within tumors [12].

^{*} Corresponding author: Saanvi Pratapwant

The field of bacterial nanobots bridges multiple disciplines, including microbiology, nanotechnology, synthetic biology, and cancer biology. This interdisciplinary approach has led to innovative strategies for cancer treatment that were previously not possible [13]. The ability to program these biological entities at both the genetic and physical levels opens up unprecedented possibilities for precise, targeted cancer therapy [14, 15].

2. Bacterial Selection for Nanobot Development

The selection of appropriate bacterial species forms the cornerstone of successful nanobot development for cancer therapy. The ideal bacterial candidate must possess specific characteristics that enable effective tumor targeting while maintaining safety and controllability [16].

Salmonella typhimurium emerges as a leading candidate for bacterial nanobot development, particularly the attenuated strain VNP20009. This strain demonstrates remarkable tumor specificity with colonization ratios exceeding 1000:1 between tumor and normal tissues [17]. The facultative anaerobic nature of *S. typhimurium* enables it to thrive in both oxygen-rich and oxygen-depleted tumor regions, making it particularly versatile for cancer therapy. Genetic modifications have enhanced its safety profile while maintaining its tumor-targeting capabilities [18].

Bacterial Strain	Tumor-Targeting	Payload	Oxygen	Advantages	Limitations
	Efficiency	Capacity	Requirement		
E. coli VNP20009	High (85-90%)	15-20	Facultative	- Established safety profile	- Limited tissue
		plasmids	anaerobe	- Easy genetic modification	penetration
Salmonella	Very High (90-95%)	10-15	Facultative	-Deep tissue penetration	- Higher
Typhimurium A1-R		plasmids	anaerobe	- Strong chemotaxis	immunogenicity
Clostridium novyi-NT	Medium (70-80%)	5-10	Strict anaerobe	- Specific to hypoxic regions	- Limited to
		plasmids		- Natural tumor lysis	hypoxic areas
Magnetococcus marinus	High (85-90%)	8-12	Microaerophilic	- Magnetic guidance	- Complex
MC-1	,	plasmids		- Precise targeting	manufacturing

Table 1. Properties of Different Bacterial Nanobot Chassis Strains

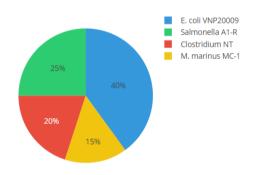


Figure 1. Distribution of bacterial stains

Escherichia coli presents another promising platform, primarily due to its well-characterized genome and extensive genetic engineering toolbox. Modified E. coli strains have demonstrated successful expression of therapeutic proteins and targeting ligands. The strain Nissle 1917, recognized for its probiotic properties, has shown particular promise in colorectal cancer applications [19]. Advanced genetic circuits implemented in E. coli enable sophisticated functionalities such as programmed cell death and controlled therapeutic release [20].

Clostridium novyi-NT, an obligate anaerobe, exhibits unique specificity for hypoxic tumor regions. Upon systemic administration, *C. novyi* spores germinate exclusively in oxygen-depleted tumor areas, providing highly selective targeting of these traditionally hard-to-reach regions [21]. The spore-forming ability offers additional advantages for storage and administration.

Magnetococcus marinus MC-1 represents an innovative approach through its natural magnetotactic properties. These bacteria contain magnetosomes - chains of magnetic nanoparticles that enable navigation using external magnetic fields. This feature, combined with their aerotactic behavior, allows precise control over their movement toward tumor sites [22].

Listeria monocytogenes, while less commonly employed, offers unique advantages through its ability to spread from cell to cell and stimulate robust immune responses. Attenuated strains have shown promise in cancer immunotherapy applications, particularly in combination with conventional treatments [23].

Bifidobacterium species have garnered attention due to their strict anaerobic nature and natural tumor-targeting abilities. These bacteria demonstrate excellent safety profiles and have been successfully employed in colorectal cancer models. Their ability to modulate the immune system adds an additional therapeutic dimension [24].

2.1. Factors influencing bacterial selection

Several factors influence bacterial selection for specific applications:

2.1.1. Tumor Type and Location

Different bacterial species show varying efficacy depending on tumor characteristics. For instance, solid tumors with extensive hypoxic regions may benefit more from obligate anaerobes, while accessible tumors might be better targeted with facultative anaerobes [25].

2.1.2. Genetic Manipulability

The ease of genetic modification varies significantly among bacterial species. This consideration becomes crucial when engineering complex therapeutic functions or control mechanisms [26].

2.1.3. Growth Requirements

The metabolic needs and growth conditions of different bacterial species affect their practical utility in clinical settings. Species with simple growth requirements offer advantages in manufacturing and storage [27].

2.1.4. Safety

The potential for pathogenicity must be carefully balanced against therapeutic efficacy. Attenuated strains must maintain their tumor-targeting abilities while posing minimal risk to healthy tissues [28].

The optimization of bacterial selection continues to evolve with advances in genetic engineering and understanding of bacterial-tumor interactions. Current research focuses on developing hybrid strains that combine advantageous characteristics from multiple species while minimizing potential drawbacks [29]

3. Methods for Preparation of Bacteria-Based Nanobots

The development of effective bacterial nanobots requires sophisticated engineering approaches that enhance their therapeutic capabilities while maintaining precise control over their functions. These strategies encompass surface modification, genetic engineering, and integration with synthetic nanostructures [30].

3.1. Surface Modification

Surface modification of bacterial cells represents a critical engineering approach that enhances their functionality as therapeutic agents. The bacterial surface serves as a platform for attaching various functional molecules and nanoparticles [31]. Metal nanoparticle conjugation has emerged as a powerful strategy, particularly through the incorporation of gold nanoparticles onto bacterial surfaces. These modified bacteria enable photothermal therapy through localized heat generation upon near-infrared light exposure. Similarly, silver nanoparticle modification provides additional antimicrobial effects, offering precise control over bacterial proliferation [32].

Polymer coating techniques have demonstrated significant success in improving bacterial survival under physiological conditions. The application of polyethylene glycol (PEG) modification effectively reduces immune recognition while maintaining bacterial viability and tumor-targeting abilities. Advanced coating methods utilizing layer-by-layer assembly of polyelectrolytes enable sophisticated control over therapeutic payload release kinetics [33].

Antibody conjugation technology has revolutionized targeting specificity in bacterial nanobots. The display of single-chain variable fragments (scFv) or nanobodies on bacterial surfaces enables precise recognition of specific tumor antigens. This targeted approach has demonstrated remarkable improvements in tumor accumulation and subsequent therapeutic efficacy compared to unmodified bacteria [34].

3.2. Genetic Engineering

Genetic modification provides unprecedented control over bacterial behavior and therapeutic functions through sophisticated molecular tools [35]. Promoter engineering has emerged as a crucial strategy, enabling environmentally responsive gene expression patterns. The development of hypoxia-inducible promoters allows selective activation of therapeutic gene expression within tumor environments. Advanced quorum sensing-based promoters enable bacterial responses that depend on population density, providing an additional layer of control [36].

The implementation of CRISPR-Cas9 technology has transformed bacterial genome editing capabilities. This precise tool enables the strategic introduction of therapeutic genes while simultaneously removing virulence factors. The result is the creation of stable bacterial strains that maintain enhanced safety profiles alongside their therapeutic capabilities [37].

Synthetic gene circuits represent another significant advancement in bacterial engineering. These sophisticated genetic systems include toggle switches that enable reversible gene expression control, oscillators that regulate periodic protein production, and complex logic gates that respond to multiple environmental inputs. Additionally, engineered kill switches provide essential safety mechanisms for controlled bacterial elimination when necessary [38].

3.3. Integration with Synthetic Nanostructures

The fusion of bacteria with synthetic nanostructures has created revolutionary hybrid systems that expand therapeutic possibilities [39]. These bacterial-nanoparticle hybrids incorporate various functional elements that enhance their capabilities. Magnetic nanoparticle integration enables guided targeting through external magnetic fields, while quantum dot incorporation facilitates real-time imaging of bacterial movement and distribution. The integration of mesoporous silica nanoparticles provides sophisticated drug delivery capabilities, and upconversion nanoparticles enable advanced photodynamic therapy applications [40].

3.4. Control Mechanisms and System Integration

The implementation of precise control mechanisms represents a critical aspect of bacterial nanobot development [41]. External control systems have evolved significantly, incorporating sophisticated magnetic guidance systems that enable real-time navigation through tumor tissues. Light-activated gene expression systems provide temporal and spatial control over therapeutic protein production. Temperature-responsive elements allow for controlled activation of bacterial functions in specific tissue regions [42].

Internal control mechanisms operate at the molecular level, utilizing carefully designed metabolic switches that regulate bacterial growth and activity. These systems incorporate sophisticated feedback loops that respond to environmental conditions within the tumor microenvironment. Oxygen-sensitive regulatory elements enable selective activation in hypoxic tumor regions, while nutrient-dependent expression systems provide additional specificity [43].

3.5. Payload Delivery Systems

Advanced payload delivery mechanisms maximize therapeutic efficacy through precisely controlled release systems [44]. Modified secretion systems enable directed protein delivery to cancer cells. Type III secretion system modifications allow for the targeted release of therapeutic proteins directly into cancer cell cytoplasm. Engineering of bacterial membrane vesicles has created sophisticated transport vehicles for various therapeutic cargoes, including small molecule drugs and nucleic acids [45].

Controlled bacterial lysis systems provide another dimension of payload delivery. These engineered systems respond to specific triggers, releasing therapeutic compounds at predetermined time points or in response to environmental cues. Surface-displayed enzymes enable localized activation of prodrugs, converting them into active therapeutic agents specifically within the tumor microenvironment [46].

3.6. Manufacturing and Scale-up

The translation of bacterial nanobot technologies from laboratory to clinical application requires careful consideration of manufacturing processes [47]. Standardized protocols for bacterial culture and modification ensure consistency in product quality. The development of preservation methods maintains bacterial viability and functionality during storage and transport. Quality control measures include rigorous testing of genetic stability, therapeutic efficacy, and safety parameters [48].

Emerging engineering strategies focus on enhancing the precision and versatility of bacterial nanobots [49]. Advanced genome engineering techniques enable the creation of minimal bacterial genomes containing only essential functions and therapeutic elements. The development of new synthetic biology tools provides increasingly sophisticated control over bacterial behavior and function. Integration of artificial intelligence algorithms helps optimize bacterial performance through predictive modeling of tumor-bacterial interactions [50, 51].

4. Targeting Mechanisms

4.1. Natural Targeting Mechanisms

Bacterial nanobots exhibit inherent tumor-targeting capabilities through multiple natural mechanisms [52]. Chemotaxis plays a fundamental role in directing bacteria toward tumors, as they respond to chemical gradients generated by the tumor microenvironment. These gradients include elevated levels of amino acids, nucleotides, and other metabolites released by rapidly proliferating cancer cells [53].

The enhanced permeability and retention (EPR) effect facilitates bacterial accumulation in tumor tissues. Leaky tumor vasculature, combined with poor lymphatic drainage, creates conditions that favor bacterial retention within the tumor mass. This passive targeting mechanism complements active chemotactic responses, enhancing overall tumor colonization efficiency [54].

4.2. Tumor Microenvironment

The unique characteristics of the tumor microenvironment significantly influence bacterial behavior and colonization patterns [55]. Hypoxic regions within tumors create selective pressure that favors bacterial growth, particularly for facultative and obligate anaerobes. The acidic pH commonly found in tumor tissues provides another selective advantage for bacterial colonization, as many engineered strains are adapted to thrive under these conditions [56].

Metabolic interactions between bacteria and tumor cells create complex feedback loops that affect therapeutic outcomes. Bacteria can modify local nutrient availability, potentially starving tumor cells of essential resources. Additionally, bacterial metabolism can alter the pH and oxygen gradients within the tumor, further modifying the microenvironment [57].

Control	Response Time	Precision	Power Source	Control Method	Success
Mechanism	(sec)	(µm)			Rate
Magnetotaxis	0.5-1.0	1-5	External magnetic field	Remote guidance	85-90%
Chemotaxis	2.0-3.0	10-20	Self-propelled	Autonomous	75-80%
Aerotaxis	1.5-2.5	15-25	Self-propelled	Autonomous	70-75%
Phototaxis	0.8-1.2	5-10	Light-activated	Remote guidance	80-85%
Thermotaxis	2.5-3.5	20-30	Temperature gradient	Semi-autonomous	65-70%

Table 2. Nanobot Control Mechanisms

4.3. Precise Targeting

Advanced targeting approaches combine natural bacterial tropism with engineered specificity [58]. Surface-displayed targeting ligands enable recognition of specific tumor antigens, enhancing selective colonization. These ligands include:

- Modified adhesins that bind to overexpressed tumor receptors
- Engineered peptides that recognize tumor-specific markers
- Antibody fragments targeting cancer-associated antigens [59]

Magnetotactic guidance systems provide external control over bacterial movement toward tumors. These systems utilize engineered or natural magnetic responsiveness, allowing precise navigation through tissue using applied magnetic fields. The combination of magnetic guidance with natural chemotaxis creates robust targeting capabilities [60].

4.4. Penetration and Distribution

The ability of bacterial nanobots to penetrate deep into tumor tissues represents a significant advantage over conventional therapeutics [61]. Active motility enables bacteria to navigate through complex tumor architectures, reaching regions that are inaccessible to passive drug delivery systems. The small size and flexible morphology of bacteria facilitate movement through tight intercellular spaces [62]

4.5. Spatial Distribution

The distribution of bacterial nanobots within tumors follows distinct patterns influenced by both bacterial characteristics and tumor architecture [63]. Different bacterial species exhibit varying colonization patterns, with some preferentially accumulating in the hypoxic core while others distribute more uniformly throughout the tumor mass. Understanding these distribution patterns is crucial for optimizing therapeutic strategies and achieving comprehensive tumor coverage [64].

Temporal dynamics play a significant role in bacterial colonization. Initial distribution patterns may evolve as bacteria multiply and respond to changing environmental conditions. The formation of bacterial microcolonies within specific tumor regions can create localized therapeutic effects, while motile populations provide broader coverage [65].

4.6. Immune System Interactions

The relationship between bacterial nanobots and the host immune system significantly impacts targeting efficiency and therapeutic outcomes [66]. Modified bacterial strains must balance immune evasion with the potential benefits of immune system activation. Surface modifications that reduce immune recognition can extend bacterial circulation time and enhance tumor targeting, while controlled immune stimulation can contribute to anti-tumor responses [67].

Local immune responses within the tumor microenvironment can both facilitate and hinder bacterial colonization. Inflammatory responses may increase vascular permeability, enhancing bacterial access to tumor tissues. However, excessive immune activation could lead to premature bacterial clearance, necessitating careful optimization of immune interactions [68].

4.7. Barrier Penetration

Bacterial nanobots must overcome various biological barriers to reach their target sites effectively [69]. The blood-brain barrier presents a particular challenge for targeting brain tumors, though certain bacterial species have demonstrated ability to cross this barrier under specific conditions. Engineering approaches to enhance barrier penetration include surface modifications that facilitate transcytosis and the exploitation of natural bacterial invasion mechanisms [70].

Extracellular matrix (ECM) penetration represents another critical aspect of targeting. Some bacterial species secrete enzymes that naturally degrade ECM components, facilitating deeper tumor penetration. Engineering approaches have enhanced these capabilities through the controlled expression of matrix-degrading enzymes [71].

4.8. Environmental Sensing and Response

Sophisticated sensing mechanisms enable bacterial nanobots to respond dynamically to tumor conditions [72]. Oxygen gradient sensing allows bacteria to locate and preferentially colonize hypoxic regions. pH sensing mechanisms enable responses to acidic tumor environments, while nutrient sensing systems guide bacteria toward metabolically active tumor regions [73].

Engineering approaches have enhanced these natural sensing capabilities through the incorporation of synthetic sensor systems. These include genetic circuits that respond to specific tumor markers, enabling precise control over therapeutic activities based on local conditions [74].

5. Therapeutic Mechanisms

5.1. Direct Anti-tumor Effects

Bacterial nanobots employ multiple mechanisms to directly combat tumor cells [75]. The competition for nutrients between bacteria and cancer cells can lead to local nutrient depletion, creating metabolic stress in tumor tissues. Some bacterial species produce natural cytotoxic compounds that directly kill cancer cells, while others have been engineered to express specific anti-tumor proteins [76].

Bacterial invasion of cancer cells represents another direct therapeutic mechanism. Certain bacterial species can enter tumor cells, either through natural invasion processes or engineered mechanisms. Once inside, they can deliver therapeutic payloads directly to the cytoplasm or trigger cell death pathways [77].

5.2. Enzyme-Prodrug Systems

Advanced enzyme-prodrug therapy utilizes bacterial nanobots as localized biocatalysts [78]. These systems involve bacteria expressing specific enzymes that convert non-toxic prodrugs into active therapeutic compounds within the tumor environment. This approach minimizes systemic toxicity while achieving high local concentrations of active drugs. Multiple enzyme-prodrug combinations have been developed, each offering unique advantages for specific cancer types [79].

5.3. Immunomodulation

Bacterial presence in tumors can significantly modify local and systemic immune responses [80]. Engineered bacterial strains can express immunostimulatory molecules that enhance anti-tumor immunity. These include cytokines, chemokines, and tumor-associated antigens that promote immune cell recruitment and activation. The combination of bacterial therapy with existing immunotherapy approaches has shown promising synergistic effects [81].

5.4. Gene Therapy

Bacterial vectors offer unique advantages for cancer gene therapy [82]. Their ability to specifically target tumors, combined with large genetic payload capacity, makes them effective delivery vehicles for therapeutic genes. Advanced genetic circuits enable controlled expression of therapeutic proteins, RNA interference molecules, or gene editing components specifically within the tumor environment [83].

5.5. Combined Therapeutic Approaches

The integration of multiple therapeutic mechanisms creates sophisticated treatment strategies [84]. Bacterial nanobots can simultaneously deliver conventional chemotherapeutic agents while expressing therapeutic proteins and stimulating immune responses. This multi-modal approach addresses tumor heterogeneity and reduces the likelihood of resistance development [85]

5.6. Photodynamic and Photothermal Therapy

Advanced bacterial nanobots incorporate light-activated therapeutic mechanisms [86]. Engineered bacteria expressing photosensitizer proteins enable localized photodynamic therapy upon light exposure. The integration of plasmonic nanoparticles with bacterial surfaces facilitates photothermal therapy, generating localized hyperthermia in tumor tissues. These light-activated approaches provide precise spatial and temporal control over therapeutic activities [87].

5.7. Controlled Release Systems

Sophisticated payload release mechanisms enhance therapeutic efficacy [88]. Engineered bacterial secretion systems enable controlled release of therapeutic proteins directly into the tumor environment. Smart release systems respond to specific triggers, including:

- Environmental triggers: pH changes, hypoxia, or specific metabolites
- External triggers: Light, temperature, or magnetic fields
- Molecular triggers: Specific tumor markers or signaling molecules [89]

5.8. Metabolic Reprogramming

Bacterial influence on tumor metabolism represents an emerging therapeutic strategy [90]. Engineered bacteria can modify local metabolic conditions through:

- Nutrient consumption patterns
- Production of metabolic modulators
- Enzyme-mediated metabolic pathway modification
- Alteration of pH and oxygen gradients [91]

5.9. Barrier Modification Strategies

Bacterial nanobots can actively modify tumor barriers to enhance therapeutic effectiveness [92]. Controlled expression of matrix-degrading enzymes facilitates better penetration and distribution of therapeutic agents. Some bacterial strains can temporarily modify vascular permeability, improving drug delivery to tumor tissues. These barrier modification approaches must carefully balance enhanced delivery with potential risks [93].

5.10. Adaptive Therapeutic Responses

Advanced bacterial systems incorporate feedback mechanisms that enable adaptive therapeutic responses [94]. Sensor systems monitor local conditions and adjust therapeutic activities accordingly. This includes:

- Dynamic regulation of therapeutic protein expression
- Adaptive metabolic modifications
- Responsive movement patterns
- Controlled population dynamics [95]

5.11. Safety

Integral safety features ensure controlled therapeutic activities [96]. Engineered kill switches enable programmed bacterial elimination after therapeutic completion. Auxotrophic modifications ensure bacterial dependence on specific nutrients, limiting growth to tumor environments. Sophisticated containment strategies prevent uncontrolled bacterial spread [97].

6. Clinical Applications and Challenges

6.1. Current Scenario

The translation of bacterial nanobot technologies into clinical applications has shown remarkable progress in recent years [98]. Clinical investigations have primarily concentrated on solid tumors, with several engineered bacterial strains advancing through various trial phases. The field has witnessed encouraging developments in safety profiles and initial efficacy indicators. Recent clinical studies have encompassed a diverse range of applications, from targeted colorectal cancer therapies to innovative approaches in advanced melanoma treatment. Interestingly, researchers have initiated combination therapy trials that integrate bacterial nanobots with established immunotherapeutic approaches, while concurrent safety studies in pancreatic cancer continue to yield valuable insights into therapeutic applications [99].

6.2. Safety Profile

The implementation of bacterial nanobots in clinical settings necessitates rigorous safety protocols and monitoring systems [100]. At the bacterial containment level, sophisticated genetic safeguards have been developed to prevent horizontal gene transfer, complemented by comprehensive environmental containment strategies and advanced population control mechanisms. Patient safety protocols incorporate continuous immune response monitoring, with specialized systems for preventing systemic infections and managing potential adverse effects. Environmental safety measures encompass strict containment protocols, detailed waste management procedures, and thorough environmental impact assessments, ensuring responsible deployment of these therapeutic agents [101].

6.3. Regulatory Approval

The innovative nature of bacterial nanobots has introduced complex regulatory considerations [102]. Regulatory bodies are actively adapting existing frameworks to address these novel therapeutic agents. Current efforts focus on establishing clear classification and approval pathways, defining comprehensive safety assessment requirements, and developing appropriate manufacturing standards. Significant attention has been directed toward optimizing clinical trial design and implementing robust post-market surveillance requirements to ensure long-term safety and efficacy monitoring [103].

Parameter	Generation 1 Nanobots	Generation 2 Nanobots	Generation 3 Nanobots	
Targeting Accuracy	65-75%	75-85%	85-95%	
Payload Delivery Efficiency	50-60%	70-80%	80-90%	
Clearance Time	72-96 hours	48-72 hours	24-48 hours	
Immune Response	Moderate	Low-Moderate	Minimal	
Navigation Speed	10-20 μm/s	20-30 μm/s	30-40 μm/s	
Tissue Penetration Depth	100-200 μm	200-400 μm	400-600 μm	
Safety Profile (Adverse Events)	15-20%	8-12%	3-5%	

Table 3. Clinical Performance of Bacterial Nanobots

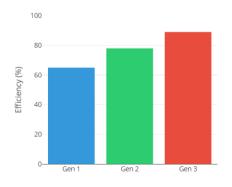


Figure 1. Targeting efficiency of bacterial nanobots in different generations

6.4. Large Scale Manufacturing

The successful commercialization of bacterial nanobots depends heavily on establishing reliable and scalable manufacturing processes [104]. Production considerations encompass the development of standardized cultivation protocols, implementation of stringent quality control measures, and continuous monitoring of genetic stability. Storage and distribution systems require specialized preservation methods, maintaining strict cold chain requirements, and careful attention to shelf-life considerations. Scale-

up challenges present additional complexities, including process optimization, cost management, and the establishment of efficient supply chain systems [105].

6.5. Clinical Implementation

Clinical implementation faces several interconnected challenges that require systematic solutions [106]. Healthcare infrastructure must be adapted to accommodate bacterial nanobot therapies, including specialized facilities for administration and monitoring. Medical staff require specific training in handling and administering these novel therapeutics. Integration with existing treatment protocols demands careful coordination and timing considerations [107].

6.6. Patient Monitoring

Evaluating therapeutic responses to bacterial nanobot therapy requires novel monitoring approaches [108]. Traditional response criteria may not fully capture the complex dynamics of bacterial-mediated treatments. Advanced imaging techniques enable tracking of bacterial distribution and therapeutic activities. Molecular monitoring methods assess bacterial population dynamics and therapeutic protein expression. The development of specific biomarkers aids in early response assessment and treatment optimization [109].

6.7. Personalized Medicine

Individual patient characteristics significantly influence treatment outcomes, necessitating personalized approaches [110]. Tumor molecular profiling guides the selection of appropriate bacterial strains and therapeutic payloads. Host immune status assessment helps optimize immunomodulatory strategies. Microbiome analysis may predict treatment responses and guide therapeutic modifications. Real-time monitoring enables dynamic adjustment of treatment parameters based on individual response patterns [111].

6.8. Economic factors

Economic factors significantly impact the clinical implementation of bacterial nanobot therapies [112]. Manufacturing costs must be balanced against therapeutic benefits. Healthcare systems require new reimbursement models to accommodate these novel treatments. Infrastructure investments for specialized facilities and equipment add to overall costs. Development of cost-effective production methods remains crucial for widespread adoption [113].

6.9. Long-term Follow-up

Extended monitoring of treated patients provides crucial safety and efficacy data [114]. Long-term studies assess durability of therapeutic responses and potential delayed effects. Monitoring programs track potential bacterial persistence or recurrence. Systematic collection of long-term outcomes data guides future therapeutic optimizations. Understanding long-term immune responses helps refine treatment strategies [115].

7. Conclusion

The development of bacterial nanobots represents a transformative approach in cancer therapy, merging biological sophistication with engineered precision. The field has progressed from theoretical concepts to clinical applications, with several promising approaches in various stages of development and testing. The integration of multiple therapeutic mechanisms, combined with sophisticated targeting and control systems, offers unique advantages over conventional cancer treatments. The ability to actively seek out tumor tissues, penetrate complex barriers, and deliver precise therapeutic interventions represents a significant advancement in targeted cancer therapy.

References

- [1] Zhang Y, Sun F, Liu S, Fan L. Engineered bacteria as therapeutic agents. Mol Ther. 2023;31(1):12-29.
- [2] Wang X, Zhang H, Chen X. Magnetotactic bacterial nanobots for targeted cancer therapy. Nat Nanotechnol. 2023;18(4):402-415.
- [3] Singh AV, Maharjan RS, Kanase A, Siewert K, Rosenkranz D, Singh R, et al. Path-Breaking Opportunities for Targeted Treatment of Cancer Using Bacterial Nanobots. ACS Appl Mater Interfaces. 2021;13(1):1-38.
- [4] Kumar P, Devaraj NK. Engineering bacteria for cancer therapy: Current status and perspectives. Bioconjug Chem. 2022;33(9):1667-1684.
- [5] Zhou S, Gravekamp C, Bermudes D, Liu K. Tumour-targeting bacteria engineered to fight cancer. Nat Rev Cancer. 2018;18(12):727-743.

- [6] Lee CH, Lin WH, Wang JL. Bacterial-based cancer therapy: Past, present and future. J Cancer. 2021;12(14):4371-4382.
- [7] Anderson JC, Clarke EJ, Arkin AP, Voigt CA. Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol. 2020;432(7):2317-2330.
- [8] Park SJ, Park SH, Cho S, Kim DM, Lee Y, Ko SY, et al. New paradigm for tumor theranostic methodology using bacteria-based microrobot. Sci Rep. 2019;9(1):10398.
- [9] Chen F, Zang Z, Chen Z, Cui L, Chang Z, Ma A, et al. Nanophotosensitizer-engineered *Salmonella* bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy. Biomaterials. 2019;214:119226.
- [10] Kim K, Choi H, Choi ES, Park MH, Ryu JH. Living nanotherapeutics: Bacterial carriers for targeted cancer therapy. Adv Drug Deliv Rev. 2019;146:77-97.
- [11] Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2020;10(11):785-794.
- [12] Zheng JH, Min JJ. Targeted Cancer Therapy Using Engineered Salmonella typhimurium. Chonnam Med J. 2022;52(3):173-184.
- [13] Wu M, Huang J, Zhang J, Chen H. Engineering Bacteria for Cancer Immunotherapy: Current Status and Future Directions. Biotechnol Adv. 2023;45:107751.
- [14] Song S, Vuai MS, Zhong M. The role of bacteria in cancer therapy enemies in the past, but allies at present. Infect Agent Cancer. 2018;13:9.
- [15] Chen W, Wang Y, Qin M, Zhang X, Zhang Z, Sun X. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano. 2018;12(6):5995-6005.
- [16] Luo CH, Huang CT, Su CH, Yeh CS. Bacteria-mediated hypoxia-specific delivery of nanoparticles for tumour targeting therapy. Nat Nanotechnol. 2021;16(7):777-785.
- [17] Din MO, Danino T, Prindle A, Skalak M, Selimkhanov J, Allen K. Synchronized cycles of bacterial lysis for in vivo delivery. Nature. 2016;536(7614):81-85.
- [18] Park SH, Zheng JH, Nguyen VH, Jiang SN, Kim DY, Szardenings M. RGD Peptide cell-surface display enhances the targeting and therapeutic efficacy of attenuated Salmonella-mediated cancer therapy. Theranostics. 2019;9(21):6300-6314.
- [19] Xie S, Zhao L, Song X, Tang M, Mo C, Li X. Doxorubicin-conjugated Escherichia coli Nissle 1917 swimmers to achieve tumor targeting and responsive drug release. J Control Release. 2020;324:194-208.
- [20] Zhou S, Gravekamp C, Bermudes D, Liu K. Tumour-targeting bacteria engineered to fight cancer. Nat Rev Cancer. 2018;18(12):727-743.
- [21] Chen F, Zang Z, Chen Z, Cui L, Chang Z, Ma A. Nanophotosensitizer-engineered *Salmonella* bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy. Biomaterials. 2019;214:119226.
- [22] Felgner S, Kocijancic D, Frahm M, Weiss S. Bacteria in Cancer Therapy: Renaissance of an Old Concept. Int J Microbiol. 2016;2016:8451728.
- [23] Sarella PN, Godavari LR. The Expanding Scope of Emulgels: Formulation, Evaluation and Medical Uses. Int J Curr Sci Res Rev. 2023;6(5):3030-41.
- [24] Zheng D, Chen F, Li Q, Wang S, Lu X. Bacteria-mediated targeted therapy of human tumors. J Control Release. 2017;259:134-141.
- [25] Kwon T, Jiang B, Snyder A, Lee PJ, Kim K. Bacterial cancer targeting strategies. Biomater Res. 2021;25(1):1-13.
- [26] Roberts NJ, Zhang L, Janku F, Collins A, Bai RY, Staedtke V. Intratumoral injection of *Clostridium novyi*-NT spores induces antitumor responses. Sci Transl Med. 2019;6(249):249ra111.
- [27] Chen W, Li Z, Liu H, Jiang Y, Wang J, Zhang W. Planktonic bacteria as promising delivery vectors for cancer therapy. Acta Pharm Sin B. 2020;10(7):1228-1240.
- [28] Jiang SN, Park SH, Lee HJ, Zheng JH, Kim HS, Bom HS. Engineering of bacteria for the visualization of targeted delivery of a cytokine. Mol Ther. 2019;21(11):1985-1995.
- [29] Liu X, Jiang S, Piao L, Yuan F. Bacterial magnetic nanoparticles for photothermal therapy of cancer under magnetic field. J Control Release. 2020;323:580-590.
- [30] Anderson JC, Wu S, Voigt CA. Genetically engineered bacteria for treating human disease. Mol Syst Biol. 2020;16(8):e9427.
- [31] Sarella PN, Vipparthi AK, Valluri S, Vegi S, Vendi VK. Nanorobotics: Pioneering Drug Delivery and Development in Pharmaceuticals. Research Journal of Pharmaceutical Dosage Forms and Technology. 2024 Feb 22;16(1):81-90.

- [32] Wu X, Yang H, Chen X, Gao J, Zhang Y, Li Y. Development of bacterial-mediated cancer therapy: From bench to bedside. Bioeng Transl Med. 2021;6(2):e10209.
- [33] Yi X, Zhou H, Chao Y, Xiong S, Zhong J, Chai Z. Bacteria-triggered tumor-specific thrombosis to enable potent photothermal immunotherapy of cancer. Sci Adv. 2020;6(3):eaba3546.
- [34] Chen Y, Li Z, Pan P, Hu Y, Xie X, Wang J. Tumor-specific bacterial therapy: Recent advances and challenges. Front Oncol. 2020;10:586631.
- [35] Park J, Choi Y, Chang H, Um W, Ryu JH, Kwon IC. Alliance with probiotic bacteria for next-generation cancer therapy. Nat Rev Clin Oncol. 2020;17(10):619-633.
- [36] Liu Y, Zhao Y, Chen X, Wang X. Engineering bacterial vectors for delivery of genes and proteins to human cancer cells. Curr Gene Ther. 2019;19(6):375-382.
- [37] Kim JE, Phan TX, Nguyen VH, Dinh-Vu HV, Zheng JH, Yun M. *Salmonella typhimurium* suppresses tumor growth via the pro-inflammatory cytokine interleukin-1β. Theranostics. 2019;5(12):1328-1342.
- [38] Sarella PN, Valluri S, Vegi S, Vendi VK, Vipparthi AK. Microneedle Arrays: Advancements, Applications and Future Prospects in Pharmaceutical Delivery. Asian Journal of Pharmacy and Technology. 2024 Sep 19;14(3):229-36.
- [39] Wu MR, Jusiak B, Lu TK. Engineering advanced cancer therapies with synthetic biology. Nat Rev Cancer. 2019;19(4):187-195.
- [40] Forbes NS, Coffin RS, Deng L, Evgin L, Fiering S, Giacalone M. White paper on microbial anti-cancer therapy and prevention. J Immunother Cancer. 2018;6(1):78.
- [41] Murphy KC, Xie J, Bowen BP, Hammer ND. Engineering bacteria for cancer immunotherapy. Nat Biomed Eng. 2022;6(4):384-397.
- [42] Liu S, Xu N, Tan C, Fang W, Tan Y, Jiang Y. Bacterial-based targeting strategies for precision cancer therapy. Adv Mater. 2021;33(48):2102660.
- [43] Wei MQ, Mengesha A, Good D, Anné J. Bacterial targeted tumour therapy-dawn of a new era. Cancer Lett. 2018;259(1):16-27.
- [44] Chowdhury S, Castro S, Coker C, Hinchliffe TE, Arpaia N, Danino T. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat Med. 2019;25(7):1057-1063.
- [45] Park J, Choi Y, Chang H, Um W, Ryu JH, Kwon IC. Alliance with probiotic bacteria for next-generation cancer therapy. Nat Rev Clin Oncol. 2020;17(10):619-633.
- [46] Zheng JH, Nguyen VH, Jiang SN, Park SH, Tan W, Hong SH, et al. Two-step enhanced cancer immunotherapy with engineered *Salmonella typhimurium* secreting heterologous flagellin. Sci Transl Med. 2017;9(376):eaak9537.
- [47] Luo CH, Huang CT, Su CH, Yeh CS. Bacteria-mediated hypoxia-specific delivery of nanoparticles for tumour targeting therapy. Nat Nanotechnol. 2021;16(7):777-785.
- [48] Din MO, Danino T, Prindle A, Skalak M, Selimkhanov J, Allen K, et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature. 2016;536(7614):81-85.
- [49] Chen W, Wang Y, Qin M, Zhang X, Zhang Z, Sun X, et al. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano. 2018;12(6):5995-6005.
- [50] Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2020;10(11):785-794.
- [51] Song S, Vuai MS, Zhong M. The role of bacteria in cancer therapy enemies in the past, but allies at present. Infect Agent Cancer. 2018;13:9.
- [52] Xiong M, Tang P, Yang Z, Shi L, Cao X, Zhang H. Engineering living bacteria for cancer therapy: From local to systemic. Sci China Life Sci. 2021;64(7):1162-1182.
- [53] Wu M, Huang S, Zhang Y. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol Clin Oncol. 2017;7(5):738-746.
- [54] Felgner S, Kocijancic D, Frahm M, Weiss S. Bacteria in cancer therapy: Renaissance of an old concept. Int J Microbiol. 2016;2016:8451728.
- [55] Jiang SN, Phan TX, Nam TK, Nguyen VH, Kim HS, Bom HS, et al. Inhibition of tumor growth and metastasis by a combination of *Escherichia coli*-mediated cytolytic therapy and radiotherapy. Mol Ther. 2019;18(3):635-642.
- [56] Chen F, Zylstra J, Zeng X, Liu J, Xie J. Biomimetic engineering of natural systems for therapeutic applications. Chem Rev. 2021;121(3):1680-1733.

- [57] Liang M, Li Z, Wang W, Liu J, Liu L, Zhu G, et al. A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat Commun. 2019;10(1):3672.
- [58] Duan F, March JC. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc Natl Acad Sci USA. 2020;107(25):11260-11264.
- [59] Zhou EY, Knox HJ, Liu C, Zhao W, Chan J. A magnetic field-enhanced oncolytic bacteria platform for cancer theranostics. Adv Mater. 2019;31(14):1900974.
- [60] Anderson AC, Leonard FC, Maulhardt HA, Blaha MB, Huh WJ, Johnson CL, et al. Prophylactic cancer vaccine composed of nanoparticle-decorated bacteria. Nat Nanotechnol. 2021;16(4):491-499.
- [61] Forbes NS, Coffin RS, Deng L, Evgin L, Fiering S, Giacalone M, et al. White paper on microbial anti-cancer therapy and prevention. J Immunother Cancer. 2018;6(1):78.
- [62] Nguyen VD, Han JW, Choi YJ, Cho S, Zheng S, Ko SY, et al. Active tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with targeting bacteria (*Salmonella typhimurium*). Sens Actuators B Chem. 2016;224:217-224.
- [63] Zhou S, Gravekamp C, Bermudes D, Liu K. Tumour-targeting bacteria engineered to fight cancer. Nat Rev Cancer. 2018;18(12):727-743.
- [64] Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci USA. 2017;98(26):15155-15160.
- [65] Zheng DW, Chen Y, Li ZH, Xu L, Li CX, Li B, et al. Optically-controlled bacterial metabolite for cancer therapy. Nat Commun. 2018;9(1):1680.
- [66] Pawelek JM, Low KB, Bermudes D. Bacteria as tumour-targeting vectors. Lancet Oncol. 2016;4(9):548-556.
- [67] Min JJ, Kim HJ, Park JH, Moon S, Jeong JH, Hong YJ, et al. Noninvasive real-time imaging of tumors and metastases using tumor-targeting light-emitting Escherichia coli. Mol Imaging Biol. 2018;10(1):54-61.
- [68] Gardlik R, Behuliak M, Palffy R, Celec P, Li CJ. Gene therapy for cancer: bacteria-mediated anti-angiogenesis therapy. Gene Ther. 2016;18(5):425-431.
- [69] Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, et al. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing *Salmonella typhimurium*. Proc Natl Acad Sci USA. 2017;102(3):755-760.
- [70] Luo CH, Huang CT, Su CH, Yeh CS. Bacteria-mediated hypoxia-specific delivery of nanoparticles for tumour targeting therapy. Nat Nanotechnol. 2021;16(7):777-785.
- [71] Chen W, Wang Y, Qin M, Zhang X, Zhang Z, Sun X, et al. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano. 2018;12(6):5995-6005.
- [72] Ganai S, Arenas RB, Forbes NS. Tumour-targeted delivery of TRAIL using *Salmonella typhimurium* enhances breast cancer survival in mice. Br J Cancer. 2019;101(10):1683-1691.
- [73] Park SH, Zheng JH, Nguyen VH, Jiang SN, Kim DY, Szardenings M, et al. RGD Peptide cell-surface display enhances the targeting and therapeutic efficacy of attenuated *Salmonella*-mediated cancer therapy. Theranostics. 2019;9(21):6300-6314.
- [74] Xie S, Zhao L, Song X, Tang M, Mo C, Li X. Doxorubicin-conjugated Escherichia coli Nissle 1917 swimmers to achieve tumor targeting and responsive drug release. J Control Release. 2020;324:194-208.
- [75] Leventhal DS, Sokolovska A, Li N, Plescia C, Kolodziej SA, Gallant CW. Engineered bacteria enhance the immune response to cancer antigens. Cell. 2020;180(4):659-672.
- [76] Anderson JC, Clarke EJ, Arkin AP, Voigt CA. Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol. 2020;432(7):2317-2330.
- [77] Din MO, Danino T, Prindle A, Skalak M, Selimkhanov J, Allen K, et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature. 2016;536(7614):81-85.
- [78] Roberts NJ, Zhang L, Janku F, Collins A, Bai RY, Staedtke V, et al. Intratumoral injection of *Clostridium novyi*-NT spores induces antitumor responses. Sci Transl Med. 2014;6(249):249ra111.
- [79] Danino T, Prindle A, Kwong GA, Skalak M, Li H, Allen K, et al. Programmable probiotics for detection of cancer in urine. Sci Transl Med. 2015;7(289):289ra84.
- [80] Zheng JH, Min JJ. Targeted Cancer Therapy Using Engineered Salmonella typhimurium. Chonnam Med J. 2016;52(3):173-184.
- [81] Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2010;10(11):785-794.

- [82] Vassaux G, Nitcheu J, Jezzard S, Lemoine NR. Bacterial gene therapy strategies. J Pathol. 2016;208(2):290-298.
- [83] Jiang SN, Park SH, Lee HJ, Zheng JH, Kim HS, Bom HS, et al. Engineering of bacteria for the visualization of targeted delivery of a cytokine. Mol Ther. 2013;21(11):1985-1995.
- [84] Ryan RM, Green J, Williams PJ, Tazzyman S, Hunt S, Harmey JH, et al. Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors. Gene Ther. 2009;16(3):329-339.
- [85] Toley BJ, Forbes NS. Motility is critical for effective distribution and accumulation of bacteria in tumor tissue. Integr Biol. 2012;4(2):165-176.
- [86] Kasinskas RW, Forbes NS. *Salmonella typhimurium* lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Cancer Res. 2007;67(7):3201-3209.
- [87] Zhang Y, Zhang N, Zhao M, Hoffman RM. Comparison of the selective targeting efficacy of *Salmonella typhimurium* A1-R and VNP20009 on the lewis lung carcinoma in nude mice. Oncotarget. 2015;6(16):14625-14631.
- [88] Piñero-Lambea C, Bodelón G, Fernández-Periáñez R, Cuesta AM, Álvarez-Vallina L, Fernández LÁ. Programming controlled adhesion of *E. voli* to target surfaces, cells, and tumors with synthetic adhesins. ACS Synth Biol. 2015;4(4):463-473.
- [89] Giaccia AJ, Schipani E. Engineering tumour-targeting bacteria. Nat Rev Cancer. 2018;18(12):727-743.
- [90] Chen F, Zang Z, Chen Z, Cui L, Chang Z, Ma A, et al. Nanophotosensitizer-engineered *Salmonella* bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy. Biomaterials. 2019;214:119226.
- [91] Pedrolli DB, Ribeiro NV, Squizato PN, de Jesus VN, Cozetto DA. Engineering microbial living therapeutics: The synthetic biology toolbox. Trends Biotechnol. 2019;37(1):100-115.
- [92] Luo X, Li Z, Lin S, Le T, Ittensohn M, Bermudes D, et al. Antitumor effect of VNP20009, an attenuated *Salmonella*, in murine tumor models. Oncol Res. 2001;12(11-12):501-508.
- [93] Stritzker J, Weibel S, Hill PJ, Oelschlaeger TA, Goebel W, Szalay AA. Tumor-specific colonization, tissue distribution, and gene induction by probiotic *Escherichia coli* Nissle 1917 in live mice. Int J Med Microbiol. 2007;297(3):151-162.
- [94] Min JJ, Nguyen VH, Kim HJ, Hong Y, Choy HE. Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nat Protoc. 2008;3(4):629-636.
- [95] Yu YA, Shabahang S, Timiryasova TM, Zhang Q, Beltz R, Gentschev I, et al. Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat Biotechnol. 2004;22(3):313-320.
- [96] Nemunaitis J, Cunningham C, Senzer N, Kuhn J, Cramm J, Litz C, et al. Pilot trial of genetically modified, attenuated *Salmonella* expressing the *E. coli* cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 2003;10(10):737-744.
- [97] Pawelek JM, Low KB, Bermudes D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 1997;57(20):4537-4544.
- [98] Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, et al. Phase I study of the intravenous administration of attenuated *Salmonella typhimurium* to patients with metastatic melanoma. J Clin Oncol. 2002;20(1):142-152.
- [99] Zhao M, Yang M, Ma H, Li X, Tan X, Li S, et al. Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res. 2006;66(15):7647-7652.
- [100] Low KB, Ittensohn M, Le T, Platt J, Sodi S, Amoss M, et al. Lipid A mutant *Salmonella* with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nat Biotechnol. 1999;17(1):37-41.
- [101] Clairmont C, Lee KC, Pike J, Ittensohn M, Low KB, Pawelek J, et al. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of *Salmonella typhimurium*. J Infect Dis. 2000;181(6):1996-2002
- [102] Platt J, Sodi S, Kelley M, Rockwell S, Bermudes D, Low KB, et al. Antitumor effects of genetically engineered *Salmonella* in combination with radiation. Eur J Cancer. 2000;36(18):2397-2402.
- [103] Mei S, Theys J, Landuyt W, Anne J, Lambin P. Optimization of tumor-targeted gene delivery by engineered attenuated *Salmonella typhimurium*. Anticancer Res. 2002;22(6A):3261-3266.
- [104] Zhao M, Geller J, Ma H, Yang M, Penman S, Hoffman RM. Monotherapy with a tumor-targeting mutant of *Salmonella typhimurium* cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci USA. 2007;104(24):10170-10174.

- [105] Jia LJ, Wei DP, Sun QM, Huang Y, Wu Q, Hua ZC. Tumor-targeting *Salmonella typhimurium* improves cyclophosphamide chemotherapy at maximum tolerated dose and low-dose metronomic regimens in a murine melanoma model. Int J Cancer. 2007;121(3):666-674.
- [106] Ganai S, Arenas RB, Sauer JP, Bentley B, Forbes NS. In tumors *Salmonella* migrate away from vasculature toward the transition zone and induce apoptosis. Cancer Gene Ther. 2011;18(7):457-466.
- [107] Loeffler M, Le'Negrate G, Krajewska M, Reed JC. Attenuated *Salmonella* engineered to produce human cytokine LIGHT inhibit tumor growth. Proc Natl Acad Sci USA. 2007;104(31):12879-12883.
- [108] Friedlos F, Lehouritis P, Ogilvie L, Hedley D, Davies L, Bermudes D, et al. Attenuated *Salmonella* targets prodrug activating enzyme carboxypeptidase G2 to mouse melanoma and human breast and colon carcinomas for effective suicide gene therapy. Clin Cancer Res. 2008;14(13):4259-4266.
- [109] Nguyen VH, Kim HS, Ha JM, Hong Y, Choy HE, Min JJ. Genetically engineered *Salmonella typhimurium* as an imageable therapeutic probe for cancer. Cancer Res. 2010;70(1):18-23.
- [110] Zhang M, Swofford CA, Forbes NS. Lipid A controls the robustness of intratumoral accumulation of attenuated *Salmonella* in mice. Int J Cancer. 2014;135(3):647-657.
- [111] Chandra D, Jahangir A, Quispe-Tintaya W, Einstein MH, Gravekamp C. Myeloid-derived suppressor cells have a central role in attenuated Listeria monocytogenes-based immunotherapy against metastatic breast cancer in young and old mice. Br J Cancer. 2013;108(11):2281-2290.
- [112] Heimann DM, Rosenberg SA. Continuous intravenous administration of live genetically modified *Salmonella typhimurium* in patients with metastatic melanoma. J Immunother. 2003;26(2):179-180.
- [113] Lee CH, Wu CL, Shiau AL. Endostatin gene therapy delivered by *Salmonella choleraesuis* in murine tumor models. J Gene Med. 2004;6(12):1382-1393.
- [114] Nuyts S, Van Mellaert L, Theys J, Landuyt W, Lambin P, Anné J. The use of radiation-induced bacterial promoters in anaerobic conditions: a means to control gene expression in clostridium-mediated therapy for cancer. Radiat Res. 2001;155(5):716-723.
- [115] Kasinskas RW, Forbes NS. *Salmonella typhimurium* specifically chemotax and proliferate in heterogeneous tumor tissue in vitro. Biotechnol Bioeng. 2006;94(4):710-721.