REVIEW ARTICLE

A Review of Epidemiology, Clinical Manifestations, and Therapeutic Approaches for Monkeypox

Uma Maheswari K*1 Naga Sri Kanya B², Lavanya N², Gayatri Durga D², Gowri L², Edward Raju Gope¹, Raghava D³, Nageswara Rao K⁴

¹Assistant Professor, Department of Pharmaceutical Analysis, KGRL College of Pharmacy, Bhimavaram, Andhra Pradesh, India

Publication history: Received on 4th October; Revised on 9th October; Accepted on 15th October 2024

Article DOI: 10.69613/jxpv0a57

Abstract: Monkeypox, a zoonotic disease caused by the monkeypox virus belonging to the Orthopoxvirus genus, has emerged as a significant public health concern worldwide. Initially confined to endemic regions in Central and West Africa, the disease has spread globally, affecting multiple countries across continents. The virus primarily transmits through close contact with infected animals, humans, or contaminated materials. Clinical presentations range from mild symptoms to severe complications, with characteristic features including fever, lymphadenopathy, and distinctive skin lesions progressing through various stages. Recent outbreaks have demonstrated altered transmission patterns and clinical manifestations, particularly affecting specific population groups. Diagnostic approaches encompass molecular techniques, serological testing, and clinical assessment. While supportive care remains the primary management strategy, antiviral medications like tecovirimat show promise in severe cases. Vaccination strategies, including both pre-and post-exposure prophylaxis, play crucial roles in prevention and outbreak control. Public health measures, surveillance systems, and international collaboration are essential components in managing the spread of monkeypox. The emergence of monkeypox as a global health challenge necessitates continued vigilance, enhanced preparedness, and coordinated response efforts to effectively contain and manage future outbreaks.

Keywords: Monkeypox virus; Zoonosis; Epidemiology; Antiviral therapy; Public health.

1. Introduction

Monkeypox virus (MPXV), first identified in laboratory monkeys in 1958, represents a significant emerging pathogen in the Orthopoxvirus genus of the Poxviridae family [1]. The virus gained prominence following its first human case detection in 1970 in the Democratic Republic of Congo, marking the beginning of its recognition as a human pathogen [2]. Initially considered endemic to Central and West African regions, the disease has demonstrated an expanding geographical reach, challenging previous understanding of its epidemiological patterns [3]. The virus exists in two distinct genetic clades: the Central African (Congo Basin) clade and the West African clade, with the former associated with higher virulence and mortality rates [4]. Recent global outbreaks have predominantly involved the West African clade, showing modified transmission patterns and clinical presentations compared to historical cases [5].

The epidemiology of monkeypox has evolved significantly over the past decades. While early cases were primarily linked to animal-to-human transmission, recent outbreaks have shown sustained human-to-human transmission chains [6]. This shift in transmission dynamics, coupled with increased global mobility and changing ecological factors, has contributed to the virus's emergence as a global health concern [7]. Knowledge about the pathogenesis of MPXV has become crucial as it shares similarities with smallpox virus, though generally causing milder disease [8]. The virus enters the host through broken skin, respiratory tract, or mucous membranes, establishing infection through a complex interaction with the host immune system [9]. This biological understanding has profound implications for therapeutic approaches and vaccine development [10].

² UG Scholar, Department of Pharmacy, KGRL College of Pharmacy, Bhimavaram, Andhra Pradesh, India

³Principal and Professor, Department of Pharmaceutical Chemistry, KGRL College of Pharmacy, Bhimavaram, Andhra Pradesh, India

⁴Director and Professor, Department of Pharmaceutical Analysis, KGRL College of Pharmacy, Bhimavaram, Andhra Pradesh, India

^{*} Corresponding author: Uma Maheswari K

2. Clinical Manifestations and Diagnosis

The clinical presentation of monkeypox typically manifests after an incubation period ranging from 5 to 21 days [11]. The disease progression follows a characteristic pattern, beginning with a prodromal phase marked by fever, intense headache, lymphadenopathy, back pain, myalgia, and profound asthenia [12]. The distinguishing feature from smallpox is the early development of lymphadenopathy, which occurs in approximately 59% of monkeypox cases [13]. The characteristic rash appears within 1-3 days after fever onset, predominantly affecting the face, extremities, and genitalia [14]. The lesions evolve through distinct stages: macular, papular, vesicular, pustular, and finally forming crusts [15]. Recent outbreaks have shown variations in presentation, with some cases displaying localized genital or perianal lesions without prodromal symptoms [16].

Table 1. Clinical Stages and Characteristics of Monkeypox Infection

Stage	Duration	Clinical Features	Key Characteristics
Incubation Period	5-21 days	Asymptomatic	No visible symptoms
Prodromal Phase	1-4 days	Fever, headache, lymphadenopathy, myalgia, fatigue	Distinguishing lymphadenopathy
Initial Rash	1-3 days	Macular lesions beginning on face/extremities	Lesions 2-5mm in diameter
Papular Stage	1-2 days	Raised lesions with firm consistency	Uniform round elevations
Vesicular Stage	1-2 days	Fluid-filled lesions	Clear fluid containment
Pustular Stage	5-7 days	Lesions containing opaque fluid	Yellowish fluid appearance
Crusting Stage	7-14 days	Formation and shedding of crusts	Complete healing

Diagnostic approaches employ multiple methodologies for accurate identification. Polymerase Chain Reaction (PCR) testing of lesion material remains the gold standard for diagnosis [17]. Electron microscopy can identify characteristic virus particles, while serological testing helps detect antibody responses, particularly useful in retrospective diagnosis [18].

3. Epidemiology and Transmission

The epidemiological landscape of monkeypox has undergone significant changes since its discovery. Traditional animal reservoirs include rope squirrels, tree squirrels, Gambian pouched rats, and various species of monkeys [19]. Human-to-human transmission occurs through close contact with lesions, bodily fluids, respiratory droplets, and contaminated materials [20]. Recent outbreaks have highlighted new transmission patterns, particularly affecting specific demographic groups and geographic regions previously considered non-endemic [21]. The basic reproduction number (R0) varies depending on the setting and population, with estimates ranging from 0.6 to 1.7 [22]. The changing epidemiology presents challenges for public health surveillance and control measures. Factors contributing to increased transmission include declining population immunity following smallpox vaccination cessation, environmental changes, and increased human-animal contact [23].

4. Treatment and Prevention

4.1. Therapeutic Management

The management of monkeypox requires a comprehensive approach, combining supportive care with specific antiviral interventions when necessary. Supportive care remains the cornerstone of treatment, focusing on symptom management, maintaining adequate hydration, and preventing secondary bacterial infections [24]. In mild to moderate cases, patients typically recover without specific interventions, though careful monitoring is essential to identify potential complications [25].

4.1.1. Antiviral Therapeutics

Several antiviral medications have shown promise in treating monkeypox infections. Tecovirimat, initially developed for smallpox treatment, has emerged as a leading therapeutic option [26]. The drug targets the VP37 envelope wrapping protein, crucial for viral spread, demonstrating efficacy in both animal models and human cases [27]. Brincidofovir and cidofovir represent additional treatment options, though their use may be limited by availability and potential side effects [28]. Clinical studies have shown that early initiation of antiviral therapy, particularly within the first week of symptom onset, correlates with better outcomes [29].

4.1.2. Management of Complications

Severe cases may develop complications requiring specialized interventions. Secondary bacterial infections, respiratory distress, and ocular involvement necessitate targeted therapeutic approaches [30]. The management of immunocompromised patients presents particular challenges, often requiring more aggressive treatment strategies and prolonged monitoring [31].

Table 2. Comparison of Available Therapeutic Options for Monkeypox

Treatment Option	Mechanism of Action	Indication	Effectiveness	Notable Side Effects
Tecovirimat	VP37 protein inhibitor	Severe cases	High efficacy in clinical trials	Headache, nausea
Brincidofovir	DNA polymerase inhibitor	Moderate to severe cases	Moderate efficacy	Gastrointestinal symptoms
Cidofovir	Viral DNA synthesis inhibitor	Severe cases	Moderate to high efficacy	Renal toxicity
Vaccinia Immune Globulin	Passive immunization	Post-exposure prophylaxis	Variable efficacy	Injection site reactions
Supportive Care	Symptom management	All cases	Essential baseline treatment	Minimal

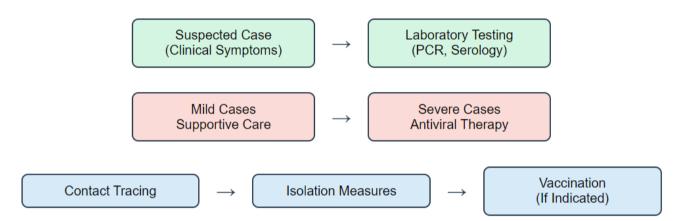


Figure 1. Algorithm for the Management of Monkey Pox

4.2. Preventive Measures and Control

4.2.1. Vaccination Strategies

Vaccination plays a pivotal role in monkeypox prevention. Traditional smallpox vaccines provide cross-protection against monkeypox, with an estimated efficacy of 85% [32]. Modern vaccines specifically developed for monkeypox include MVA-BN (Modified Vaccinia Ankara-Bavarian Nordic) and LC16m8, showing promising results in clinical trials [33]. Vaccination strategies encompass both pre-exposure prophylaxis for high-risk individuals and post-exposure prophylaxis, ideally administered within four days of exposure [34].

4.2.2. Public Health Interventions

Effective control measures require comprehensive public health strategies. Contact tracing remains crucial, with exposed individuals requiring monitoring for 21 days post-exposure [35]. Isolation protocols for confirmed cases, environmental decontamination, and proper handling of infected materials form essential components of outbreak management [36]. Healthcare worker protection through appropriate personal protective equipment and infection control measures is paramount [37].

4.2.3. Surveillance and Monitoring

Enhanced surveillance systems are critical for early detection and response. Integration of laboratory networks, standardized case definitions, and rapid reporting mechanisms facilitate effective outbreak control [38]. International collaboration and data sharing have become increasingly important in monitoring global disease patterns and emerging variants [39].

4.2.4. Risk Communication and Community Engagement

Effective risk communication strategies play a vital role in disease control. Public education about transmission routes, prevention measures, and early symptom recognition helps reduce transmission risks [40]. Community engagement initiatives, particularly in endemic regions, have proven essential for successful implementation of control measures [41]

5. Conclusion

Monkeypox has evolved from a geographically limited zoonotic disease to a global public health challenge requiring coordinated international response efforts. The changing epidemiology, transmission patterns, and clinical presentations necessitate continued adaptation of prevention and control strategies. While significant progress has been made in understanding the virus and developing therapeutic interventions, several challenges remain, including vaccine accessibility, surveillance system optimization, and healthcare capacity building in resource-limited settings. The successful management of monkeypox requires a multifaceted approach combining robust surveillance, effective therapeutics, strategic vaccination programs, and strong international collaboration.

References

- [1] Reed KD, Melski JW, Graham MB, et al. The detection of monkeypox in humans in the Western Hemisphere. N Engl J Med. 2004;350(4):342-350.
- [2] Ladnyj ID, Ziegler P, Kima E. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull World Health Organ. 1972;46(5):593-597.
- [3] Bunge EM, Hoet B, Chen L, et al. The changing epidemiology of human monkeypox—A potential threat? A systematic review. PLoS Negl Trop Dis. 2022;16(2):e0010141.
- [4] Likos AM, Sammons SA, Olson VA, et al. A tale of two clades: monkeypox viruses. J Gen Virol. 2005;86(10):2661-2672.
- [5] Thornhill JP, Barkati S, Walmsley S, et al. Monkeypox Virus Infection in Humans across 16 Countries—April–June 2022. N Engl J Med. 2022;387(8):679-691.
- [6] Reynolds MG, Davidson WB, Curns AT, et al. Spectrum of infection and risk factors for human monkeypox, United States, 2003. Emerg Infect Dis. 2007;13(9):1332-1339.
- [7] Simpson K, Heymann D, Brown CS, et al. Human monkeypox After 40 years, an unintended consequence of smallpox eradication. Vaccine. 2020;38(33):5077-5081.
- [8] McCollum AM, Damon IK. Human monkeypox. Clin Infect Dis. 2014;58(2):260-267.
- [9] Weaver JR, Isaacs SN. Monkeypox virus and insights into its immunomodulatory proteins. Immunol Rev. 2008;225(1):96-113.
- [10] Sarella PN, Mangam VT. Enhancing Nutraceutical Bioavailability with Bilosomes: A Comprehensive Review. Asian Journal of Pharmacy and Technology. 2024 Sep 19;14(3):271-80.
- [11] Adler H, Gould S, Hine P, et al. Clinical features and management of human monkeypox: a retrospective observational study in the UK. Lancet Infect Dis. 2022;22(8):1153-1162.
- [12] Moore M, Zahra F. Monkeypox. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.
- [13] Huhn GD, Bauer AM, Yorita K, et al. Clinical characteristics of human monkeypox, and risk factors for severe disease. Clin Infect Dis. 2005;41(12):1742-1751.
- [14] Antinori A, Mazzotta V, Vita S, et al. Epidemiological, clinical and virological characteristics of four cases of monkeypox support transmission through sexual contact, Italy, May 2022. Euro Surveill. 2022;27(22):2200421.
- [15] Vaughan A, Aarons E, Astbury J, et al. Human-to-Human Transmission of Monkeypox Virus, United Kingdom, October 2018. Emerg Infect Dis. 2020;26(4):782-785.
- [16] Sarella PN, Valluri S, Vegi S, Vendi VK, Vipparthi AK. Microneedle Arrays: Advancements, Applications and Future Prospects in Pharmaceutical Delivery. Asian Journal of Pharmacy and Technology. 2024 Sep 19;14(3):229-36.
- [17] Li Y, Zhao H, Wilkins K, et al. Real-time PCR assays for the specific detection of monkeypox virus West African and Congo Basin strain DNA. J Virol Methods. 2010;169(1):223-227.
- [18] Maksyutov RA, Gavrilova EV, Shchelkunov SN. Species-specific differentiation of variola, monkeypox, and varicella-zoster viruses by multiplex real-time PCR assay. J Virol Methods. 2016;236:215-220.
- [19] Reynolds MG, Carroll DS, Olson VA, et al. A silent enzootic of an orthopoxvirus in Ghana, West Africa: evidence for multi-species involvement in the absence of widespread human disease. Am J Trop Med Hyg. 2010;82(4):746-754.
- [20] Fine PE, Jezek Z, Grab B, Dixon H. The transmission potential of monkeypox virus in human populations. Int J Epidemiol. 1988;17(3):643-650.
- [21] Kozlov M. Monkeypox goes global: why scientists are on alert. Nature. 2022;606(7912):15-16.

- [22] Grant R, Nguyen LL, Breban R. Modelling human-to-human transmission of monkeypox. Bull World Health Organ. 2020;98(9):638-640.
- [23] Sklenovská N, Van Ranst M. Emergence of Monkeypox as the Most Important Orthopoxvirus Infection in Humans. Front Public Health. 2018;6:241.
- [24] Witkowski PT, Leendertz FH, Auste B, et al. Human monkeypox virus infection in the Republic of the Congo. Am J Trop Med Hyg. 2015;93(4):718-721.
- [25] Ogoina D, Izibewule JH, Ogunleye A, et al. The 2017 human monkeypox outbreak in Nigeria—Report of outbreak experience and response in the Niger Delta University Teaching Hospital, Bayelsa State, Nigeria. PLoS One. 2019;14(4):e0214229.
- [26] Grosenbach DW, Honeychurch K, Rose EA, et al. Oral Tecovirimat for the Treatment of Smallpox. N Engl J Med. 2018;379(1):44-53.
- [27] Russo AT, Grosenbach DW, Chinsangaram J, et al. An overview of tecovirimat for smallpox treatment and expanded antiorthopoxvirus applications. Expert Rev Anti Infect Ther. 2021;19(3):331-344.
- [28] Quenelle DC, Buller RM, Parker S, et al. Efficacy of delayed treatment with ST-246 given orally against systemic orthopoxvirus infections in mice. Antimicrob Agents Chemother. 2007;51(2):689-695.
- [29] Adalja A, Inglesby T. A Novel International Monkeypox Outbreak. Ann Intern Med. 2022;175(8):1175-1176.
- [30] Hammarlund E, Lewis MW, Carter SV, et al. Multiple diagnostic techniques identify previously vaccinated individuals with protective immunity against monkeypox. Nat Med. 2005;11(9):1005-1011.
- [31] Rao AK, Schulte J, Chen TH, et al. Monkeypox in a Traveler Returning from Nigeria Dallas, Texas, July 2021. MMWR Morb Mortal Wkly Rep. 2022;71(14):509-516.
- [32] Mangam VT, Nallam VR, Anitha A, Devi PR, Sanisha M. Dengue-An Overview. International Journal of Pharma Research. 2018 Jan 1;9(1).
- [33] Pittman PR, Hahn M, Lee HS, et al. Phase 3 Efficacy Trial of Modified Vaccinia Ankara as a Vaccine against Smallpox. N Engl J Med. 2019;381(20):1897-1908.
- [34] Stittelaar KJ, van Amerongen G, Kondova I, et al. Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus. J Virol. 2005;79(12):7845-7851.
- [35] Hughes CM, Liu L, Davidson WB, et al. A Tale of Two Countries: Implementation of the WHO Suspected Case Definition for Monkeypox in the United Kingdom and Nigeria. Int J Infect Dis. 2020;95:18-20.
- [36] Beer EM, Rao VB. A systematic review of the epidemiology of human monkeypox outbreaks and implications for outbreak strategy. PLoS Negl Trop Dis. 2019;13(10):e0007791.
- [37] Hutson CL, Carroll DS, Self J, et al. Dosage comparison of Congo Basin and West African strains of monkeypox virus using a prairie dog animal model of systemic orthopoxvirus disease. Virology. 2010;402(1):72-82.
- [38] Yinka-Ogunleye A, Aruna O, Dalhat M, et al. Outbreak of human monkeypox in Nigeria in 2017-18: a clinical and epidemiological report. Lancet Infect Dis. 2019;19(8):872-879.
- [39] Alakunle E, Moens U, Nchinda G, Okeke MI. Monkeypox Virus in Nigeria: Infection Biology, Epidemiology, and Evolution. Viruses. 2020;12(11):1257.
- [40] Reynolds MG, Doty JB, McCollum AM, et al. Temporal and spatial patterns of human monkeypox infections in the Democratic Republic of the Congo: 2001-2013. J Infect Dis. 2019;220(9):1460-1467.
- [41] Damon IK. Status of human monkeypox: clinical disease, epidemiology and research. Vaccine. 2011;29 Suppl 4:D54-59.

Author's Short Biography

Mrs Uma Maheswari K

Mrs. Uma Maheswari K is an Assistant Professor in Pharmaceutical Analysis at KGRL College of Pharmacy with expertise in analytical method development and validation. Her research focuses on chromatographic techniques and quality control in pharmaceutical analysis. She has published several papers in reputed journals on drug analysis and method development.

Miss Naga Sri Kanya B

Miss Naga Sri Kanya B is a final year undergraduate pharmacy student at KGRL College of Pharmacy. She has demonstrated exceptional interest in pharmaceutical research, particularly in epidemiology and infectious diseases. Her academic projects focus on emerging viral infections and therapeutic approaches. She has presented her research work at various national-level student conferences and participated in multiple research methodology workshops

Miss Lavanya N

Miss Lavanya N is pursuing her final year of pharmacy at KGRL College of Pharmacy. Her research interests lie in clinical pharmacy and therapeutic management. She has actively participated in several academic projects related to drug safety and clinical manifestations of emerging diseases. Her contributions to research seminars have earned her recognition at institutional levels.

Miss Gayatri Durga D

Miss Gayatri Durga D, a final year pharmacy student at KGRL College of Pharmacy, has shown particular interest in pharmacology and therapeutic interventions. Her academic achievements include research projects on antiviral medications and their mechanisms of action. She has participated in various pharmaceutical science workshops and has presented papers at regional conferences.

Miss Gowri L

Gowri L is completing her final year of pharmacy at KGRL College of Pharmacy. Her research focus includes pharmaceutical analysis and drug development. She has participated in multiple laboratory-based projects and has contributed to research work in analytical method development. Her academic excellence has been recognized through various merit scholarships and awards at college level competitions.

Mr. Edward Raju Gope

Mr. Edward Raju Gope is an Assistant Professor of Pharmaceutical Analysis at K. G. R. L College of Pharmacy in Bhimavaram, Andhra Pradesh. He holds a Master's degree in Pharmaceutical Analysis. Edward is passionate about educating students in developing effective and industrially applicable pharmaceutical formulations. He constantly strives to make the subject engaging and research-oriented for learners. Edward also encourages collaboration with industries through student projects and facility visits.

Dr. Raghava D

Dr. Raghava D, is the Principal of K.G.R.L. College of Pharmacy, Bhimavaram, India is an eminent Pharmacy professional having 15 years of experience in Pharmacy teaching and pharmaceutical Industry.

Dr. Nageswara Rao K

Dr. Kavala Nageswara Rao, M.Pham., Ph.D from Andhra University having 22 years of experience in Pharma Industry in India. He worked as a Community Pharmacist in abroad for 9 years, kingdom of Saudi Arabia and 17 years of teaching in Bhimavaram. He served in various capacities of many reputed multinational companies like Rallis India Ltd., Raptakos, Brette & Co. Ltd., Mumbai.

