REVIEW ARTICLE

A Review of Therapeutic Applications of Nutraceuticals in Polycystic Ovarian Disease

Tulasi Koppisetti¹, Sireesha K², Sreya S², V. B. K. S. Dhanush G², Sowjanya S², Kavitha V², Govindarao Kamala³

¹Associate Professor, Department of Pharmaceutical Analysis, Koringa College of Pharmacy, Korangi, Andhra Pradesh, India

Publication history: Received on 29th Dec 2024; Revised on 3rd Jan 2025; Accepted on 8th Jan 2025

Article DOI: 10.69613/5bwv0x85

Abstract: Polycystic Ovarian Disease (PCOD) represents a complex endocrine disorder affecting reproductive-age women worldwide. The condition manifests through various symptoms including irregular menstruation, hormonal imbalances, insulin resistance, and metabolic disruptions. While conventional pharmaceutical interventions remain the primary treatment approach, nutraceuticals have emerged as promising complementary therapeutic agents. This analysis explores the scientific basis and clinical applications of various nutraceuticals in PCOD management. Natural compounds such as Ashwagandha (Withania somnifera), Cinnamon (Cinnamomum verum), Fenugreek (Trigonella foenum-graecum), and Holy Basil (Ocimum sanctum) demonstrate significant potential in addressing multiple pathophysiological aspects of PCOD. These compounds work through various mechanisms including hormone regulation, insulin sensitization, anti-inflammatory effects, and oxidative stress reduction. Clinical evidence suggests that these nutraceuticals, when used as adjunct therapy, may improve menstrual regularity, reduce androgen levels, enhance insulin sensitivity, and alleviate metabolic disturbances. Additionally, nutraceuticals like Chaste berry, Licorice, and Aloe vera show promise in managing specific PCOD symptoms.

Keywords: Polycystic Ovarian Disease; Nutraceuticals; Hormone Regulation; Insulin Sensitivity; Natural Therapy.

1. Introduction

Polycystic Ovarian Disease (PCOD) stands as one of the most prevalent endocrine disorders, affecting 6-10% of reproductive-age women globally [1]. The condition represents a complex interplay of hormonal imbalances, metabolic dysfunction, and genetic predisposition, manifesting through a spectrum of reproductive and metabolic disturbances [2].

PCOD disrupts the normal ovulatory cycle, where the ovaries develop multiple small cysts due to incomplete follicular maturation. These cysts result from an intricate pathophysiological process involving elevated androgens and insulin resistance [3]. The ovaries, typically designed to release mature eggs alternately each month, instead produce immature or partially mature follicles that may develop into fluid-filled sacs or cysts [4].

A distinguishing feature of PCOD is the hyperandrogenism, where ovaries produce excessive amounts of androgens, particularly testosterone. This hormonal imbalance triggers various symptoms including irregular menstruation, hirsutism, acne, and in some cases, male-pattern baldness [5]. The condition's impact extends beyond reproductive health, as many patients experience significant metabolic complications, including insulin resistance, obesity, and an increased risk of type 2 diabetes [6].

The pathogenesis of PCOD involves multiple factors, with insulin resistance playing a central role. Elevated insulin levels stimulate androgen production in the ovaries while simultaneously decreasing sex hormone-binding globulin (SHBG) production in the liver, resulting in increased free testosterone levels [7]. This hormonal dysregulation creates a self-perpetuating cycle that maintains the disease state [8].

While genetic factors contribute significantly to PCOD development, environmental and lifestyle factors play crucial modifying roles [9]. Recent research indicates that factors such as diet, physical activity, stress levels, and environmental toxins can influence both the onset and progression of PCOD [10].

² UG Scholar, Department of Pharmacology, Koringa College of Pharmacy, Korangi, Andhra Pradesh, India
³ Professor, Department of Pharmaceutical Chemistry, Koringa College of Pharmacy, Korangi, Andhra Pradesh, India

^{*} Corresponding author: Tulasi Koppisetti

Table 1. Diagnostic criteria and phenotypes of PCOD

Diagnostic Criteria	Rotterdam	AE-PCOS	NIH 1990
Oligoanovulation	✓	✓	✓
Hyperandrogenism	✓	✓	✓
PCO Morphology	✓	-	-
Required Criteria	2 of 3	HA + OA	HA + OA
Phenotypes	4	2	1

HA: Hyperandrogenism; OA: Oligoanovulation; PCO: Polycystic Ovarian

PCOD management requires a comprehensive strategy, involving both conventional medical treatments and lifestyle modifications [11]. Traditional pharmaceutical interventions, while effective, often come with significant side effects and may not address all aspects of the condition [12]. This limitation has sparked increasing interest in alternative therapeutic approaches, particularly nutraceuticals, which offer potential benefits with minimal adverse effects [13].

2. Pathophysiology of PCOD

The pathophysiology of PCOD presents a complex web of endocrine and metabolic disturbances that create a self-perpetuating cycle of hormonal imbalance [14]. The condition manifests through three primary pathophysiological mechanisms: androgen excess, insulin resistance, and irregular ovulation.

2.1. Hormonal Dysregulation

The fundamental disruption in PCOD begins with abnormal gonadotropin secretion patterns. Elevated luteinizing hormone (LH) levels, coupled with normal or low follicle-stimulating hormone (FSH) levels, create an increased LH/FSH ratio [15]. This hormonal imbalance stimulates theca cells in the ovaries to produce excessive androgens, particularly testosterone and androstenedione [16].

2.2. Insulin Resistance and Metabolic Impact

Insulin resistance emerges as a critical component in PCOD pathophysiology, affecting 50-70% of patients [17]. The hyperinsulinemia resulting from insulin resistance leads to several metabolic consequences. This state stimulates ovarian androgen production while simultaneously decreasing sex hormone-binding globulin (SHBG) synthesis in the liver. The combination of these effects enhances free testosterone availability throughout the body. Moreover, the persistent hyperinsulinemic state promotes visceral fat accumulation, creating additional metabolic complications.

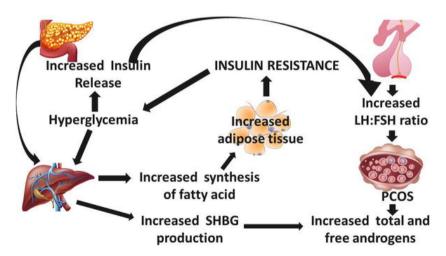


Figure 1. Pathophysiology of PCOD

2.3. Ovarian Dysfunction

The ovarian manifestations in PCOD involve significant structural and functional changes. The ovaries develop multiple small antral follicles, typically measuring 2-9 mm in diameter. These follicles experience arrested development, failing to progress to mature ovulation. The resultant anovulation or irregular ovulation patterns significantly impact fertility. Additionally, stromal hyperplasia occurs, contributing to the enlarged ovarian volume characteristic of PCOD [18].

2.4. Metabolic Consequences

The metabolic disturbances in PCOD extend far beyond reproductive dysfunction. Altered glucose metabolism represents a primary concern, often manifesting as impaired glucose tolerance or type 2 diabetes. Dyslipidemia frequently occurs, characterized by elevated triglycerides and decreased high-density lipoprotein cholesterol. Increased oxidative stress and chronic low-grade inflammation perpetuate the metabolic dysfunction. These factors collectively enhance cardiovascular risk in PCOD patients [19].

2.5. Genetic and Environmental Factors

Recent genetic studies have identified multiple susceptibility loci associated with PCOD. These genetic variants influence various aspects of the condition, from hormone production to insulin sensitivity. Environmental factors interact significantly with genetic predisposition, including dietary patterns, physical activity levels, and exposure to endocrine-disrupting chemicals. This complex interplay between genetic and environmental factors ultimately determines the phenotypic expression and severity of PCOD [20].

3. Clinical manifestations and diagnosis of PCOD

3.1. Clinical Presentation

The clinical manifestations of PCOD vary considerably among individuals, presenting with a spectrum of reproductive, metabolic, and psychological features [21]. Menstrual irregularities often serve as the initial presenting symptom, typically manifesting as oligomenorrhea or amenorrhea. Women commonly report unpredictable menstrual cycles, with intervals extending beyond 35 days or experiencing fewer than eight menstrual periods annually.

3.2. Hyperandrogenic Symptoms

Hyperandrogenism manifests through various dermatological and physical changes. Hirsutism, characterized by excessive terminal hair growth in androgen-dependent areas, affects approximately 70% of PCOD patients. Acne vulgaris, particularly persistent or late-onset acne, frequently occurs. Some women experience androgenic alopecia, presenting as male-pattern hair thinning at the crown and temporal regions [22].

3.3. Metabolic Features

The metabolic manifestations of PCOD encompass several systemic effects. Weight gain, particularly central adiposity, represents a common concern. Many patients experience difficulty losing weight despite dietary modifications. Skin changes, including acanthosis nigricans, signal underlying insulin resistance. Glucose metabolism disturbances range from impaired glucose tolerance to overt type 2 diabetes mellitus [23].

3.4. Diagnostic Criteria

The diagnosis of PCOD relies on the Rotterdam criteria, requiring the presence of at least two of three key features: oligo/anovulation, clinical or biochemical hyperandrogenism, and polycystic ovarian morphology on ultrasound. However, diagnosis requires the exclusion of other endocrine disorders that may present similarly [24].

3.5. Laboratory Assessment

3.5.1. Hormonal Analysis

Assessment of total and free testosterone, dehydroepiandrosterone sulfate (DHEA-S), and 17-hydroxyprogesterone levels provides insight into androgenic status. Measurement of follicle-stimulating hormone, luteinizing hormone, and prolactin helps evaluate ovarian function and exclude other endocrine disorders.

3.5.2. Metabolic Evaluation

Fasting glucose, insulin levels, and lipid profiles assess metabolic health. The homeostatic model assessment of insulin resistance (HOMA-IR) helps quantify insulin resistance. Thyroid function tests and cortisol levels may be necessary to exclude other endocrine conditions [25].

3.5.3. Imaging Studies

Transvaginal ultrasound plays a crucial role in diagnosis, revealing characteristic ovarian changes. The presence of 12 or more follicles measuring 2-9 mm in diameter in either ovary, along with increased ovarian volume (>10 mL), supports the diagnosis. However, ultrasound findings must be interpreted within the broader clinical context [26].

3.5.4. Psychological Impact

The chronic nature of PCOD, coupled with its visible symptoms and fertility implications, often leads to significant psychological distress. Many women experience anxiety, depression, and reduced quality of life. Recognition and addressing these psychological aspects form an essential component of comprehensive patient care [27].

4. Management of PCOD

Contemporary management of PCOD requires a wholesome approach, integrating lifestyle modifications, conventional medical treatments, and complementary therapies. The treatment strategy should be personalized to individual patient symptoms, reproductive desires, and metabolic status [28].

4.1. Lifestyle Modifications

Lifestyle interventions form the cornerstone of PCOD management, particularly in overweight and obese patients. A structured approach to diet and exercise can significantly improve both metabolic and reproductive outcomes. Evidence suggests that even modest weight reduction of 5-10% can restore ovulatory function, improve insulin sensitivity, and reduce androgen levels [29].

4.2. Dietary Management

Dietary modifications emphasize balanced nutrition with attention to glycemic load and anti-inflammatory properties. A diet rich in whole grains, lean proteins, and vegetables, while limiting refined carbohydrates and processed foods, helps manage insulin resistance. Mediterranean-style eating patterns have shown particular promise in improving PCOD symptoms and metabolic parameters [30].

4.3. Physical Activity

Regular physical activity plays a crucial role in managing PCOD symptoms. Structured exercise programs combining aerobic and resistance training improve insulin sensitivity, reduce inflammation, and support weight management. Current recommendations suggest at least 150 minutes of moderate-intensity activity weekly, distributed across multiple sessions [31].

4.4. Conventional Medical Treatment

Medical management typically addresses specific symptoms and underlying hormonal imbalances:

Menstrual reg.

Metabolic health

4.4.1. Hormonal Therapy

Combined oral contraceptives remain a primary treatment option, effectively regulating menstrual cycles and reducing androgen levels. These medications suppress ovarian androgen production while increasing sex hormone-binding globulin, thereby reducing free testosterone levels [32].

4.4.2. Insulin-Sensitizing Agents

Metformin, the most widely studied insulin sensitizer in PCOD, improves insulin resistance and metabolic parameters. Its use often leads to modest weight reduction and may enhance ovulation rates. Other insulin-sensitizing agents show promise but require further research [33].

Treatment	Primary Target	Success Rate*	Side Effects	Duration
Metformin	Insulin resist.	60-70%	Moderate	Long-term
Clomiphene	Ovulation	70-80%	Mild	Cyclic
Spironolactone	Androgen excess	60-75%	Mild	Long-term
Lifestyle mod.	Multiple systems	40-60%	None	Ongoing

Table 2. Comparative analysis of therapeutic approaches in PCOD

80-90%

Moderate

Minimal

Variable

Long-term

4.4.3. Anti-Androgen Therapy

Specific anti-androgen medications may be prescribed for severe hyperandrogenic symptoms. These agents block androgen receptors or inhibit 5α-reductase activity, effectively reducing hirsutism and acne. However, their use requires careful consideration of contraceptive needs due to potential teratogenic effects [34].

^{50-70%} *Success rates based on primary therapeutic target; OCPs: Oral Contraceptive Pills

4.4.4. Fertility Management

For women seeking pregnancy, ovulation induction may be necessary. Clomiphene citrate remains the first-line agent, while gonadotropins or letrozole provide alternative options. In resistant cases, laparoscopic ovarian drilling may be considered. The approach should be individualized based on factors such as age, body mass index, and duration of infertility [35].

4.4.5. Psychological Support

Recognition and management of psychological aspects are crucial. Professional counseling, support groups, and stress management techniques help address the emotional impact of PCOD. Regular screening for anxiety and depression ensures comprehensive care [36].

5. Nutraceuticals for PCOD

5.1. Inositols

Myo-inositol (MI) and D-chiro-inositol (DCI) have emerged as crucial mediators of insulin signaling. These stereoisomers demonstrate distinct tissue-specific roles in glucose metabolism and ovarian function. Myo-inositol predominantly influences glucose uptake and follicular stimulating hormone (FSH) signaling, while D-chiro-inositol primarily affects insulin-mediated androgen synthesis. The physiological MI:DCI ratio of 40:1 in the ovary appears crucial for optimal ovarian function [37, 38].

Clinical studies have demonstrated that myo-inositol supplementation (2-4g daily) significantly improves insulin sensitivity, reduces serum androgen levels, and restores ovulatory function in many PCOD patients. The combination of MI and DCI, maintaining the physiological 40:1 ratio, has shown superior results compared to single isomer supplementation. This combination therapy has demonstrated enhanced ovulation rates and improved oocyte quality, reduction in insulin resistance markers, normalization of LH:FSH ratios, improvement in menstrual cycle regularity, and reduction in serum androgen levels [39].

Supplement	Daily Dose	Primary Benefits
Inositol	2-4g	Insulin sensitivity
NAC	600-1800mg	Ovulation, antioxidant
Berberine	500-1500mg	Metabolic parameters
Vitamin D	2000-4000 IU	Hormonal balance
Omega-3	1-2g	Inflammation reduction
Magnesium	300-600mg	Insulin function
Zinc	15-30mg	Hormonal regulation
Chromium	200-400mcg	Glucose metabolism

Table 3. Nutraceutical interventions in PCOD

5.2. Omega-3 Fatty Acids and Anti-inflammatory Effects

Long-chain omega-3 polyunsaturated fatty acids, particularly EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid), demonstrate significant anti-inflammatory properties relevant to PCOD pathophysiology. These essential fatty acids modulate inflammatory mediators and improve insulin sensitivity through multiple mechanisms. The anti-inflammatory effects occur through inhibition of nuclear factor-xB (NF-xB) signaling and reduction of pro-inflammatory cytokine production. Clinical studies utilizing doses of 1.5-3g daily of combined EPA/DHA have shown remarkable improvements in insulin sensitivity parameters, adiponectin levels, inflammatory markers, lipid profiles, and hormonal parameters [40].

5.3. Antioxidant Supplementation

Oxidative stress plays a significant role in PCOD pathogenesis, affecting both metabolic and reproductive functions. Various antioxidant compounds have demonstrated beneficial effects.

5.4. Vitamin D

Vitamin D deficiency shows a strong correlation with PCOD severity. Beyond its classical role in calcium homeostasis, vitamin D functions as a steroid hormone with significant effects on glucose metabolism through enhanced insulin receptor expression, improved insulin sensitivity, and regulation of calcium-dependent insulin secretion. In reproductive function, it influences modulation of anti-Müllerian hormone (AMH) levels, regulation of follicular development, and enhancement of oocyte quality. Regarding inflammatory response, it aids in reduction of chronic low-grade inflammation, modulation of cytokine production, and enhancement of immune system function [41].

5.5. Chromium and Metabolic Function

Chromium supplementation has gained attention for its insulin-sensitizing properties. This essential trace mineral enhances insulin signaling through molecular mechanisms including activation of insulin receptor kinase, enhancement of GLUT4 translocation, and improvement in insulin receptor number and binding. Clinical effects include reduction in fasting insulin levels, improvement in glucose tolerance, enhancement of lipid metabolism, and reduction in carbohydrate cravings. Studies utilizing chromium picolinate (200-1000 mcg daily) have demonstrated significant improvements in insulin sensitivity and glycemic control in PCOD patients [42].

5.6. Herbal Interventions

Traditional herbal medicines offer promising therapeutic potential in PCOD management. Spearmint Tea (Mentha spicata) clinical studies have demonstrated its anti-androgenic properties, with regular consumption leading to significant reductions in free and total testosterone levels. The proposed mechanisms include inhibition of 5α-reductase activity, reduction of ovarian androgen production, and improvement in hirsutism scores [43].

5.7. Cinnamon (Cinnamomum verum)

Recent research has unveiled cinnamon's significant therapeutic potential in PCOD management. The active compounds, particularly methylhydroxychalcone polymer (MHCP), demonstrate insulin-mimetic properties. Clinical studies utilizing cinnamon extract (1-6g daily) have shown remarkable metabolic effects. The polyphenolic compounds in cinnamon enhance insulin receptor phosphorylation and increase glucose uptake. Long-term supplementation demonstrates enhanced glucose transporter-4 (GLUT4) translocation, improved insulin receptor substrate-1 (IRS-1) phosphorylation, reduced fasting glucose and insulin levels, and enhanced glycemic control with decreased HbA1c levels [44].

5.8. Berberine

This bioactive compound, traditionally used in Chinese medicine, has emerged as a powerful therapeutic agent in PCOD. Berberine's multifaceted mechanisms include metabolic regulation through activation of AMP-activated protein kinase (AMPK), enhancement of mitochondrial function, and modulation of gut microbiota composition. Its reproductive effects encompass reduction in ovarian theca cell androgen production, improvement in granulosa cell function, and enhancement of oocyte quality through reduced oxidative stress [45].

5.9. N-Acetylcysteine (NAC)

This powerful antioxidant and glutathione precursor demonstrates significant benefits in PCOD through its biochemical effects, including enhancement of insulin receptor activity, reduction of homocysteine levels, and improvement in nitric oxide bioavailability. Clinical outcomes from studies utilizing NAC (600-1800mg daily) have demonstrated improved insulin sensitivity, enhanced ovulation rates, reduced androgen levels, and better pregnancy outcomes when combined with clomiphene citrate [46].

5.10. Micronutrients

5.10.1. Magnesium

This essential mineral plays a crucial role in insulin signaling and glucose metabolism through molecular mechanisms including enhancement of tyrosine kinase activity at insulin receptors, regulation of glucose transport systems, and modulation of intracellular calcium homeostasis. Clinical applications of magnesium supplementation (300-600mg daily) demonstrate improved insulin sensitivity, enhanced glucose utilization, reduced inflammatory markers, and better hormonal balance [47].

5.10.2. Zinc

Emerging research highlights zinc's essential role in reproductive function and metabolic regulation. Its reproductive effects include modulation of aromatase activity, enhancement of follicular development, and improvement in oocyte maturation. The metabolic impact encompasses enhancement of insulin receptor synthesis, improvement in glucose transport, and reduction in inflammatory cytokines [48].

5.11. Probiotics and Gut Microbiota Modulation

Recent research has established the crucial role of gut microbiota in PCOD pathophysiology. The mechanisms include modulation of inflammation through lipopolysaccharide reduction, enhancement of intestinal barrier function, and improvement in metabolic endotoxemia. Clinical benefits of specific probiotic strains demonstrate enhanced insulin sensitivity, reduced inflammatory markers, improved hormonal parameters, and better weight management outcomes [49].

5.12. Resveratrol

This polyphenolic compound shows promising results in PCOD management through molecular actions including activation of SIRT1 pathways, enhancement of mitochondrial function, and reduction of oxidative stress. Clinical effects from studies using resveratrol (500-1500mg daily) show improved insulin sensitivity, reduced androgen levels, enhanced ovarian function, and better metabolic parameters [50]

6. Conclusion

Polycystic ovary syndrome (PCOD) represents a complex endocrine disorder affecting reproductive-age women, characterized by hormonal imbalances, metabolic dysfunction, and reproductive complications. Factors like insulin resistance, hyperandrogenism, and chronic inflammation are responsible for the development of PCOD. While conventional treatments remain foundational, emerging research has shown the significant potential of nutraceuticals like inositols, omega-3 fatty acids, and vitamin D, in alleviating multiple aspects of PCOD pathophysiology. Traditional herbal medicines and micronutrients have shown promising results in improving both metabolic and reproductive parameters, with compounds like berberine and cinnamon demonstrating significant therapeutic benefits. Novel approaches focusing on gut microbiota modulation and antioxidant supplementation represent exciting frontiers in PCOD management, offering additional therapeutic options with minimal side effects.

References

- [1] Azziz R, Carmina E, Chen Z, Dunaif A, Laven JS, Legro RS, et al. Polycystic ovary syndrome. Nature Reviews Disease Primers. 2016;2(1):16057.
- [2] Rosenfield RL, Ehrmann DA. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocrine Reviews. 2016;37(5):467-520.
- [3] Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nature Reviews Endocrinology. 2018;14(5):270-84.
- [4] Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Human Reproduction. 2018;33(9):1602-18.
- [5] Legro RS, Arslanian SA, Ehrmann DA, Hoeger KM, Murad MH, Pasquali R, et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. The Journal of Clinical Endocrinology & Metabolism. 2013;98(12):4565-92.
- [6] Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocrine Reviews. 2015;36(5):487-525.
- [7] Goodman NF, Cobin RH, Futterweit W, Glueck JS, Legro RS, Carmina E. American Association of Clinical Endocrinologists, American College of Endocrinology, and Androgen Excess and PCOS Society disease state clinical review: guide to the best practices in the evaluation and treatment of polycystic ovary syndrome. Endocrine Practice. 2015;21(11):1291-300.
- [8] Moran LJ, Misso ML, Wild RA, Norman RJ. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Human Reproduction Update. 2010;16(4):347-63.
- [9] Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocrine Reviews. 2012;33(6):981-1030.
- [10] Conway G, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Franks S, Gambineri A, et al. The polycystic ovary syndrome: a position statement from the European Society of Endocrinology. European Journal of Endocrinology. 2014;171(4):P1-29.
- [11] Fauser BC, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R, et al. Consensus on women's health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertility and Sterility. 2012;97(1):28-38.
- [12] Balen AH, Morley LC, Misso M, Franks S, Legro RS, Wijeyaratne CN, et al. The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Human Reproduction Update. 2016;22(6):687-708.
- [13] Norman RJ, Dewailly D, Legro RS, Hickey TE. Polycystic ovary syndrome. The Lancet. 2007;370(9588):685-97.

- [14] Lim SS, Davies MJ, Norman RJ, Moran LJ. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Human Reproduction Update. 2012;18(6):618-37.
- [15] Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. The Journal of Clinical Endocrinology & Metabolism. 2004;89(6):2745-9.
- [16] Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertility and Sterility. 2004;81(1):19-25.
- [17] Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertility and Sterility. 2016;106(1):6-15.
- [18] Dunaif A. Polycystic ovary syndrome in 2011: Genes, aging and sleep apnea in polycystic ovary syndrome. Nature Reviews Endocrinology. 2012;8(2):72-4.
- [19] Carmina E, Lobo RA. Use of fasting blood to assess the prevalence of insulin resistance in women with polycystic ovary syndrome. Fertility and Sterility. 2004;82(3):661-5.
- [20] Stepto NK, Cassar S, Joham AE, Hutchison SK, Harrison CL, Goldstein RF, et al. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic–hyperinsulaemic clamp. Human Reproduction. 2013;28(3):777-84.
- [21] Nestler JE. Metformin for the treatment of the polycystic ovary syndrome. New England Journal of Medicine. 2008;358(1):47-54.
- [22] Thessaloniki ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Consensus on infertility treatment related to polycystic ovary syndrome. Human Reproduction. 2008;23(3):462-77.
- [23] Wild RA, Carmina E, Diamanti-Kandarakis E, Dokras A, Escobar-Morreale HF, Futterweit W, et al. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. The Journal of Clinical Endocrinology & Metabolism. 2010;95(5):2038-49.
- [24] Dewailly D, Lujan ME, Carmina E, Cedars MI, Laven J, Norman RJ, et al. Definition and significance of polycystic ovarian morphology: a task force report from the Androgen Excess and Polycystic Ovary Syndrome Society. Human Reproduction Update. 2014;20(3):334-52.
- [25] Dokras A, Clifton S, Futterweit W, Wild R. Increased risk for abnormal depression scores in women with polycystic ovary syndrome: a systematic review and meta-analysis. Obstetrics & Gynecology. 2011;117(1):145-52.
- [26] Barber TM, Dimitriadis GK, Andreou A, Franks S. Polycystic ovary syndrome: insight into pathogenesis and a common association with insulin resistance. Clinical Medicine. 2016;16(3):262-6.
- [27] Unfer V, Carlomagno G, Dante G, Facchinetti F. Effects of myo-inositol in women with PCOS: a systematic review of randomized controlled trials. Gynecological Endocrinology. 2012;28(7):509-15.
- [28] Zeng X, Xie YJ, Liu YT, Long SL, Mo ZC. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clinica Chimica Acta. 2020;502:214-21.
- [29] Artini PG, Di Berardino OM, Papini F, Genazzani AD, Simi G, Ruggiero M, et al. Endocrine and clinical effects of myoinositol administration in polycystic ovary syndrome. A randomized study. Gynecological Endocrinology. 2013;29(4):375-9.
- [30] Naderpoor N, Shorakae S, de Courten B, Misso ML, Moran LJ, Teede HJ. Metformin and lifestyle modification in polycystic ovary syndrome: systematic review and meta-analysis. Human Reproduction Update. 2015;21(5):560-74.
- [31] Podfigurna A, Meczekalski B. The effect of selective estrogen receptor modulators on cognitive functions. Gynecological Endocrinology. 2017;33(1):65-7.
- [32] Gunning MN, Fauser BCJM. Are women with polycystic ovary syndrome at increased cardiovascular disease risk later in life? Climacteric. 2017;20(3):222-7.
- [33] Kakoly NS, Khomami MB, Joham AE, Cooray SD, Misso ML, Norman RJ, et al. Ethnicity, obesity and the prevalence of impaired glucose tolerance and type 2 diabetes in PCOS: a systematic review and meta-regression. Human Reproduction Update. 2018;24(4):455-67.
- [34] Palomba S, de Wilde MA, Falbo A, Koster MP, La Sala GB, Fauser BC. Pregnancy complications in women with polycystic ovary syndrome. Human Reproduction Update. 2015;21(5):575-92.
- [35] Jarrett BY, Lujan ME. Impact of hypocaloric dietary intervention on ovulation in obese women with PCOS. Reproduction. 2017;153(1):R15-27.
- [36] Sorensen AE, Wissing ML, Salö S, Englund AL, Dalgaard LT. MicroRNAs Related to Polycystic Ovary Syndrome (PCOS). Genes. 2014;5(3):684-708.

- [37] Amiri M, Ramezani Tehrani F, Nahidi F, Kabir A, Azizi F, Carmina E. Effects of oral contraceptives on metabolic profile in women with polycystic ovary syndrome: A meta-analysis comparing products containing cyproterone acetate with third generation progestins. Metabolism. 2017;73:22-35.
- [38] Alpañés M, Fernández-Durán E, Escobar-Morreale HF. Androgens and polycystic ovary syndrome. Expert Review of Endocrinology & Metabolism. 2012;7(1):91-102.
- [39] Colwell K, Lujan ME. Diagnosis of polycystic ovary syndrome: imaging modalities. Best Practice & Research Clinical Obstetrics & Gynaecology. 2016;37:16-26.
- [40] Lakshmi SS, Sarella PN, Adarsh K, Padmini PL, Kumar MV. Concurrent Diagnosis of Renal Calculi, Uterine Fibroids and Ovarian Cysts: A Complex Case Study. Journal of Clinical and Pharmaceutical Research. 2023 Oct 24:22-7.
- [41] Balen AH, Rutherford AJ. Managing anovulatory infertility and polycystic ovary syndrome. BMJ. 2007;335(7621):663-6.
- [42] Rojas J, Chávez M, Olivar L, Rojas M, Morillo J, Mejías J, et al. Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth. International Journal of Reproductive Medicine. 2014;2014:719050.
- [43] Lim SS, Hutchison SK, Van Ryswyk E, Norman RJ, Teede HJ, Moran LJ. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database of Systematic Reviews. 2019;3:CD007506.
- [44] Nestler JE, Jakubowicz DJ, Reamer P, Gunn RD, Allan G. Ovulatory and metabolic effects of D-chiro-inositol in the polycystic ovary syndrome. New England Journal of Medicine. 1999;340(17):1314-20.
- [45] Yildiz BO, Bozdag G, Yapici Z, Esinler I, Yarali H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Human Reproduction. 2012;27(10):3067-73.
- [46] Jamilian M, Foroozanfard F, Kavossian E, Aghadavod E, Amirani E, Mahdavinia M, et al. Effects of curcumin supplementation on body composition, insulin resistance, and liver function in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Phytother Res. 2020;34(12):3436-45.
- Wang J, Wu D, Guo H, Li M. Hyperandrogenemia and insulin resistance: The effects of selenium supplementation on serum TNFα and IL-6 in young women with polycystic ovary syndrome. Gynecol Endocrinol. 2021;37(4):312-16.
- [48] Szczuko M, Zapalowska-Chwyć M, Maciejewska D, Drozd A, Starczewski A, Stachowska E. High ω-3 PUFA, EPA, and DHA diet improves hormonal, lipid, and metabolic parameters in women with PCOS. Int J Environ Res Public Health. 2021;18(4):1671.
- [49] Lagowska K, Bajerska J, Jamka M. The role of vitamin B group in the reproductive system function: A systematic review. Nutrients. 2021;13(11):3692.
- [50] Mehta V, Sathyapalan T, Atkin SL, Kilpatrick ES, Singhal P. Association of melatonin and MTNR1B variants with insulin resistance and polycystic ovary syndrome: A systematic review and meta-analysis. J Clin Endocrinol Metab. 2022;107(8):2182-95