REVIEW ARTICLE

Pharmacological Properties and Therapeutic Applications of *Dioscorea alata*

Shejal Uttam Sundkar¹, Sachin Wankhede², Abhishek Kumar Sen³, Sonali Vinod Uppalwar⁴

- ¹ UG Scholar, Department of Pharmacy, Ideal Institute of Pharmacy, Posheri, Maharashtra, India
- ² Assistant Professor, Department of Pharmaceutical Analaysis and Quality Assurance, Ideal Institute of Pharmacy, Posheri, Maharashtra, India
- ³ Vice-Principal and Associate Professor, Department of Pharmaceutics, Ideal Institute of Pharmacy, Posheri, Maharashtra, India
- ⁴ Principal and Professor, Department of Pharmacognosy, Ideal Institute of Pharmacy, Posheri, Maharashtra, India

Publication history: Received on 29th October; Revised on 4th Nov; Accepted on 9th Nov 2024

Article DOI: 10.69613/gb1wm966

Abstract: Dioscorea alata, commonly known as purple yam or Jimikand, represents a significant tropical tuber crop with established nutritional and therapeutic properties. The tuber contains diverse phytoconstituents, including alkaloids, phenolic acids, flavonoids, and saponins, which contribute to its biological activities. Experimental studies have demonstrated its antioxidant, anti-inflammatory, antidiabetic, and antimicrobial properties. The tuber exhibits hypoglycemic effects through enhanced insulin sensitivity and glucose metabolism regulation. Its antimicrobial activity against various bacterial and fungal strains suggests potential applications in treating infectious diseases. The anti-inflammatory and antioxidant properties are attributed to bioactive compounds such as diosgenin and polyphenols. Traditional medicine systems have utilized D. alata for managing various conditions, including digestive disorders, inflammatory conditions, and metabolic diseases. The tuber's rich nutritional profile, comprising essential vitamins, minerals, and dietary fiber, enhances its value as a functional food. However, consumption of raw tubers may cause gastrointestinal distress in some individuals, and potential drug interactions necessitate careful consideration in therapeutic applications. Recent pharmacological studies indicate promising cardioprotective, antitumor, and immunomodulatory properties, warranting further investigation for drug development.

Keywords: Dioscorea alata; Purple yam; Antidiabetic; Phytochemicals; Anti-inflammatory.

1. Introduction

The global burden of lifestyle-related diseases has prompted increased attention toward natural therapeutic alternatives, particularly functional foods with demonstrated health-promoting properties. *Dioscorea alata*, commonly known as purple yam or Jimikand, has emerged as a significant source of bioactive compounds with therapeutic potential [1, 2]. The tuber, native to Southeast Asia, has gained recognition worldwide for its nutritional value and medicinal properties [3]. *D. alata* cultivation flourishes in tropical and subtropical regions, requiring well-drained soils and stable temperatures. The tuber's nutritional composition includes essential vitamins, minerals, dietary fiber, and complex carbohydrates, making it a valuable dietary component [4, 5]. Beyond its nutritional aspects, *D. alata* contains numerous bioactive compounds that exhibit therapeutic properties, including blood glucose regulation, immune system modulation, and digestive health improvement [6].

The tuber belongs to the Dioscoreaceae family and has been extensively cultivated across Africa, the Caribbean, and Asian regions [7]. Traditional medicine systems have documented its applications in managing various health conditions, supported by modern scientific investigations revealing its antioxidant, anti-inflammatory, and antimicrobial properties [8, 9]. These therapeutic effects are attributed to key phytochemical constituents, particularly diosgenin, flavonoids, and phenolic compounds [10]. Recent pharmacological studies have validated several traditional uses of *D. alata*, demonstrating its potential in managing chronic diseases [11]. The tuber's antidiabetic properties have been extensively studied, showing promising results in blood glucose regulation and insulin sensitivity enhancement [12]. Additionally, its anti-inflammatory and antioxidant activities suggest potential applications in preventing oxidative stress-related disorders [13].

^{*} Corresponding author: Shejal Uttam Sundkar

D. alata's culinary versatility complements its medicinal properties, as various preparation methods can enhance its bioactive compound availability [14]. Contemporary research focuses on identifying and characterizing novel bioactive compounds from D. alata, aiming to develop natural therapeutic agents for various health conditions [15].

Figure 1. D. alata tuberous roots

2. Phytochemical Constituents

The therapeutic potential of *Dioscorea alata* stems from its diverse phytochemical profile, revealed through various extraction methods including methanolic, ethanolic, and aqueous extractions [16]. Bioactive compounds identified in *D. alata* (mentioned in Table 1) contribute significantly to its pharmacological activities and health benefits.

2.1. Flavonoids and Phenolic Compounds

D. alata contains substantial concentrations of flavonoids and phenolic acids, which contribute to its antioxidant and anti-inflammatory properties [17]. These compounds include quercetin, rutin, and various phenolic derivatives that exhibit free radical scavenging activities [18].

2.2. Saponins and Steroids

Diosgenin, a steroid saponin, represents one of the most significant bioactive compounds in *D. alata*. This compound demonstrates notable anti-inflammatory and antidiabetic properties [19]. Additional steroidal saponins present in the tuber contribute to its therapeutic effects [20].

2.3. Alkaloids

Various alkaloid compounds isolated from *D. alata* exhibit antimicrobial and antioxidant properties. These compounds play crucial roles in the tuber's defensive mechanisms and therapeutic applications [21].

Table 1. Major phytochemical constituents and their therapeutic effects in D. alata

Phytochemicals	Major Compounds	Therapeutic Effects
Flavonoids	Quercetin, Rutin	Antioxidant, Anti-inflammatory
Saponins	Diosgenin	Antidiabetic, Antitumor
Alkaloids	Dioscine	Antimicrobial, Analgesic
Phenolic Acids	Chlorogenic acid	Free radical scavenging
Anthocyanins	Cyanidin-3-glucoside	Cardioprotective
Carotenoids	β-carotene	Vision health, Antioxidant

2.4. Nutritional Components

2.4.1. Carbohydrates and Fiber

The tuber contains complex carbohydrates and dietary fiber, contributing to its role in digestive health and glucose metabolism regulation [22]. The presence of resistant starch influences its low glycemic index properties [23].

2.4.2. Vitamins and Minerals

D. alata provides essential micronutrients, including:

- Vitamins: B-complex vitamins, vitamin C
- Minerals: Potassium, magnesium, iron, and zinc
- These nutrients enhance the tuber's nutritional value and contribute to its health-promoting effects [24].

2.5. Carotenoids and Anthocyanins

Purple varieties of *D. alata* contain significant levels of anthocyanins and carotenoids, contributing to their antioxidant properties and characteristic color [25]. These compounds demonstrate potential in preventing oxidative stress-related conditions [26].

2.6. Distribution of Phytochemicals

The concentration and distribution of bioactive compounds vary across different parts of the plant, with the tuber containing the highest concentrations of therapeutic compounds [27]. Environmental factors and cultivation conditions influence the phytochemical profile, affecting the tuber's medicinal properties [28]. Recent studies have identified novel compounds through advanced analytical techniques, expanding understanding of *D. alata*'s therapeutic potential [29].

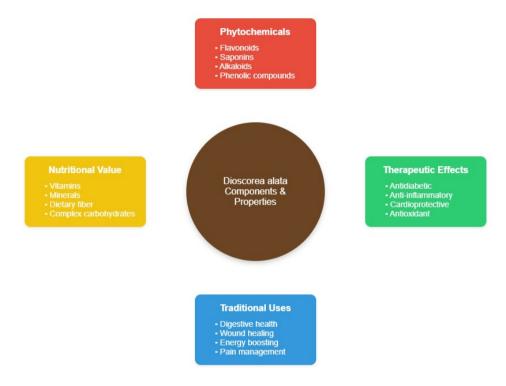


Figure 2. Phytochemical components and properties of *D. alata*

3. Traditional Uses

Dioscorea alata has established a significant position in traditional medicine systems across various cultures, with applications spanning multiple therapeutic areas. The tuber's traditional uses reflect generations of empirical knowledge, subsequently supported by modern scientific investigations [32, 33].

3.1. Energizer

Traditional communities have long utilized *D. alata* tubers as an energy source, particularly during periods requiring sustained physical activity. The complex carbohydrates and nutritional profile contribute to its role in enhancing stamina and maintaining energy levels [34].

3.2. Digestive Disorders

Traditional medicine practitioners recommend *D. alata* for managing digestive disorders. Its high fiber content and bioactive compounds help alleviate symptoms of dyspepsia, bloating, and general digestive discomfort. The tuber's regular consumption promotes healthy gut function and supports beneficial gut microbiota [35].

3.3. Wound Healing

The leaves and roots of *D. alata* have been traditionally applied topically for wound healing. Their antimicrobial properties facilitate wound recovery and prevent infection. Traditional preparations include poultices and pastes used to treat various skin conditions and promote healing [36].

3.4. Gynecological problems

Traditional medicine systems recognize *D. alata*'s role in women's health, particularly in managing menstrual discomfort and supporting maternal health during pregnancy. The tuber's rich nutrient profile supports fetal development and maternal nutrition [37].

3.5. Fever and Inflammation

Traditional healers prepare decoctions from *D. alata* leaves to manage fever and inflammatory conditions. These preparations demonstrate antipyretic properties and help reduce systemic inflammation [38].

3.6. Immunological functions

The traditional use of *D. alata* for immune system enhancement aligns with its high antioxidant content. Regular consumption is believed to strengthen the body's natural defense mechanisms against various illnesses [39].

3.7. Diabetes Management

Traditional knowledge regarding *D. alata*'s blood sugar-regulating properties has been passed down through generations. Its incorporation into traditional dietary practices for diabetes management preceded modern scientific validation of its hypoglycemic effects [40].

3.8. Respiratory Health

Traditional medicine systems employ *D. alata* preparations for respiratory conditions, including coughs and colds. The tuber's anti-inflammatory properties may contribute to its effectiveness in respiratory health management [41].

3.9. Cultural Significance

Apart from its medicinal applications, *D. alata* holds cultural significance in various communities, often featuring in traditional ceremonies and dietary customs. This cultural integration has helped preserve knowledge of its therapeutic properties across generations [42]

4. Pharmacological Activities

4.1. Antioxidant Activity

D. alata demonstrates significant antioxidant properties through various mechanisms. Methanolic and ethanolic extracts exhibit potent free radical scavenging abilities, attributed to their high polyphenol and flavonoid content [43]. Studies utilizing DPPH and ABTS assays have confirmed the tuber's capacity to neutralize reactive oxygen species, suggesting potential applications in preventing oxidative stress-related disorders [44].

4.2. Antidiabetic Activity

Research validates the hypoglycemic effects of *D. alata* through multiple mechanisms. Experimental studies demonstrate significant reduction in blood glucose levels through enhanced insulin sensitivity and improved glucose metabolism. Saponins and specific

phytochemicals present in the tuber regulate key enzymes involved in carbohydrate metabolism [45]. Clinical observations indicate potential applications in diabetes management through both direct and indirect pathways [46].

Table 2. Pharmacological Activities of *D. alata* and Their Mechanisms of Action

Activity	Mechanism of Action	Clinical Significance
Antidiabetic	Insulin sensitivity enhancement, Glucose metabolism regulation	Blood sugar control
Antioxidant	Free radical scavenging, Metal ion chelation	Oxidative stress prevention
Anti-inflammatory	Prostaglandin synthesis inhibition, Cytokine modulation	Pain and inflammation reduction
Antimicrobial	Cell wall disruption, Metabolic interference	Infection control
Cardioprotective	Lipid profile improvement, Antioxidant protection	Cardiovascular health
Immunomodulatory	Immune cell activation, Cytokine regulation	Immune system enhancement

4.3. Antimicrobial Activity

D. alata extracts exhibit broad-spectrum antimicrobial properties against various pathogenic organisms. Studies demonstrate significant inhibitory effects against Staphylococcus aureus and Escherichia coli, suggesting applications in treating infectious diseases [47]. The antimicrobial activity extends to both gram-positive and gram-negative bacteria, indicating potential development of natural antimicrobial agents [48].

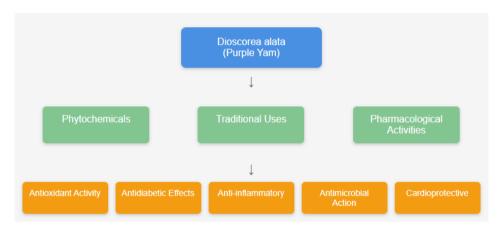


Figure 3. Pharmacological activities of D. alata

4.4. Antitumor Activity

Recent investigations reveal promising antitumor properties of *D. alata* compounds, particularly diosgenin. Studies demonstrate cytotoxic effects against various cancer cell lines, with minimal impact on normal cells [49]. The mechanisms involve apoptosis induction and cell cycle regulation, suggesting potential applications in cancer therapy [50].

4.5. Anti-arthritic Activity

Experimental models confirm the anti-arthritic properties of *D. alata* extracts. The tuber's anti-inflammatory compounds effectively reduce joint inflammation and associated pain, offering potential therapeutic options for arthritis management [51].

4.6. Anti-inflammatory and Antipyretic Activity

D. alata exhibits significant anti-inflammatory and antipyretic effects through multiple pathways. The presence of bioactive compounds, including flavonoids and alkaloids, contributes to reducing inflammation and fever [52]. These properties support traditional uses in managing inflammatory conditions [53].

4.7. Cardioprotective Activity

Research indicates cardioprotective effects of *D. alata* through antioxidant and anti-inflammatory mechanisms. Studies demonstrate reduced cardiovascular risk factors and improved cardiac function markers [54]. The tuber's compounds protect against oxidative stress-induced cardiac damage and support overall cardiovascular health [55].

4.8. Analgesic Activity

D. alata extracts demonstrate considerable analgesic properties through various pain pathway modulations. Studies confirm pain-relieving effects comparable to standard analgesics, suggesting potential applications in pain management protocols [56].].

5. Adverse Effects

Raw *D. alata* consumption poses potential risks due to its high fiber content. Gastrointestinal disturbances manifest as bloating, flatulence, and abdominal discomfort. Proper cooking methods significantly reduce these adverse effects by modifying the fiber structure and reducing antinutritional factors [57].

5.1. Allergies

Some individuals exhibit hypersensitivity reactions to *D. alata*, particularly those with existing allergies to starchy foods. Allergic responses range from mild skin irritations to more severe gastrointestinal symptoms. Genetic predisposition and immune system sensitivity influence individual susceptibility to these reactions [58].

5.2. Overconsumption Effects

Excessive intake of *D. alata* leads to various digestive system complications. The high carbohydrate content may cause abdominal cramping, diarrhea, and related gastrointestinal disturbances. Moderation in consumption prevents these adverse effects while maintaining therapeutic benefits [59].

5.3. Drug Interactions

D. alata demonstrates potential interactions with various medications, particularly those used in diabetes management. The tuber's hypoglycemic effects may enhance the action of antidiabetic drugs, necessitating careful monitoring of blood glucose levels in patients receiving concurrent treatment [60].

5.4. Nutritional Imbalance

While *D. alata* provides substantial nutritional benefits, exclusive reliance on it may lead to nutritional imbalances. The tuber lacks certain essential nutrients, making dietary diversification necessary for maintaining optimal nutrition. Regular monitoring of nutritional status helps prevent potential deficiencies [61].

5.5. Special Populations

Pregnant women, nursing mothers, and individuals with specific medical conditions require careful consideration when consuming *D. alata.* Healthcare provider consultation ensures safe consumption levels and appropriate preparation methods for these vulnerable populations [62].

5.6. Storage and Preparation Related Issues

Improper storage conditions may lead to tuber deterioration and potential toxin formation. Appropriate storage practices and proper preparation methods minimize these risks while preserving the therapeutic properties of *D. alata*.

6. Conclusion

D. alata possesses remarkable therapeutic potential through its diverse phytochemical constituents, including flavonoids, saponins, and polyphenols. Modern pharmacological studies validate its traditional applications, demonstrating significant antioxidant, antimicrobial, and anti-inflammatory properties. The tuber's antidiabetic effects, supported by clinical evidence, highlight its value in metabolic disorder management. Research confirms cardiovascular benefits and immune system modulation, expanding its therapeutic applications. While D. alata presents promising medicinal properties, consideration of potential adverse effects and drug interactions remains crucial for safe utilization. Integration of this valuable tuber in healthcare necessitates further investigation of its molecular mechanisms and development of standardized preparations.

References

- [1] Jayakumar A, Suganthi A. Health benefits of purple yam (*Dioscorea alata*). Int J Pharm Phytochem Res. 2018;10(2):87-91.
- [2] Liu Y, Li H, Fan Y, Man S, Liu Z, Gao W, et al. Antioxidant and antitumor activities of the extracts from Chinese yam (Dioscorea opposite Thunb.) flesh and peel and the effective compounds. J Food Sci. 2016;81(6):H1553-64.
- [3] Chandrasekara A, Kumar TJ. Roots and tuber crops as functional foods: A review on phytochemical constituents and their potential health benefits. Int J Food Sci. 2016;2016:3631647.
- [4] Riley CK, Wheatley AO, Asemota HN. Isolation and characterization of starches from eight *Dioscorea alata* cultivars grown in Jamaica. Afr J Biotechnol. 2006;5(17):1528-36.
- [5] Huang CC, Lin MC, Wang CCR. Changes in morphological, thermal and pasting properties of yam (*Dioscorea alata*) starch during growth. Carbohydr Polym. 2006;64(4):524-31.
- [6] Polycarp D, Afoakwa EO, Budu AS, Otoo E. Characterization of chemical composition and anti-nutritional factors in seven species within the Ghanaian yam (Dioscorea) germplasm. Int Food Res J. 2012;19(3):985-92.
- [7] Sautour M, Mitaine-Offer AC, Lacaille-Dubois MA. The Dioscorea genus: a review of bioactive steroid saponins. J Nat Med. 2007;61(2):91-101.
- [8] Kumar S, Das G, Shin HS, Patra JK. Dioscorea spp. (A wild edible tuber): A study on its ethnopharmacological potential and traditional use by the local people of Similipal Biosphere Reserve, India. Front Pharmacol. 2017;8:52.
- [9] Asha KI, Nair GM. Screening of Dioscorea species for diosgenin from southern Western Ghats of India. Indian J Plant Genet Resour. 2005;18(2):227-30.
- [10] Yang DJ, Lin JT, Chen YC, Liu SC, Lu FJ, Chang TJ, et al. Suppressive effect of carotenoid extract of *Dioscorea alata* L. on activated RAW264.7 macrophages. Food Chem. 2010;119(4):1563-71.
- [11] Chiu CS, Deng JS, Chang HY, Chen YC, Lee MM, Hou WC, et al. Antioxidant and anti-inflammatory properties of Taiwanese yam (*Dioscorea alata* L.) and its reference compounds. Food Chem. 2013;141(2):1087-96.
- [12] Maithili V, Dhanabal SP, Mahendran S, Vadivelan R. Antidiabetic activity of ethanolic extract of tubers of *Dioscorea alata* in alloxan induced diabetic rats. Indian J Pharmacol. 2011;43(4):455-9.
- [13] Son IS, Kim JH, Sohn HY, Son KH, Kim JS, Kwon CS. Antioxidative and hypolipidemic effects of diosgenin, a steroidal saponin of yam (Dioscorea spp.), on high-cholesterol fed rats. Biosci Biotechnol Biochem. 2007;71(12):3063-71
- [14] Sharma LK, Medhi H, Saikia SP, Baruah PS. Nutritional and phytochemical screening of *Dioscorea alata* tubers. Int J Pharm Pharm Sci. 2012;4(2):385-7.
- [15] Cho J, Choi H, Lee J, Kim MS, Sohn HY, Lee DG. The antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica. Biochim Biophys Acta. 2013;1828(3):1153-8.
- [16] Yang MH, Yoon KD, Chin YW, Park JH, Kim SH, Kim YC. Neuroprotective effects of Dioscorea opposita on scopolamine-induced memory impairment in in vivo behavioral tests and in vitro assays. J Ethnopharmacol. 2009;121(1):130-4.
- [17] Shujun W, Jinglin Y, Wenyuan G, Hongyan L, Peigen X. New starches from traditional Chinese medicine (TCM)-Chinese yam (Dioscorea opposita Thunb.) cultivars. Carbohydr Res. 2006;341(2):289-93.
- [18] Hsu FL, Lin YH, Lee MH, Lin CL, Hou WC. Both dioscorin, the tuber storage protein of yam (*Dioscorea alata* cv. Tainong No. 1), and its peptic hydrolysates exhibited angiotensin converting enzyme inhibitory activities. J Agric Food Chem. 2002;50(21):6109-13.
- [19] Araghiniknam M, Chung S, Nelson-White T, Eskelson C, Watson RR. Antioxidant activity of dioscorea and dehydroepiandrosterone (DHEA) in older humans. Life Sci. 1996;59(11):PL147-57.
- [20] Lin PL, Lin KW, Weng CF, Lin KC. Yam storage protein dioscorins from *Dioscorea alata* and Dioscorea japonica exhibit distinct immunomodulatory activities in mice. J Agric Food Chem. 2009;57(11):4606-13.
- [21] Chen CT, Wang ZH, Hsu CC, Lin HH, Chen JH. In vivo and in vitro studies of the hypoglycemic effects of Dioscorea japonica extract. J Sci Food Agric. 2017;97(8):2472-80.
- [22] Hou WC, Lee MH, Chen HJ, Liang WL, Han CH, Liu YW, et al. Antioxidant activities of dioscorin, the storage protein of yam (Dioscorea batatas Decne) tuber. J Agric Food Chem. 2001;49(10):4956-60.
- [23] Medagama AB. The glycaemic outcomes of Cinnamon, a review of the experimental evidence and clinical trials. Nutr J. 2015;14:108.

- [24] Philippe J, Suvarna S, Nguyen QC, Sheridan R, Toi PT. Cultivation and nutritional value of *Dioscorea alata*. Food Rev Int. 2017;33(4):382-93.
- [25] Cornago DF, Rumbaoa RG, Geronimo IM. Philippine yam (*Dioscorea alata* L.) tubers phenolic content and antioxidant capacity. Philipp J Sci. 2011;140(2):145-52.
- [26] Kumar S, Gautam PB, Sharma A. Comparative study of proximate composition of Dioscorea species tubers. Food Chem. 2016;199:463-9.
- [27] Liu YW, Shang HF, Wang CK, Hsu FL, Hou WC. Immunomodulatory activity of dioscorin, the storage protein of yam (*Dioscorea alata* cv. Tainong No. 1) tuber. Food Chem Toxicol. 2007;45(11):2312-8.
- [28] Shanthakumari S, Mohan VR, de Britto J. Nutritional evaluation and elimination of toxic principles in wild yam (Dioscorea spp.). Trop Subtrop Agroecosyst. 2008;8(3):319-25.
- [29] Onwueme IC. The tropical tuber crops: yams, cassava, sweet potato, and cocoyams. John Wiley & Sons Ltd.; 1978.
- [30] Yang DJ, Lu TJ, Hwang LS. Isolation and identification of steroidal saponins in Taiwanese yam cultivar (Dioscorea pseudojaponica Yamamoto). J Agric Food Chem. 2003;51(22):6438-44.
- [31] Raju J, Mehta R. Cancer chemopreventive and therapeutic effects of diosgenin, a food saponin. Nutr Cancer. 2009;61(1):27-35.
- [32] Mignouna HD, Abang MM, Fagbemi SA. A comparative assessment of molecular marker assays (AFLP, RAPD and SSR) for white yam (Dioscorea rotundata) germplasm characterisation. Ann Appl Biol. 2003;142(3):269-76.
- [33] Martin FW. The species of Dioscorea containing sapogenin. Econ Bot. 1969;23(4):373-9.
- [34] Hikino H, Konno C, Takahashi M, Murakami M, Kato Y, Karikura M, et al. Isolation and hypoglycemic activity of dioscorans A, B, C, D, E, and F; glycans of Dioscorea japonica rhizophors. Planta Med. 1986;52(3):168-71.
- [35] Sarella PN, Mangam VT. Enhancing Nutraceutical Bioavailability with Bilosomes: A Comprehensive Review. Asian Journal of Pharmacy and Technology. 2024 Sep 19;14(3):271-80..
- [36] Sautour M, Miyamoto T, Lacaille-Dubois MA. Steroidal saponins from Dioscorea villosa and their cytotoxic activity. J Nat Prod. 2006;69(7):1137-9.
- [37] Chen HL, Wang CH, Chang CT, Wang TC. Effects of Taiwanese yam (Dioscorea japonica Thunb var. pseudojaponica Yamamoto) on upper gut function and lipid metabolism in Balb/c mice. Nutrition. 2003;19(7-8):646-51.
- [38] Hou WC, Hsu FL, Lee MH. Yam (Dioscorea batatas) tuber mucilage exhibited antioxidant activities in vitro. Planta Med. 2002;68(12):1072-6.
- [39] Shajeela PS, Mohan VR, Jesudas LL, Soris PT. Nutritional and antinutritional evaluation of wild yam (Dioscorea spp.). Trop Subtrop Agroecosyst. 2011;14(2):723-30.
- [40] Arinathan V, Mohan VR, Britto AJ. Chemical composition of certain tribal pulses in South India. Int J Food Sci Nutr. 2003;54(3):209-17.
- [41] Yi T, Fan LL, Chen HL, Zhu GY, Suen HM, Tang YN, et al. Comparative analysis of diosgenin in Dioscorea species and related medicinal plants by UPLC-DAD-MS. BMC Biochem. 2014;15(1):19.
- [42] Teerapatsakul C, Udomsopagit S, Nakasathien S, Kusamran WR. Inhibition of mutagenicity of cooked food mutagens by purple yam (*Dioscorea alata* L.). J Med Plants Res. 2012;6(3):458-63.
- [43] Theerasin S, Baker AT. Analysis and identification of phenolic compounds in Dioscorea hispida Dennst. Asian J Food Agro-Ind. 2009;2(4):547-60.
- [44] Bhandari MR, Kawabata J. Organic acid, phenolic content and antioxidant activity of wild yam (Dioscorea spp.) tubers of Nepal. Food Chem. 2004;88(2):163-8.
- [45] Sharma HK, Kaushal P. Comparative study of physicochemical, functional, anti-nutritional and pasting properties of taro (Colocasia esculenta), rice (Oryza sativa), pegion pea (Cajanus cajan) flour and their blends. LWT-Food Sci Technol. 2016;65:1-7.
- [46] Wanasundera JPD, Ravindran G. Nutritional assessment of yam (*Dioscorea alata*) tubers. Plant Foods Hum Nutr. 1994;46(1):33-9.
- [47] Chen YT, Liu CH, Chen CJ, Chiu YH, Lin SD, Chen HE, et al. Effect of storage temperature on the quality of partially dried yam slices. J Sci Food Agric. 2017;97(9):2919-28.
- [48] Nagai T, Suzuki N, Nagashima T. Antioxidative activities and angiotensin I-converting enzyme inhibitory activities of enzymatic hydrolysates from commercial kamaboko type samples. Food Sci Technol Int. 2006;12(4):335-46.

- [49] Dutta B. Food and medicinal values of certain species of Dioscorea with special reference to Assam. J Pharmacogn Phytochem. 2015;3(4):15-8.
- [50] Krishnan JG, Padmaja G, Moorthy SN, Suja G, Sajeev MS. Effect of pre-soaking treatments on the nutritional profile and browning index of sweet potato and yam flours. Innov Food Sci Emerg Technol. 2010;11(2):387-93
- [51] Baah FD, Maziya-Dixon B, Asiedu R, Oduro I, Ellis WO. Nutritional and biochemical composition of *D. alata* (Dioscorea spp.) tubers. J Food Agric Environ. 2009;7(2):373-8.
- [52] McAnuff MA, Omoruyi FO, Morrison EY, Asemota HN. Changes in some liver enzymes in streptozotocin-induced diabetic rats fed sapogenin extract from bitter vam (Dioscorea polygonoides). West Indian Med J. 2005;54(2):97-101.
- [53] Olayemi JO, Ajaiyeoba EO. Anti-inflammatory studies of yam (Dioscorea esculenta) extract on wistar rats. Afr J Biotechnol. 2007;6(16):1913-5.
- [54] Liu H, Chou GX, Wu T, Guo YL, Wang SC, Wang CH, et al. Steroidal sapogenins and glycosides from the rhizomes of Dioscorea bulbifera. J Nat Prod. 2009;72(11):1964-8.
- [55] Poornima GN, Ravishankar RV. In vitro evaluation of antioxidant and antimicrobial activities of wild yam (Dioscorea wallichii). J Food Sci Technol. 2009;46(2):168-71.
- [56] Jin M, Lu Y, Yang JH, Jo TH, Park YI, Lee CK, et al. Anti-inflammatory activity of 6-hydroxy-2,7-dimethoxy-1,4-henanthraquinone from tuberous roots of yam (Dioscorea batatas) through inhibition of prostaglandin D₂ and leukotriene C₄ production in mouse bone marrow-derived mast cells. Arch Pharm Res. 2011;34(9):1495-501.
- [57] Osagie AU. Antinutritional factors in nutritional quality of plant foods. Post Harvest Research Unit, University of Benin; 1998.
- [58] Shewry PR, Halford NG. Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot. 2002;53(370):947-58.
- [59] Ramanatha RV, Matthews PJ, Eyzaguirre PB, Hunter D. The global diversity of yam (Dioscorea spp.): a biological and cultural asset. Bioversity International; 2010.
- [60] Mbiantcha M, Kamanyi A, Teponno RB, Tapondjou AL, Watcho P, Nguelefack TB. Analgesic and anti-inflammatory properties of extracts from the bulbils of Dioscorea bulbifera L. var sativa (Dioscoreaceae) in mice and rats. Evid Based Complement Alternat Med. 2011;2011:912935.
- [61] Okwu DE, Ndu CU. Evaluation of the phytonutrients, mineral and vitamin contents of some varieties of yam (Dioscorea sp.). Int J Mol Med Adv Sci. 2006;2(2):199-203.
- [62] Sakthidevi G, Mohan VR. Total phenolic, flavonoid contents and in vitro antioxidant activity of *Dioscorea alata* L. tuber. J Pharm Sci Res. 2013;5(5):115-9.