REVIEW ARTICLE

Current Perspectives in NEMO Deficiency Syndrome Management

Gayathri Devi Setti*¹, Ramya Sri Bura¹, Sujatha Gorle¹, Ravi Prakash Degala², Govindarao Kamala³

¹PharmD Intern, Department of Pharmacy Practice, Koringa College of Pharmacy, Korangi, Andhra Pradesh, India

Publication history: Received on 30th Dec 2024; Revised on 3rd Jan 2025; Accepted on 8th Jan 2025

Article DOI: 10.69613/q327hy53

Abstract: NEMO deficiency syndrome, also known as X-linked hypohidrotic ectodermal dysplasia with immunodeficiency (XL-EDA-ID), is a rare genetic disorder caused by mutations in the IKBKG gene encoding the NF-xB essential modulator (NEMO) protein. The condition primarily affects males and presents with a complex array of immune system abnormalities and ectodermal dysplasia. NEMO protein plays a crucial role in activating the NF-xB signaling pathway, which regulates various cellular processes including inflammation, immune response, and cell survival. The syndrome manifests with recurrent severe bacterial infections, particularly from Streptococcus pneumoniae and Staphylococcus aureus, along with characteristic features of ectodermal dysplasia including hypohidrosis, sparse hair, and dental anomalies. Immunological abnormalities encompass defects in both innate and adaptive immunity, affecting T cells, B cells, and natural killer cells. Diagnosis requires a comprehensive evaluation of clinical presentation, immunological parameters, and genetic testing. Treatment strategies primarily focus on preventing infections through immunoglobulin replacement therapy and prophylactic antibiotics. Hematopoietic stem cell transplantation may be considered for severe cases, although it does not address the ectodermal manifestations. The prognosis varies significantly depending on mutation severity and therapeutic intervention timing.

Keywords: NEMO deficiency syndrome; IKBKG gene; NF-иВ signaling; Primary immunodeficiency; Ectodermal dysplasia.

1. Introduction

NEMO deficiency syndrome represents a complex genetic disorder first identified in 1999, characterized by mutations in the IKBKG gene located on the X chromosome [1]. The NEMO protein, encoded by IKBKG, functions as a regulatory subunit of the IkB kinase (IKK) complex, which is essential for activating the Nuclear Factor-kappa B (NF-kB) signaling pathway [2]. This pathway orchestrates multiple cellular processes, including immune response regulation, inflammatory signaling, and cell survival mechanisms [3].

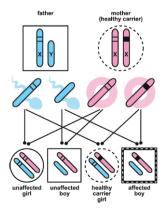


Figure 1. Mechanism of X-linked inheritance

² Associate Professor and HOD, Department of Pharmacy Practice, Koringa College of Pharmacy, Korangi, Andhra Pradesh, India

³ Professor, Department of Pharmaceutical Chemistry, Koringa College of Pharmacy, Korangi, Andhra Pradesh, India

^{*} Corresponding author: Gayathri Devi Setti

The syndrome manifests predominantly in males, while female carriers typically exhibit a distinct condition known as incontinentia pigmenti [4]. The molecular pathogenesis involves disruption of the NF-μB signaling cascade, which comprises five key proteins: RelA (p65), RelB, c-Rel, p100, and p105 [5]. These proteins contain a conserved Rel homology domain (RHD) crucial for DNA binding and protein-protein interactions [6]. The NEMO protein serves as an integral component of the IKK complex, consisting of catalytic subunits IKKα and IKKβ, and the regulatory subunit IKKγ (NEMO) [7]. This complex mediates the phosphorylation of inhibitory IμB proteins, triggering their degradation and subsequent release of NF-μB transcription factors [8]. Hypomorphic mutations in IKBKG result in impaired NF-μB activation, affecting multiple cellular pathways essential for immune function and ectodermal development [9].

The severity of NEMO deficiency correlates with the specific mutation type and its impact on protein function. Complete loss-of-function mutations typically result in embryonic lethality in males, while hypomorphic mutations lead to varying degrees of immune dysfunction and ectodermal dysplasia [10]. The condition affects approximately 70-80% of patients with similar genetic rearrangements, with neurological manifestations, including epilepsy, observed in approximately 50% of cases [11].

2. Clinical manifestations

2.1. Immune System Abnormalities

NEMO deficiency syndrome presents with diverse immunological manifestations reflecting the crucial role of NF-xB signaling in immune system development and function [12]. Primary immunological features manifest as hypogammaglobulinemia, impaired antibody responses to polysaccharide antigens, and defective toll-like receptor signaling [13]. Patients exhibit increased susceptibility to encapsulated bacteria, particularly Streptococcus pneumoniae and Staphylococcus aureus, often resulting in recurrent respiratory tract infections, meningitis, and septicemia [14].

Cellular immunity defects manifest through impaired T-cell function, reduced natural killer cell activity, and compromised cytokine production [15]. The condition significantly affects innate immunity, with decreased inflammatory responses and altered neutrophil function, contributing to the heightened susceptibility to mycobacterial infections [16]. These immunological defects often result in severe, recurrent infections beginning in early infancy, with particular vulnerability to pneumococcal and staphylococcal organisms affecting multiple organ systems.

Clinical Manifestation	Prevalence (%)	Typical Age of Onset	
Recurrent bacterial infections	85-95	Early infancy	
Pneumonia	75-80	Infancy/childhood	
Skin infections	70-80	Throughout life	
Sparse/brittle hair	90-95	Birth	
Dental anomalies	80-85	Infancy	
Hypohidrosis	75-85	Birth	
Inflammatory bowel disease	25-30	Childhood/adolescence	
Mycobacterial infections	20-25	Variable	
Osteopetrosis	15-20	Early childhood	
Lymphedema	10-15	Variable	

Table 1. Clinical Features and Their Prevalence in NEMO Deficiency Syndrome

2.2. Ectodermal Dysplasia

The ectodermal component of NEMO deficiency manifests through distinct developmental abnormalities affecting multiple tissues of ectodermal origin [17]. Cutaneous manifestations include hypohidrosis or anhidrosis due to reduced or absent sweat glands, resulting in thermoregulation difficulties and heat intolerance. The skin appears dry, thickened, and may display characteristic patterns of hyperpigmentation or hypopigmentation [18].

Hair abnormalities present as notably sparse, thin hair affecting the scalp, eyebrows, and eyelashes, accompanied by abnormal hair texture and growth patterns. The dental manifestations are particularly distinctive, characterized by hypodontia or oligodontia, with characteristically conical-shaped teeth and delayed dentition. Patients frequently display various nail dystrophies, including thickness changes, ridging, and altered growth patterns [19].

2.3. Diagnosis

2.3.1. Laboratory Evaluation

The diagnosis of NEMO deficiency syndrome requires a comprehensive laboratory evaluation incorporating multiple immunological parameters [20]. Quantitative immunoglobulin measurements typically reveal variable patterns of antibody deficiency, with particularly impaired responses to polysaccharide antigens. Lymphocyte subset analysis often demonstrates alterations in T-cell populations and functionality, while natural killer cell functional assays frequently reveal impaired cytotoxic responses [21].

Toll-like receptor stimulation studies provide crucial information about innate immune system function, often revealing characteristic patterns of altered inflammatory responses. The diagnostic process includes evaluation of specific antibody responses to vaccination, which typically show impaired response to pneumococcal vaccines despite adequate immunization [22].

2.3.2. Clinical Assessment

Clinical diagnosis relies heavily on the recognition of characteristic patterns of infection and developmental abnormalities. The temporal progression of symptoms, beginning in early infancy with severe bacterial infections, provides valuable diagnostic information. Family history analysis often reveals patterns consistent with X-linked inheritance, particularly in male patients with affected maternal relatives [23]. Associated complications, including inflammatory bowel disease, osteoporosis, and neurological manifestations, may develop over time and require careful monitoring and documentation.

Genetic confirmation through sequencing of the IKBKG gene remains the gold standard for diagnosis. This analysis identifies specific mutations and helps predict potential disease severity and progression. Family genetic studies provide additional valuable information for genetic counseling and risk assessment in relatives [24].

3. Treatment approaches

3.1. Immunological Management

Treatment of NEMO deficiency syndrome requires a multifaceted approach centered on preventing and managing infections while addressing specific organ system manifestations [25]. Immunoglobulin replacement therapy constitutes the cornerstone of treatment, administered either intravenously or subcutaneously to maintain adequate antibody levels. The dosing regimen typically requires individualization based on clinical response and trough IgG levels, with most patients requiring higher doses than traditional replacement protocols [26]. Antimicrobial prophylaxis plays a vital role in preventing recurrent infections. Trimethoprim-sulfamethoxazole or alternative broad-spectrum antibiotics are commonly prescribed as preventive measures against encapsulated bacterial infections [27]. For patients with documented mycobacterial susceptibility, specific antimycobacterial prophylaxis may be necessary, and the BCG vaccine is strictly contraindicated due to the risk of disseminated infection [28].

Table 2. Treatment Approaches and Monitoring Guidelines for NEMO Deficiency Syndrome

Therapeutic Approach	Primary Indication	Monitoring Parameters	Frequency of Assessment
IVIG/SCIG replacement	Infection prevention	IgG trough levels	Every 3-4 months
Antibiotic prophylaxis	Bacterial infection prevention	Infection frequency, resistance patterns	Monthly
Antifungal prophylaxis	Fungal infection prevention	Clinical symptoms, fungal cultures	Every 3 months
HSCT	Severe immunodeficiency	Chimerism, immune reconstitution	Weekly post-transplant, then monthly
Dental care	Prevention of complications	Oral examination, dental X-rays	Every 6 months
Skin care	Prevention of complications	Skin examination, hydration status	Every 3-6 months
Growth monitoring	Development assessment	Height, weight, BMI	Every 3-6 months
GI surveillance	IBD monitoring	Clinical symptoms, inflammatory markers	Every 3-6 months

IVIG: Intravenous immunoglobulin; SCIG: Subcutaneous immunoglobulin; HSCT: Hematopoietic stem cell transplantation; IBD: Inflammatory bowel disease; BMI: Body mass index; GI: Gastrointestinal

3.2. Management of Ectodermal Manifestations

The management of ectodermal dysplasia features requires specialized interventions tailored to specific manifestations. Temperature regulation difficulties necessitate careful environmental control and adequate hydration strategies. Dental management involves comprehensive oral rehabilitation, often requiring multiple interventions including specialized prosthetic devices and orthodontic treatment [29]. Regular dermatological care includes specialized skin care regimens and monitoring for complications such as infections or inflammatory conditions.

3.3. Current treatment options

Hematopoietic Stem Cell Transplantation (HSCT) represents a potentially curative option for severe cases of NEMO deficiency syndrome, particularly those with life-threatening infections or severe immune dysfunction [30]. The success of HSCT varies significantly based on multiple factors, including donor compatibility, conditioning regimen, and timing of intervention. While HSCT can effectively address the immunological components of the disease, it does not correct the ectodermal manifestations, as these arise from non-hematopoietic tissues [31].

Emerging therapeutic approaches under investigation include targeted molecular therapies aimed at modulating the NF-xB pathway and gene therapy strategies. These experimental approaches show promise in preclinical studies but require further validation through clinical trials [32].

3.4. Monitoring and follow-up

Long-term monitoring of patients with NEMO deficiency syndrome requires a coordinated multidisciplinary approach. Regular immunological assessment includes monitoring of immunoglobulin levels, specific antibody responses, and lymphocyte subsets [33]. Careful attention to growth and development, particularly in pediatric patients, is essential. Screening for known complications such as osteoporosis, inflammatory bowel disease, and neurological manifestations should be performed at regular intervals [34].

4. Prognosis

The prognosis of NEMO deficiency syndrome varies considerably, largely dependent on mutation type, severity of immunological compromise, and timing of therapeutic intervention [35]. Early diagnosis and implementation of appropriate treatment protocols significantly improve outcomes. Survival rates correlate strongly with the degree of immune dysfunction and the presence of severe complications. Patients with milder mutations may survive into adulthood with appropriate management, while those with severe phenotypes face increased mortality risk during early childhood [36].

Quality of life considerations remain paramount, as patients must manage chronic infections, ectodermal manifestations, and potential complications throughout their lives. The development of serious infections, particularly pneumonia and meningitis, represents a significant threat to survival. Additionally, the cumulative impact of recurrent infections may lead to organ damage over time [37].

4.1. Prognostic Factors

Several key factors influence long-term outcomes in NEMO deficiency syndrome. The specific genetic mutation and its impact on protein function serve as primary determinants of disease severity. Compliance with prescribed treatments, particularly immunoglobulin replacement therapy and antibiotic prophylaxis, significantly affects disease course. Early recognition and management of complications, including inflammatory conditions and autoimmune manifestations, also impact long-term prognosis [38]

5. Conclusion

NEMO deficiency syndrome is a rare X-linked disorder affecting immune function and ectodermal development. The underlying cause is due to the mutations in the IKBKG gene, leading to disrupted NF-xB signaling. Clinical features include severe recurrent infections and developmental abnormalities of hair, teeth, skin, and nails. Current treatment focuses on infection prevention through immunoglobulin replacement and antimicrobial prophylaxis. Management requires coordinated care across multiple specialties to address both immune and ectodermal manifestations. While hematopoietic stem cell transplantation offers potential cure for immune dysfunction, it does not correct ectodermal features. Prognosis varies based on mutation type and treatment timing. Early diagnosis and intervention improve outcomes, though patients face ongoing challenges with chronic infections and complications.

References

- [1] Döffinger R, Smahi A, Bessia C, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001;27(3):277-285.
- [2] Orange JS, Jain A, Ballas ZK, et al. The presentation and natural history of immunodeficiency caused by nuclear factor αB essential modulator mutation. J Allergy Clin Immunol. 2004;113(4):725-733.
- [3] Picard C, Casanova JL, Puel A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IxBα deficiency. Clin Microbiol Rev. 2011;24(3):490-497.
- [4] Hanson EP, Monaco-Shawver L, Solt LA, et al. Hypomorphic nuclear factor-xB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. J Allergy Clin Immunol. 2008;122(6):1169-1177.
- [5] Courtois G, Smahi A, Reichenbach J, et al. A hypermorphic I_νBα mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest. 2003;112(7):1108-1115.
- [6] Salt BH, Niemela JE, Pandey R, et al. IKBKG (NEMO) mutation can be associated with opportunistic infection without impairing Toll-like receptor function. J Allergy Clin Immunol. 2008;121(4):976-982.
- [7] Pai SY, Levy O, Jabara HH, et al. Allogeneic transplantation successfully corrects immune defects, but not susceptibility to colitis, in a patient with nuclear factor-xB essential modulator deficiency. J Allergy Clin Immunol. 2008;122(6):1113-1118.
- [8] Zonana J, Elder ME, Schneider LC, et al. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet. 2000;67(6):1555-1562.
- [9] Orange JS, Levy O, Brodeur SR, et al. Human nuclear factor kappa B essential modulator mutation can result in immunodeficiency without ectodermal dysplasia. J Allergy Clin Immunol. 2004;114(3):650-656.
- [10] Nihues T, Reichenbach J, Dauber A, et al. Nuclear factor xB essential modulator-deficient child with immunodeficiency yet without anhidrotic ectodermal dysplasia. J Allergy Clin Immunol. 2004;114(6):1456-1462
- [11] Zhang SY, Jouanguy E, Ugolini S, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 2007;317(5844):1522-1527.
- [12] Jain A, Ma CA, Liu S, et al. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol. 2001;2(3):223-228.
- [13] Ku CL, Picard C, Erdös M, et al. IRAK4 and NEMO mutations in otherwise healthy children with recurrent invasive pneumococcal disease. J Med Genet. 2007;44(1):16-23.
- [14] Döffinger R, Smahi A, Casanova JL. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-νB signaling. Nat Genet. 2001;27(3):277-285.
- [15] Orange JS, Brodeur SR, Jain A, et al. Deficient natural killer cell cytotoxicity in patients with IKK-gamma/NEMO mutations. J Clin Invest. 2002;109(11):1501-1509.
- [16] Filipe-Santos O, Bustamante J, Chapgier A, et al. Inborn errors of IL-12/23- and IFN-γ-mediated immunity: molecular, cellular, and clinical features. Semin Immunol. 2006;18(6):347-361.
- [17] Mikkola ML. Molecular aspects of hypohidrotic ectodermal dysplasia. Am J Med Genet A. 2009;149A(9):2031-2036.
- [18] Wright JT, Grange DK, Richter MK. Hypohidrotic Ectodermal Dysplasia. In: Adam MP, et al., editors. GeneReviews®. Seattle: University of Washington; 2003 [Updated 2017].
- [19] Schneider P, Street SL, Gaide O, et al. Mutations leading to X-linked hypohidrotic ectodermal dysplasia affect three major functional domains in the tumor necrosis factor family member ectodysplasin-A. J Biol Chem. 2001;276(22):18819-18827.
- [20] Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol. 2014;26(6):454-470.
- [21] von Bernuth H, Picard C, Jin Z, et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science. 2008;321(5889):691-696.
- [22] Picard C, von Bernuth H, Ghandil P, et al. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine (Baltimore). 2010;89(6):403-425.
- [23] Aradhya S, Courtois G, Rajkovic A, et al. Atypical forms of incontinentia pigmenti in male individuals result from mutations of a cytosine tract in exon 10 of NEMO (IKK-gamma). Am J Hum Genet. 2001;68(3):765-771.

- [24] Fish JD, Duerst RE, Gelfand EW, et al. Challenges in the use of allogeneic hematopoietic SCT for ectodermal dysplasia with immune deficiency. Bone Marrow Transplant. 2009;43(3):217-221.
- [25] Smahi A, Courtois G, Vabres P, et al. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. Nature. 2000;405(6785):466-472.
- [26] Orange JS, Geha RS. Finding NEMO: genetic disorders of NF-[kappa]B activation. J Clin Invest. 2003;112(7):983-985.
- [27] Picard C, Puel A, Bonnet M, et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science. 2003;299(5615):2076-2079.
- [28] Ku CL, Yang K, Bustamante J, et al. Inherited disorders of human Toll-like receptor signaling: immunological implications. Immunol Rev. 2005;203:10-20.
- [29] Carlberg VM, Lofgren SM, Mann JA, et al. Hypohidrotic ectodermal dysplasia: clinical features and carrier detection. Pediatr Dermatol. 2018;35(6):778-786.
- [30] Dupuis-Girod S, Corradini N, Hadj-Rabia S, et al. Osteopetrosis, lymphedema, anhidrotic ectodermal dysplasia, and immunodeficiency in a boy and incontinentia pigmenti in his mother. Pediatrics. 2002;109(6):e97
- [31] Nishikomori R, Akutagawa H, Maruyama K, et al. X-linked ectodermal dysplasia and immunodeficiency caused by reversion mosaicism of NEMO reveals a critical role for NEMO in human T-cell development and/or survival. Blood. 2004;103(12):4565-4572.
- [32] Schmidt-Supprian M, Bloch W, Courtois G, et al. NEMO/IKK gamma-deficient mice model incontinentia pigmenti. Mol Cell. 2000;5(6):981-992.
- [33] Fusco F, Pescatore A, Bal E, et al. Alterations of the IKBKG locus and diseases: an update and a report of 13 novel mutations. Hum Mutat. 2008;29(5):595-604.
- [34] Döffinger R, Jouanguy E, Dupuis S, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001;27(3):277-285.
- [35] Quartier P, Bustamante J, Sanal O, et al. Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to Activation-Induced Cytidine Deaminase deficiency. Clin Immunol. 2004;110(1):22-29.
- [36] Mikkola ML, Thesleff I. Ectodysplasin signaling in development. Cytokine Growth Factor Rev. 2003;14(3-4):211-224.
- [37] Courtois G, Gilmore TD. Mutations in the NF-xB signaling pathway: implications for human disease. Oncogene. 2006;25(51):6831-6843.
- [38] Kawai T, Nishikomori R, Heike T. Diagnosis and treatment in anhidrotic ectodermal dysplasia with immunodeficiency. Allergol Int. 2012;61(2):207-217.