REVIEW ARTICLE

A Review of Enzyme Inhibitory Activities and Therapeutic Potential of Selected Mushroom Species

Harshith Kumar H N*1, Rakshitha H S2, Ramya S2, Sinchana H Gowda2

¹Assistant Professor, Department of Pharmacology, Bharathi College of Pharmacy, Bharathinagara, Mandya Dist, Karnataka, India

²UG Scholar, Department of Pharmacology, Bharathi College of Pharmacy, Bharathinagara, Mandya Dist, Karnataka, India

Publication history: Received on 21st Aug; Revised on 30th Aug; Accepted on 4th September 2024

Article DOI: 10.69613/r1pj1728

Abstract: Medicinal mushrooms contain diverse bioactive compounds that exhibit significant enzyme inhibitory properties, particularly against α-amylase and lipase enzymes. Five mushroom species - Hericium tessulatus, Lentinula edodes, Termitomyces microcarpus, Schizophyllum commune, and Tricholoma matsutake - were evaluated for their therapeutic potential in metabolic disorders. The analysis of their chemical constituents revealed high concentrations of polysaccharides (15-35%), phenolic compounds (2-8%), and terpenoids (1-4%). L. edodes showed the strongest α-amylase inhibition with an IC50 value of 2.45 mg/mL, while H. tessulatus demonstrated potent lipase inhibition (IC50 = 1.87 mg/mL). The observed enzyme inhibitory activities correlate with specific bioactive compounds: β-glucans and triterpenes for α-amylase inhibition, and phenolic acids for lipase inhibition. These mushrooms also possess additional therapeutic properties, including immunomodulation, antioxidant effects, and antimicrobial activities. Extraction methods significantly influence the potency of bioactive compounds, with ethanol extraction yielding higher concentrations of active ingredients compared to aqueous extraction. This justifies the traditional use of these mushrooms in treating metabolic disorders and suggest their potential in developing new pharmaceutical formulations for diabetes and obesity management.

Keywords: Enzyme inhibition; Medicinal mushrooms; Bioactive compounds; Therapeutic properties; Functional foods.

1. Introduction

Mushrooms represent a unique intersection of traditional medicine and modern therapeutic research, embodying a rich history of human utilization spanning thousands of years. In Asian cultures, these fungi have historically served dual roles as both dietary components and medicinal remedies, with recent research validating their potential as sources of bioactive peptides [1]. The global interest in mushrooms has experienced significant growth, particularly in their application as functional foods and nutraceuticals, driven by increasing awareness of their health-promoting properties [2]. The past several decades has witnessed an exponential increase in research focusing on mushrooms' therapeutic applications and their role as health supplements [3]. These organisms are remarkable reservoirs of essential nutrients, containing crucial bioactive compounds including polysaccharides, dietary fibers, and various micronutrients. Beyond their nutritional value, mushrooms are prized for their distinctive organoleptic properties - their unique taste, aroma, texture, and flavor profiles [4]. Their significance extends beyond gastronomy, as they represent an underutilized resource in pharmaceutical development, offering a low-calorie, nutrient-dense food source rich in proteins, vitamins, and minerals [5].

The therapeutic potential of mushrooms stems from their diverse array of bioactive compounds. These include anti-inflammatory substances such as polysaccharides, phenolic and indolic compounds, mycosteroids, fatty acids, carotenoids, vitamins, and biometals [6]. Among these, phenolic compounds, particularly phenolic acids and flavonoids, are noteworthy for their multiple biological activities. These compounds contribute to various health benefits, including antioxidant, anti-inflammatory, antitumor, antihyperglycemic, antiosteoporotic, anti-tyrosinase, and antimicrobial effects, although they are typically present in relatively modest quantities [7].

Scientific investigations have revealed mushrooms' significant potential in enzyme inhibition, particularly concerning metabolic enzymes such as α -amylase and lipase. The modulation of these enzymes has garnered considerable attention in managing metabolic disorders, including diabetes and obesity [8]. Mushroom extracts demonstrate promising therapeutic applications through their ability to regulate these enzymatic activities in metabolic health management [9].

^{*} Corresponding author: Harshith Kumar H N

The pharmaceutical significance of mushrooms extends beyond enzyme inhibition. Their immunomodulatory compounds show remarkable potential in enhancing immune system function and fighting various diseases [10]. Mushrooms contain unique polysaccharides, particularly β-glucans, which demonstrate significant anticancer and immunostimulating properties [11]. These compounds work through multiple mechanisms, including the activation of immune system cells and the modulation of cytokine production [12]. Mushrooms serve as sustainable sources of novel drug leads. Their ability to synthesize secondary metabolites with diverse chemical structures has attracted considerable attention in drug discovery programs [13]. The growing interest in natural alternatives to synthetic pharmaceuticals has positioned mushrooms as valuable resources in modern medicine, bridging traditional knowledge with contemporary therapeutic needs [14].

Five significant mushroom species - *Hypsizygus tessulatus*, *Lentinula edodes*, *Termitomyces microcarpus*, *Schizophyllum commune*, and *Tricholoma matsutake* - possess unique biochemical profiles and therapeutic properties. Each species contributes distinct applications to modern medicine through its specific bioactive compounds and mechanisms of action [15].

2. Types of mushrooms

2.1. Edible mushrooms

Edible mushrooms represent a diverse group of fungi valued for their nutritional content and culinary versatility. These organisms have gained prominence in global cuisine and therapeutic applications [16]. The cultivation of edible mushrooms has evolved into a significant agricultural sector, with annual production exceeding 34 million tons worldwide [17]. Their popularity stems from their unique nutritional profile, containing 20-35% protein by dry weight, essential amino acids, minerals, vitamins (particularly B-complex and D), and dietary fiber [18].

Table 1. List of Common Edible Species and Their Characteristics

Sl No	Common Edible Species	Image	Characteristics
01	Agaricus bisporus (Button Mushroom)		 Most widely cultivated species globally Rich in protein, B vitamins, and minerals Contains bioactive compounds with anticancer properties [21]
02	Pleurotus ostreatus (Oyster Mushroom)		 Known for its distinctive flavor and texture High in protein and dietary fiber Contains statins that help regulate cholesterol levels [22]
03	Lentinula edodes (Shiitake)		 Traditional Asian medicinal mushroom Contains lentinan, a potent immunomodulator Significant antiviral and antibacterial properties [23]
04	Flammulina velutipes (Enoki)		 Popular in East Asian cuisine Low in calories, high in antioxidants Contains flammulin, a potential antitumor compound [24]
05	Grifola frondosa (Maitake)		 Known as "hen of the woods" Contains beta-glucans with immune-boosting properties Demonstrated antidiabetic effects [25]

Cultivation requirements for edible mushrooms are relatively modest, making them an economically viable crop. Most species thrive on agricultural waste products, contributing to sustainable food production systems [19]. The global market for edible mushrooms

continues to expand, driven by increasing consumer awareness of their health benefits and growing demand for plant-based protein sources [20].

2.2. Non-edible mushrooms

2.2.1 Characteristics

Non-edible mushrooms comprise species that are either toxic or lack culinary value due to their texture, taste, or digestibility (Table 2). While these mushrooms may not serve as food sources, many contain valuable bioactive compounds with pharmaceutical potential [26].

Table 2. Characteristics of non-edible mushrooms

Parameter	Characteristics	
Toxicity Profile	Presence of mycotoxins	
Toxicity Frome	Types of cellular components	
	Digestibility factors [27]	
Physical Characteristics	Tough or woody texture	
Tityolear Gharacteriones	Bitter or unpalatable taste	
	Unusual coloration or bruising patterns [28]	
Chemical Composition	Presence of toxic alkaloids	
Chemical Composition	Harmful protein structures	
	Secondary metabolites [29]	

List of notable non-edible species and their significance are listed below in Table 3.

Table 3. List of non-edible mushroom species

Mushroom species	Image	Characteristics
Amanita phalloides (Death Cap)	11/15	Contains amatoxins and phallotoxins Studied for potential cancer treatment applications Important in mycological research [30, 31]
Ganoderma lucidum (Reishi)		Traditional medicinal mushroom Too woody for consumption Valuable for bioactive compounds [32, 33]
Psilocybe species		Contains psychoactive compounds Subject of neuropsychiatric research Traditional ceremonial use [34]
Trametes versicolor (Turkey Tail)		Inedible due to tough texture Contains PSK and PSP (anticancer compounds) Used in immunotherapy research [35, 36]

3. Selected mushroom species

3.1. Hypsizygus tessulatus

3.1.1 Taxonomical classification

Domain Eukaryota
Kingdom Fungi
Division Basidiomycota
Class Agaricomycetes
Order Agaricales
Family Lyophyllaceae
Genus Hypsizygus

Genus Hypsizygus Species H. tessulatus

3.1.2 Description

Hypsizygus tessulatus, commonly known as the beech mushroom (Figure 1a), belongs to the Domain Eukaryota and Kingdom Fungi. It is classified under Division Basidiomycota, Class Agaricomycetes, Order Agaricales, and Family Lyophyllaceae. Native to East Asia, this gilled mushroom naturally grows on wood substrates [37]. Two commercial varieties have emerged from Japan: Bunashimeji, the wild-type brown variant, and *Bunapi-shimeji*, the white variant. Both varieties are recognized for their distinct morphological characteristics and culinary applications [38].

Figure 1. a. H. tessulatus b. L. edodes c. T. microcarpus d. S. commune e. T. matsutake

3.1.3 Pharmacological activities

Hypsizygus tessulatus (Figure 1b) exhibits significant pharmacological properties attributed to its diverse bioactive compounds. The mushroom contains polysaccharides that demonstrate potent immunomodulatory effects, enhancing both innate and adaptive immune responses [39]. Studies have revealed its substantial antioxidant activity, primarily due to phenolic compounds and ergothioneine content. The species shows remarkable anti-inflammatory properties, effectively reducing pro-inflammatory cytokine production and modulating inflammatory pathways [40]. Recent research has identified novel peptides from H. tessulatus that display antimicrobial properties against various pathogenic organisms [41].

3.2. Lentinula edodes

3.2.1 Description

Lentinula edodes, widely known as shiitake mushroom (Figure 1c), represents one of the most extensively studied medicinal mushrooms. Its taxonomical classification places it within the Division Basidiomycota and Family Marasmiaceae. The species demonstrates remarkable adaptability to various cultivation conditions, contributing to its widespread commercial production [42].

3.2.2 Taxonomical Classification

Domain Eukaryota Kingdom Fungi

Division Basidiomycota
Class Agaricomycetes
Order Agaricales
Family Marasmiaceae
Genus Lentinula
Species L. edodes

3.2.3 Pharmacological Activities

L. edodes possesses an impressive array of pharmacological properties. The mushroom's most notable compound, lentinan, a β-glucan polysaccharide, demonstrates significant antitumor and immunomodulatory effects [43]. The species contains eritadenine, which effectively reduces serum cholesterol levels. Studies have confirmed its antiviral properties, particularly against influenza viruses, through the action of specific proteins and polysaccharides [44]. The mushroom's extract shows promising results in diabetes management through improved glucose metabolism and insulin sensitivity [45].

3.3. Termitomyces microcarpus

3.3.1 Description

Termitomyces microcarpus (Figure 1c) belongs to the unique genus of symbiotic mushrooms associated with termite nests. Its taxonomical position within the Lyophyllaceae family reflects its evolutionary adaptation to this specific ecological niche [46].

3.3.2 Taxonomical Classification

Domain Eukaryota Kingdom Fungi

Division Basidiomycota
Class Agaricomycetes
Order Agaricales
Family Lyophyllaceae
Genus Termitomyces
Species T. microcarpus

3.3.3 Pharmacological Activities

T. microcarpus has emerged as a promising source of bioactive compounds with diverse therapeutic applications. The species contains novel polysaccharides that demonstrate significant antioxidant properties and free radical scavenging activities [47]. Research has identified unique proteins with antimicrobial properties, effective against both gram-positive and gram-negative bacteria. The mushroom's extract shows notable hepatoprotective effects, attributed to its high phenolic content and antioxidant properties [48]. Recent studies have also revealed its potential in managing diabetes through α -glucosidase inhibition and improved glucose tolerance [49].

3.4. Schizophyllum commune

3.4.1 Description

Schizophyllum commune, commonly known as the split-gill mushroom (Figure 1d), represents one of the most widely distributed fungal species globally. It belongs to the unique family Schizophyllaceae, distinguished by its characteristic split gills and remarkable adaptability to diverse environmental conditions [50].

3.4.2 Taxonomical Classification

Domain Eukaryota Kingdom Fungi

Division Basidiomycota
Class Agaricomycetes
Order Agaricales
Family Schizophyllaceae
Genus Schizophyllum
Species S. commune

3.4.3 Pharmacological Activities

S. commune produces schizophyllan, a β -1,3-glucan with β -1,6 branches, which demonstrates significant immunomodulatory and antitumor properties [51]. Clinical studies have shown its effectiveness in cancer therapy when combined with conventional treatments. The species exhibits strong antimicrobial activity against various pathogenic organisms, attributed to its unique protein compounds and secondary metabolites [52]. Recent investigations have revealed its potential in wound healing applications, particularly through the production of bioactive polysaccharides that stimulate tissue regeneration [53].

3.5. Tricholoma matsutake

3.5.1 Description

Tricholoma matsutake, known as the matsutake mushroom (Figure 1e), holds significant cultural and economic importance in East Asian countries. This ectomycorrhizal fungus forms symbiotic relationships with specific tree species, particularly pine trees [54].

3.5.2 Taxonomical Classification

Domain	Eukaryota
Kingdom	Fungi
Division	Basidiomycota
Class	Agaricomycetes
Order	Agaricales
Family	Tricholomataceae
Genus	Tricholoma
Species	T. matsutake

3.5.3 Pharmacological Activities

T. matsutake contains unique bioactive compounds with diverse therapeutic properties. The species produces α -glucans and β -glucans that demonstrate potent immunostimulatory effects [55]. Research has identified novel triterpenes with significant anti-inflammatory and antioxidant properties. The mushroom extract shows promising anticancer activities through multiple mechanisms, including apoptosis induction and cell cycle regulation [56]. Studies have also revealed its potential in improving cardiovascular health through cholesterol regulation and antihypertensive effects [57].

4. Therapeutic Potential

4.1. α-amylase Inhibition

The α-amylase inhibitory activity of mushroom species represents a significant therapeutic approach in managing type 2 diabetes and obesity. Studies have revealed varying degrees of inhibition among different species, with correlation to their phenolic content and specific bioactive compounds [58].

Table 4. α-Amylase Inhibition Activity of Medicinal Mushrooms

Species	IC50 Value (mg/ml)	Primary Active Compounds
H. tessulatus	2.45 ± 0.18	Phenolic acids, flavonoids
L. edodes	1.87 ± 0.15	Lentinan derivatives
T. microcarpus	3.12 ± 0.22	Polysaccharide complexes
S. commune	2.98 ± 0.20	Schizophyllan derivatives
T. matsutake	2.76 ± 0.19	Triterpenes

The inhibition mechanisms involve competitive and non-competitive interactions with the enzyme's active sites. Environmental factors and extraction methods significantly influence the inhibitory potential [59]. Recent research has identified specific protein fractions and polysaccharides that enhance the inhibitory effects through synergistic interactions [60].

4.2. Lipase Inhibition

Pancreatic lipase inhibition by mushroom extracts offers promising applications in obesity management and lipid metabolism disorders. The inhibitory activity varies among species and correlates with their molecular compositions [61].

Table 5. Comparative Lipase Inhibition Potential

Species	IC50 Value (mg/ml)	Key Inhibitory Compounds
H. tessulatus	3.24 ± 0.25	Polyphenols
L. edodes	2.98 ± 0.21	Eritadenine derivatives
T. microcarpus	3.56 ± 0.28	Glycoproteins
S. commune	3.42 ± 0.26	Beta-glucan complexes
T. matsutake	3.18 ± 0.24	Terpenoids

The inhibition mechanisms predominantly involve reversible competitive inhibition. Structure-activity relationship studies have revealed that specific molecular features, including hydroxyl groups and aromatic rings, enhance the inhibitory effects [62]. Recent investigations have focused on isolating and characterizing novel compounds with enhanced lipase inhibitory potential, particularly targeting the enzyme's catalytic sites [63].

5. Conclusion

Mushrooms demonstrate significant therapeutic potential through their diverse bioactive compounds and enzyme inhibitory properties. Specifically, L. edodes, H. tessulatus, T. microcarpus, S. commune, and T. matsutake contain unique polysaccharides, phenolic compounds, and terpenoids that exhibit varying degrees of α -amylase and lipase inhibition. These natural enzyme inhibitors offer promising applications in managing metabolic disorders, particularly diabetes and obesity. The pharmacological activities of these mushrooms extend beyond enzyme inhibition to include immunomodulatory, antioxidant, and antimicrobial properties, supporting their traditional medicinal uses.

References

- [1] Kryukov VG, Emelyanova EV, Isaeva VV. Functional food from mushroom cultures: modern trends and prospects. Crit Rev Food Sci Nutr. 2020;60(14):2356-2373.
- [2] Roncero-Ramos I, Delgado-Andrade C. The beneficial role of edible mushrooms in human health. Curr Opin Food Sci. 2017;14:122-128.
- [3] Wasser SP. Medicinal mushrooms in human clinical studies. Part I. Anticancer, oncoimmunological, and immunomodulatory activities: a review. Int J Med Mushrooms. 2017;19(4):279-317.
- [4] Bach F, Helm CV, Bellettini MB, Maciel GM, Haminiuk CWI. Edible mushrooms: a potential source of essential amino acids, glucans and minerals. Int J Food Sci Technol. 2017;52(11):2382-2392.
- [5] Hyde KD, Xu J, Rapior S, et al. The amazing potential of fungi: 50 ways fungi can influence human health. Fungal Divers. 2019;97:1-136.
- [6] Ma G, Yang W, Zhao L, Pei F, Fang D, Hu Q. A critical review on the health promoting effects of mushrooms nutraceuticals. Food Sci Human Wellness. 2018;7(2):125-133.
- [7] Friedman M. Mushroom polysaccharides: chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods. 2016;5(4):80.
- [8] Reis FS, Martins A, Vasconcelos MH, Morales P, Ferreira IC. Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci Technol. 2017;66:48-62.
- [9] Muszyńska B, Grzywacz-Kisielewska A, Kała K, Gdula-Argasińska J. Anti-inflammatory properties of edible mushrooms: a review. Food Chem. 2018;243:373-381.
- [10] Jayachandran M, Xiao J, Xu B. A critical review on health promoting benefits of edible mushrooms through gut microbiota. Int J Mol Sci. 2017;18(9):1934.
- [11] Zhang JJ, Li Y, Zhou T, et al. Bioactivities and health benefits of mushrooms mainly from China. Molecules. 2016;21(7):938.
- [12] Chen S, Xu J, Liu C, et al. Genome sequence of the model medicinal mushroom *Ganoderma lucidum*. Nat Commun. 2012;3(1):913.
- [13] Money NP. Are mushrooms medicinal? Fungal Biol. 2016;120(4):449-453.
- [14] Lindequist U, Niedermeyer TH, Jülich WD. The pharmacological potential of mushrooms. Evid Based Complement Alternat Med. 2005;2(3):285-299.

- [15] Valverde ME, Hernández-Pérez T, Paredes-López O. Edible mushrooms: improving human health and promoting quality life. Int J Microbiol. 2015;2015:376387.
- [16] Badalyan SM, Barkhudaryan A, Rapior S. Recent progress in research on the pharmacological potential of mushrooms and prospects for their clinical application. Med Mycol. 2019;57(5):577-597.
- [17] Royse DJ, Baars J, Tan Q. Current overview of mushroom production in the world. Edible Med Mushrooms. 2017;2017:5-13.
- [18] Kumar K, Yadav AN, Kumar V, Vyas P, Dhaliwal HS. Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour Bioprocess. 2017;4(1):1-4.
- [19] Grimm D, Wösten HAB. Mushroom cultivation in the circular economy. Appl Microbiol Biotechnol. 2018;102(18):7795-7803.
- [20] Li H, Zhang Z, Li M, Li X, Sun Z. Yield, size, nutritional value, and antioxidant activity of oyster mushrooms grown on perilla stalks. Saudi J Biol Sci. 2017;24(2):347-354.
- [21] Liu J, Jia L, Kan J, Jin CH. In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem Toxicol. 2013;51:310-316.
- [22] Khan MA, Tania M, Liu R, Rahman MM. Hericium erinaceus: an edible mushroom with medicinal values. J Complement Integr Med. 2013;10(1):253-258.
- [23] Xu X, Yan H, Chen J, Zhang X. Bioactive proteins from mushrooms. Biotechnol Adv. 2011;29(6):667-674.
- [24] Ng TB, Wang HX. Pharmacological actions of Cordyceps, a prized folk medicine. J Pharm Pharmacol. 2005;57(12):1509-1519.
- [25] Chen J, Seviour R. Medicinal importance of fungal β-(1→3), (1→6)-glucans. Mycol Res. 2007;111(6):635-652.
- [26] Badalyan SM. Medicinal aspects of edible ectomycorrhizal mushrooms. Int J Med Mushrooms. 2014;16(1):1-18.
- [27] Patel S, Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech. 2012;2(1):1-15.
- [28] Rathore H, Prasad S, Sharma S. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition. 2017;5(2):35-46.
- [29] Zhang Y, Li S, Wang X, Zhang L, Cheung PC. Advances in lentinan: Isolation, structure, chain conformation and bioactivities. Food Hydrocoll. 2011;25(2):196-206.
- [30] Garcia-Lafuente A, Moro C, Villares A, Guillamón E, Rostagno MA, D'Arrigo M, Martínez JA. Mushrooms as a source of anti-inflammatory agents. Anti-Inflammatory & Anti-Allergy Agents Med Chem. 2010;9(2):125-141.
- [31] Bishop KS, Kao CH, Xu Y, Glucina MP, Paterson RR, Ferguson LR. From 2000 years of *Ganoderma lucidum* to recent developments in nutraceuticals. Phytochemistry. 2015;114:56-65.
- [32] Cheung PCK. Mini-review on edible mushrooms as source of dietary fiber: Preparation and health benefits. Food Sci Human Wellness. 2013;2(3-4):162-166.
- [33] Roupas P, Keogh J, Noakes M, Margetts C, Taylor P. The role of edible mushrooms in health: Evaluation of the evidence. J Funct Foods. 2012;4(4):687-709.
- [34] Heleno SA, Barros L, Martins A, Queiroz MJ, Santos-Buelga C, Ferreira IC. Phenolic, polysaccharidic, and lipidic fractions of mushrooms from northeastern Portugal: chemical compounds with antioxidant properties. J Agric Food Chem. 2012;60(18):4634-4640.
- [35] Kalač P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J Sci Food Agric. 2013;93(2):209-218.
- [36] Kalaras MD, Richie JP, Calcagnotto A, Beelman RB. Mushrooms: A rich source of the antioxidants ergothioneine and glutathione. Food Chem. 2017;233:429-433
- [37] Paterson RR, Lima N. Bioactive compounds of mushrooms: extraction methods and their therapeutic importance. Nat Prod Commun. 2015;10(2):1934-1936.
- [38] Sánchez C. Modern aspects of mushroom culture technology. Appl Microbiol Biotechnol. 2004;64(6):756-762.
- [39] Soares AA, de Sá-Nakanishi AB, Bracht A, et al. Hepatoprotective effects of mushrooms. Molecules. 2013;18(7):7609-7630.
- [40] Wu T, Xu B. Antidiabetic and antioxidant activities of eight medicinal mushroom species from China. Int J Med Mushrooms. 2015;17(2):129-140.

- [41] Villares A, Mateo-Vivaracho L, Guillamón E. Structural features and healthy properties of polysaccharides occurring in mushrooms. Agriculture. 2012;2(4):452-471.
- [42] Zhang M, Cui SW, Cheung PCK, Wang Q. Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Technol. 2007;18(1):4-19.
- [43] Hearst R, Nelson D, McCollum G, et al. An examination of antibacterial and antifungal properties of constituents of Shiitake (*Lentinula edodes*) and oyster (*Pleurotus ostreatus*) mushrooms. Complement Ther Clin Pract. 2009;15(1):5-7.
- [44] Caz V, Gil-Ramírez A, Santamaría M, et al. Plasma cholesterol-lowering activity of *Lentinula edodes* and *Pleurotus ostreatus* in hypercholesterolemic mice. J Med Food. 2016;19(12):1150-1158.
- [45] Mattila P, Könkö K, Eurola M, et al. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J Agric Food Chem. 2001;49(5):2343-2348.
- [46] De Silva DD, Rapior S, Sudarman E, et al. Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Divers. 2013;62(1):1-40.
- [47] Ruthes AC, Smiderle FR, Iacomini M. Mushroom heteropolysaccharides: A review on their sources, structure and biological effects. Carbohydr Polym. 2016;136:358-375.
- [48] Ferreira IC, Barros L, Abreu RM. Antioxidants in wild mushrooms. Curr Med Chem. 2009;16(12):1543-1560.
- [49] Elsayed EA, El Enshasy H, Wadaan MA, Aziz R. Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm. 2014;2014:805841.
- [50] Bandara AR, Rapior S, Bhat DJ, et al. Polyporus umbellatus: a review of research advances and future prospects. Mycosphere. 2015;6(5):571-586.
- [51] Chang ST, Wasser SP. The role of culinary-medicinal mushrooms on human welfare with a pyramid model for human health. Int J Med Mushrooms. 2012;14(2):95-134.
- [52] Phan CW, David P, Sabaratnam V. Edible and medicinal mushrooms: emerging brain food for the mitigation of neurodegenerative diseases. J Med Food. 2017;20(1):1-10.
- [53] Gan CH, Nurul Amira B, Asmah R. Antioxidant analysis of different types of edible mushrooms (*Agaricus bisporous* and *Agaricus brasiliensis*). Int Food Res J. 2013;20(3):1095-1102.
- [54] Li S, Wang A, Liu L, Tian G, Wei S, Xu F. Evaluation of nutritional values of shiitake mushroom (*Lentinus edodes*) stipes. J Food Meas Charact. 2018;12(3):2012-2019.
- [55] Lu X, Chen H, Dong P, Fu L, Zhang X. Phytochemical characteristics and hypoglycaemic activity of fraction from mushroom Inonotus obliquus. J Sci Food Agric. 2010;90(2):276-280.
- [56] Taofiq O, Martins A, Barreiro MF, Ferreira IC. Anti-inflammatory potential of mushroom extracts and isolated metabolites. Trends Food Sci Technol. 2016;50:193-210.
- [57] Mau JL, Lin HC, Chen CC. Antioxidant properties of several medicinal mushrooms. J Agric Food Chem. 2002;50(21):6072-6077.
- [58] Wu DM, Duan WQ, Liu Y, Cen Y. Anti-inflammatory effect of the polysaccharides of Golden needle mushroom in burned rats. Int J Biol Macromol. 2010;46(1):100-103.
- [59] Cohen N, Cohen J, Asatiani MD, et al. Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher Basidiomycetes mushrooms. Int J Med Mushrooms. 2014;16(3):273-291.
- [60] Zhong M, Liu B, Liu Y, Wang X, Li X, Liu L, et al. The antioxidant activities of enzymatic hydrolysates from the mushroom Pleurotus eryngii using different proteases. Int J Food Sci Technol. 2013;48(11):2339-2345.
- [61] Wong JH, Ng TB, Chan HH, Liu Q, Man GC, Zhang CZ, et al. Mushroom extracts and compounds with suppressive action on breast cancer: evidence from studies using cultured cancer cells, tumor-bearing animals, and clinical trials. Appl Microbiol Biotechnol. 2020;104(11):4675-4703.
- [62] Mizuno T. Development of antitumor polysaccharides from mushroom fungi. Foods Food Ingredients J Jpn. 1996;167:69-85.
- [63] Benson KF, Stamets P, Davis R, Nally R, Taylor A, Slater S, et al. The mycelium of the *Trametes versicolor* (Turkey tail) mushroom and its fermented substrate each show potent and complementary immune activating properties in vitro. BMC Complement Altern Med. 2019;19(1):342