
REVIEW ARTICLE

Recent Advances and Challenges in the Development of Pediatric Formulations

Jaya Shree S*1, Saranya P1, Vivek A1, Srikanth B1, Rakshana V*2, Srinivasan R3

²Assistant Professor, Bharath Institute of Higher Education & Research, Chennai, Tamil Nadu India ³Dean and Professor, Bharath Institute of Higher Education & Research, Chennai, Tamil Nadu India

Publication history: Received on 27th July; Revised on 4th August; Accepted on 14th August 2024

Article DOI: 10.69613/bmyefb11

Abstract: Pediatric formulation development is a critical area of pharmaceutical research aimed at creating safe, effective, and acceptable medications for children. This field faces unique challenges due to the physiological and developmental differences between children and adults. The gastric pH, metabolic rates, and organ functions in children vary significantly from adults, necessitating specialized approaches to drug formulation. Dosage form selection is a key consideration, with liquid formulations often preferred for younger children and solid forms for older ones. Taste masking remains a crucial aspect, as palatability directly impacts medication adherence in pediatric patients. Regulatory bodies have established guidelines to ensure the safety and efficacy of pediatric formulations, offering incentives to encourage research in this area. Recent advancements include the application of nanotechnology to enhance drug delivery and bioavailability, and the emergence of personalized medicine approaches tailored to individual genetic profiles. Novel drug delivery systems, such as controlled-release formulations, are improving the management of chronic conditions in children. However, challenges persist, including limited clinical trial data and the need for age-appropriate dosage forms. Future research should focus on developing innovative taste-masking technologies, creating more robust and versatile dosage forms, and integrating advances in biotechnology. Collaboration among pharmaceutical companies, regulatory agencies, and healthcare professionals is essential to address the evolving needs of pediatric patients and improve overall healthcare outcomes in this vulnerable population.

Keywords: Pediatric formulations; Drug development; Dosage forms; Taste masking; Nanotechnology; Personalized medicine; Regulatory guidelines; Pediatric pharmacology

1. Introduction

Pediatric formulation development is a crucial yet complex field in pharmaceutical sciences, addressing the unique needs of children from infancy through adolescence [1]. Unlike adults, children represent a heterogeneous group with distinct physiological, pharmacokinetic, and pharmacodynamic characteristics that evolve rapidly with growth and development [2]. These differences necessitate specialized approaches to drug formulation and delivery, ensuring both safety and efficacy across various age groups [3]. The challenges in pediatric formulation are multifaceted. Children's physiological differences, such as higher gastric pH in infants and varying metabolic rates, significantly impact drug absorption, distribution, metabolism, and excretion [4]. Moreover, the selection of appropriate dosage forms is critical, as children's abilities to swallow tablets or capsules develop gradually [5]. Palatability is another key factor, as taste and texture can greatly influence medication adherence in young patients [6]. Regulatory bodies worldwide have recognized the importance of pediatric-specific formulations, implementing guidelines and incentives to promote research and development in this area [7]. These initiatives have spurred innovation, leading to advancements in taste-masking technologies, novel drug delivery systems, and the application of nanotechnology in pediatric formulations [8]. Despite progress, significant challenges remain. Limited clinical trial data in pediatric populations, the need for flexible dosing options, and the complexity of developing age-appropriate formulations continue to present obstacles [9]. The aim of this review is to comprehensively explore the current landscape of pediatric formulation development, examining recent advancements, persistent challenges, and future directions in this critical field of pharmaceutical research. [10,11]

2. Physiological Considerations in Pediatric Formulations

2.1. Age dependent changes in drug pharmacokinetics

The pharmacokinetics of drugs in pediatric patients undergo significant changes as children grow and develop. These age-dependent variations profoundly influence drug absorption, distribution, metabolism, and excretion (ADME) processes [10].

^{*} Corresponding author: Rakshana V

2.1.1. Absorption

In neonates and infants, gastric pH is generally higher (pH 6-8) compared to adults (pH 1-3), which can affect the ionization and subsequent absorption of weakly acidic or basic drugs [11]. Gastric emptying time is also prolonged in neonates, potentially delaying drug absorption. As children age, these parameters gradually approach adult values, typically by 2-3 years of age [12]. (Illustrated in Figure 1)

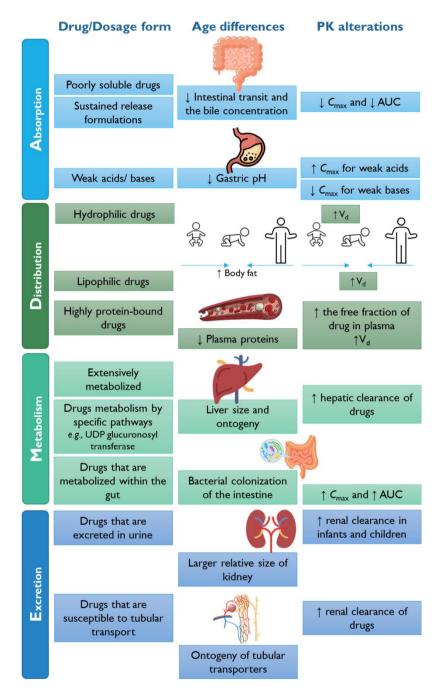


Figure 1. Physiological variations in pediatric formulation development

2.1.2. Distribution

Body composition changes markedly during childhood. Neonates have a higher proportion of total body water and lower fat content compared to adults. This affects the distribution of hydrophilic and lipophilic drugs differently [13]. For instance, water-soluble drugs may have a larger volume of distribution in neonates, potentially requiring higher doses to achieve therapeutic concentrations.

2.1.3. Metabolism

Hepatic enzyme systems mature at different rates. Cytochrome P450 (CYP) enzymes, crucial for drug metabolism, show variable developmental patterns. For example, CYP3A7 is predominant in fetal liver but declines rapidly after birth, while CYP3A4 increases to become the dominant isoform in adults [14]. This transition can significantly impact the metabolism of drugs that are substrates for these enzymes.

2.1.4. Excretion

Renal function in neonates is immature, with glomerular filtration rate (GFR) and tubular secretion reaching adult levels by 6-12 months of age [15]. This immaturity can lead to prolonged half-lives of renally excreted drugs in young infants

Table 1. Age-dependent Changes in Pharmacokinetic Parameters

Parameter	Neonate	Infant	Child
Gastric pH	6-8 months	4-5 months	1-3 months
Total Body Water	75-80%	60-65%	60%
Body Fat	10-15%	20-25%	15-20%
CYP3A4 Activity	Low	Increasing	Adult-like
GFR (% of adult)	30-40%	50-80%	100%

2.2. Impact of Growth and Development on Drug Response

The physiological changes accompanying growth and development not only affect pharmacokinetics but also influence pharmacodynamics, leading to age-specific drug responses [16].

2.3. Receptor Expression and Sensitivity

The expression and sensitivity of drug targets, such as receptors and enzymes, can vary with age. For instance, the gamma-aminobutyric acid (GABA) receptor system, targeted by many sedatives and anticonvulsants, undergoes significant changes during early development, potentially altering drug efficacy and safety profiles [17].

2.3.1. Organ Maturation

The functional maturation of organs can impact drug response. For example, the blood-brain barrier is more permeable in neonates, potentially increasing central nervous system drug exposure and associated risks [18].

2.3.2. Homeostatic Mechanisms

The development of homeostatic mechanisms affects the body's response to drugs. Immature thermoregulation in neonates, for instance, can alter the response to drugs affecting body temperature [19]. These developmental changes necessitate careful consideration in pediatric drug formulation and dosing strategies to ensure optimal therapeutic outcomes while minimizing adverse effects

3. Dosage form selection for pediatric patients

3.1. Liquid Formulations

Liquid formulations remain the most widely used dosage form in pediatric patients, especially for younger age groups [20]. They offer several advantages:

- Flexibility in Dosing: Liquids allow for easy dose adjustments based on a child's weight or body surface area.
- Ease of Administration: They are easier to swallow for infants and young children who cannot manage solid dosage forms.

3.1.1. Types of Liquid Formulations

- Solutions: Provide uniform drug distribution but may have stability issues.
- Suspensions: Offer better taste masking but require shaking before use to ensure dose uniformity.
- Emulsions: Useful for delivering lipophilic drugs but may have stability concerns.

3.1.2. Challenges

- Stability: Many drugs are less stable in liquid form, requiring careful formulation and storage conditions.
- Taste Masking: Bitter drugs in solution form often require extensive taste-masking efforts.
- Preservatives: The need for preservatives in multi-dose formulations may raise safety concerns in pediatric populations [21].

3.2. Solid Oral Dosage Forms

As children grow, solid oral dosage forms become more appropriate and offer several advantages:

- Stability: Generally more stable than liquid formulations.
- Portability: Easier to transport and store.
- Taste Masking: Often easier to mask unpleasant tastes.

3.2.1. Types of Solid Oral Dosage Forms

- Tablets: Conventional, chewable, and dispersible tablets.
- Capsules: Including sprinkle capsules that can be opened and mixed with food.
- Orally Disintegrating Tablets (ODTs): Rapidly dissolve in the mouth without water.

3.2.2. Challenges

- Swallowability: Children may have difficulty swallowing conventional tablets or capsules.
- Dose Flexibility: Fixed doses may not be suitable for all pediatric age groups.
- Choking Hazard: Particularly for younger children [22].

3.3. Novel Delivery Systems

Innovative drug delivery systems are being developed to address the unique needs of pediatric patients:

- Mini-tablets: Small tablets (typically 2-3 mm in diameter) that are easier for children to swallow and can provide flexible dosing [23].
- Oral Films: Thin, flexible sheets that dissolve quickly in the mouth, suitable for drug delivery without water [24].
- Chewable Gels: Soft, chewable formulations that combine the advantages of solid dosage forms with ease of administration [25].

Table 2. Comparison of Dosage Forms for Pediatric Use

Dosage Form	Advantages	Disadvantages	Age Suitability
Liquid Formulations	Flexible dosing	Stability issues	0-12 years
	Easy to swallow	Taste masking	
Conventional Tablets/Capsules	Stable	Swallowing difficulties >6 years	
	Portable		
ODTs	No water needed	Limited drug loading	>2 years
	Easy to take		
Mini-tablets	Flexible dosing	Production challenges	>2 years
	Easy to swallow		-
Oral Films	Rapid dissolution	Dose limitations	>2 years
	No water needed		

4. Taste Masking Strategies in Pediatric Formulations

Taste masking is a critical aspect of pediatric formulation development, as palatability directly influences medication adherence in children [26]. Unpleasant taste can lead to medication refusal, incomplete dosing, or even therapeutic failure. Various strategies have been developed to address this challenge, each with its own advantages and limitations.

4.1. Flavor Enhancement Techniques

Flavor enhancement is often the first line of approach in taste masking, particularly for liquid formulations. This method aims to overcome the unpleasant taste of drugs by adding flavoring agents, sweeteners, or a combination of both [27].

4.1.1. Flavoring Agents

Natural and artificial flavors are used to mask or complement the taste of the active pharmaceutical ingredient (API). Common flavors in pediatric formulations include fruit flavors (e.g., strawberry, grape, cherry), mint, and bubblegum [28]. The selection of flavors often varies by region and cultural preferences.

4.1.2. Sweeteners

Both natural and artificial sweeteners are employed to improve palatability. Sucrose, glucose, and fructose are traditional choices, while artificial sweeteners like aspartame and sucralose are used for sugar-free formulations, particularly important for diabetic patients [29].

4.1.3. Flavor Blending

Combining multiple flavors can create a more complex taste profile that effectively masks the drug's taste. For instance, a combination of vanilla and fruit flavors might be more effective than a single flavor [30].

Challenges:

- Interaction with API: Some flavoring agents may interact with the drug, affecting stability or efficacy.
- Regulatory Concerns: The use of certain artificial sweeteners and flavors in pediatric formulations may face regulatory scrutiny.
- Individual Preferences: Children's taste preferences can vary widely, making universal acceptability difficult to achieve.

4.2. Coating Technologies

Coating is a widely used technique for solid oral dosage forms, providing an effective barrier between the drug and taste buds [31].

4.2.1. Film Coating

A thin polymer film is applied to tablets or pellets. This can be designed to dissolve quickly in the mouth or to remain intact until the formulation reaches the stomach [32].

4.2.2. Microencapsulation

The API is encapsulated within a polymer matrix, forming microspheres. This technique is particularly useful for masking the taste of bitter drugs in liquid or reconstitutable formulations [33].

4.2.3. Hot-melt Coating

This method involves coating drug particles with molten materials that solidify upon cooling, creating a physical barrier. It's particularly effective for moisture-sensitive drugs [34].

Challenges:

- Process Complexity: Coating processes can be complex and may require specialized equipment.
- Impact on Dissolution: The coating must be designed to not significantly delay drug release or absorption.
- Scalability: Some coating techniques may face challenges in large-scale production.

4.3. Molecular Modification Approaches

These advanced techniques involve modifying the drug molecule itself to reduce its interaction with taste receptors [35].

4.3.1. Prodrug Formation

The API is chemically modified to create a tasteless precursor that converts to the active form in the body. This approach can significantly reduce bitter taste while maintaining therapeutic efficacy [36].

4.3.2. Cyclodextrin Complexation

Cyclodextrins form inclusion complexes with drug molecules, effectively encapsulating them and reducing their interaction with taste buds. This method is particularly useful for poorly water-soluble drugs [37].

4.3.3. Ion Exchange Resins

These polymers can bind to ionized drug molecules, forming insoluble complexes that minimize taste perception. The drug is released from the resin in the gastrointestinal tract [38].

Challenges

- Regulatory Hurdles: Molecular modifications may be considered as new chemical entities, requiring extensive safety and efficacy studies.
- Bioavailability Concerns: The modified form must ensure adequate bioavailability of the active drug.
- Cost: These approaches often involve complex processes and may increase production costs.

Table 3. Comparison of Taste Masking Strategies

Strategy	Advantages	Limitations
Flavor Enhancement	Simple to implement	May not mask intense bitterness
	Cost-effective	Potential allergens
	Suitable for liquids	_
Coating Technologies	Effective for solids	May affect dissolution
	Can provide additional benefits (e.g., GI protection)	Process complexity
		Cost considerations
Molecular Modification	Highly effective	Regulatory challenges
	Can improve other properties (e.g., solubility)	Potential impact on pharmacokinetics
		Higher development costs

5. Recent Advancements in Pediatric Formulation

5.1. Nanotechnology Applications

Nanotechnology has emerged as a promising field in pediatric drug delivery, offering solutions to various formulation challenges [40].

5.1.1. Nanoparticles

These submicron-sized particles can enhance drug solubility, improve bioavailability, and facilitate targeted delivery. For instance, polymeric nanoparticles have been used to deliver drugs across the blood-brain barrier, potentially improving treatments for pediatric brain tumors [41].

5.1.2. Nanoemulsions

These systems can improve the oral bioavailability of lipophilic drugs and enhance palatability. A study on a nanoemulsion-based formulation of vitamin D showed improved absorption and acceptability in infants compared to traditional oil-based drops [42].

5.1.3. Nanocrystals

Drug nanocrystals can enhance dissolution rates of poorly soluble drugs, potentially reducing dose requirements and improving therapeutic outcomes in pediatric patients [43].

Challenges include ensuring the long-term safety of nanomaterials in developing organs and addressing potential manufacturing complexities [44].

5.2. Personalized Medicine Approaches

The concept of personalized medicine is gaining traction in pediatric pharmacotherapy, aiming to tailor treatments based on individual patient characteristics [45].

5.2.1. Pharmacogenomics

Genetic testing is being increasingly used to guide drug selection and dosing in pediatric patients. For example, genotyping for CYP2D6 can help optimize dosing of codeine and other opioids in children [46].

5.2.2. 3D Printing

This technology allows for the production of personalized dosage forms with precise drug content and release profiles. A study demonstrated the feasibility of 3D printing chewable tablets with varying doses of levetiracetam for pediatric epilepsy patients [47].

5.2.3. Microbiome-based Approaches

Research is exploring how the gut microbiome influences drug metabolism in children, potentially leading to more personalized dosing strategies [48]. While promising, challenges include the need for rapid, cost-effective diagnostic tools and the complexity of interpreting genetic data in developing children [49].

5.3. Controlled-Release Formulations

Controlled-release formulations are being adapted for pediatric use to improve dosing convenience and adherence [50].

5.3.1. Multi-particulate Systems

These systems, consisting of drug-loaded pellets or mini-tablets, offer flexible dosing and can be dispersed in liquids for easier administration to young children [51].

Transdermal Delivery: Advanced patch technologies are being developed for sustained drug delivery in pediatric patients, particularly for conditions requiring long-term treatment [52].

Implantable Devices: For certain chronic conditions, implantable drug delivery devices are being explored to provide long-term, controlled release of medications in pediatric patients [53].

6. Challenges in Pediatric Formulation Development

Challenges include ensuring that the release kinetics are appropriate for children's physiology and that the formulations can accommodate a wide range of doses [54].

6.1. Limited Clinical Trial Data

The scarcity of pediatric-specific clinical trial data remains a significant challenge in pediatric drug development [55].

6.1.1. Ethical Considerations

Conducting trials in children raises complex ethical issues, leading to hesitancy in enrolling pediatric patients in studies [56].

6.1.2. Heterogeneity of Pediatric Population

The wide age range and developmental stages in pediatrics make it challenging to design studies that are applicable across all subgroups [57].

6.1.3. Lack of Appropriate End-points

Many adult clinical trial endpoints may not be relevant or measurable in children, necessitating the development of pediatric-specific outcomes [58]. To address these issues, regulatory bodies have implemented initiatives to encourage pediatric clinical trials, such as the Pediatric Research Equity Act in the United States [59].

6.2. Dosing Flexibility and Accuracy

Providing accurate and flexible dosing across the pediatric age spectrum is a persistent challenge [60].

6.2.1. Weight-based Dosing

Many pediatric medications require dosing based on body weight or surface area, necessitating formulations that allow for precise dose adjustments [61].

6.2.2. Dosing Devices

Ensuring the accuracy of liquid medication administration devices, such as oral syringes and dosing cups, is crucial to prevent medication errors [62].

6.2.3. Dose Division

For solid oral dosage forms, the ability to divide doses accurately without compromising the integrity of the formulation is essential [63].

Innovations like multi-particulate systems and mini-tablets are being developed to address these challenges, but their widespread implementation remains limited [64].

6.3. Stability and Shelf-life Considerations

Ensuring the stability of pediatric formulations throughout their shelf-life presents unique challenges [65].

6.3.1. Environmental Factors

Pediatric formulations, especially liquids, may be more susceptible to degradation from light, temperature, and humidity [66].

6.3.2. Excipient Interactions

The use of taste-masking agents and other excipients can potentially affect drug stability, requiring careful formulation design [67].

6.3.3. In-use Stability

For multi-dose formulations, maintaining stability after opening is crucial, particularly for reconstituted oral suspensions [68].

7. Conclusion

Pediatric formulation development remains a critical and evolving field in pharmaceutical sciences, addressing the unique physiological and pharmacological needs of children. Recent advancements in nanotechnology, personalized medicine approaches, and controlled-release formulations offer promising solutions to longstanding challenges in pediatric drug delivery. However, significant hurdles persist, including limited clinical trial data, the need for flexible and accurate dosing, and stability concerns

References

- [1] Batchelor HK, Marriott JF. Formulations for children: problems and solutions. Br J Clin Pharmacol. 2015;79(3):405-418.
- [2] Ivanovska V, Rademaker CM, van Dijk L, Mantel-Teeuwisse AK. Pediatric drug formulations: a review of challenges and progress. Pediatrics. 2014;134(2):361-372.
- [3] Fernandez E, Perez R, Hernandez A, Tejada P, Arteta M, Ramos JT. Factors and mechanisms for pharmacokinetic differences between pediatric population and adults. Pharmaceutics. 2011;3(1):53-72.
- [4] Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology-drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157-1167.
- [5] Walsh J, Cram A, Woertz K, et al. Playing hide and seek with poorly tasting paediatric medicines: do not forget the excipients. Adv Drug Deliv Rev. 2014;73:14-33.
- [6] Mennella JA, Spector AC, Reed DR, Coldwell SE. The bad taste of medicines: overview of basic research on bitter taste. Clin Ther. 2013;35(8):1225-1246.
- [7] Turner MA, Catapano M, Hirschfeld S, Giaquinto C. Paediatric drug development: the impact of evolving regulations. Adv Drug Deliv Rev. 2014;73:2-13.
- [8] Ricci BM. Bridging studies in support of oral pediatric formulation development. Int J Pharm. 2018;536(2):563-570.
- [9] van Riet-Nales DA, Schobben AF, Egberts TC, Rademaker CM. Effects of the pharmaceutical technologic aspects of oral pediatric drugs on patient-related outcomes. Clin Ther. 2010;32(5):924-938.
- [10] Batchelor H, Kaukonen AM, Klein S, et al. A child's eye view of oral dosage forms, the role of color, shape and size. Int J Pharm. 2018;536(2):570-572.
- [11] Mistry P, Batchelor H. Evidence of acceptability of oral paediatric medicines: a review. J Pharm Pharmacol. 2017;69(4):361-376.

- [12] Lopez FL, Ernest TB, Tuleu C, Gul MO. Formulation approaches to pediatric oral drug delivery: benefits and limitations of current platforms. Expert Opin Drug Deliv. 2015;12(11):1727-1740.
- [13] Allegaert K, van den Anker JN. Clinical pharmacology in neonates: small size, huge variability. Neonatology. 2014;105(4):344-349.
- [14] de Wildt SN, Tibboel D, Leeder JS. Drug metabolism for the paediatrician. Arch Dis Child. 2014;99(12):1137-1142.
- [15] Ku LC, Smith PB. Dosing in neonates: special considerations in physiology and trial design. Pediatr Res. 2015;77(1-1):2-9.
- [16] Bartelink IH, Rademaker CM, Schobben AF, van den Anker JN. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin Pharmacokinet. 2006;45(11):1077-1097.
- [17] Anderson GD, Lynn AM. Optimizing pediatric dosing: a developmental pharmacologic approach. Pharmacotherapy. 2009;29(6):680-690.
- [18] Saunders NR, Liddelow SA, Dziegielewska KM. Barrier mechanisms in the developing brain. Front Pharmacol. 2012;3:46.
- [19] Allegaert K, van de Velde M, van den Anker J. Neonatal clinical pharmacology. Paediatr Anaesth. 2014;24(1):30-38.
- [20] Tuleu C, Breitkreutz J. Educational paper: formulation-related issues in pediatric clinical pharmacology. Eur J Pediatr. 2013;172(6):717-720.
- [21] Nahata MC. Safety of "inert" additives or excipients in paediatric medicines. Arch Dis Child Fetal Neonatal Ed. 2009;94(6):F392-F393.
- [22] Zajicek A, Fossler MJ, Barrett JS, et al. A report from the pediatric formulations task force: perspectives on the state of child-friendly oral dosage forms. AAPS J. 2013;15(4):1072-1081.
- [23] Thomson SA, Tuleu C, Wong IC, Keady S, Pitt KG, Sutcliffe AG. Minitablets: new modality to deliver medicines to preschool-aged children. Pediatrics. 2009;123(2):e235-e238.
- [24] Borges AF, Silva C, Coelho JF, Simões S. Oral films: current status and future perspectives: I galenical development and quality attributes. J Control Release. 2015;206:1-19.
- [25] Strickley RG, Iwata Q, Wu S, Dahl TC. Pediatric drugs--a review of commercially available oral formulations. J Pharm Sci. 2008;97(5):1731-1774.
- [26] Cram A, Breitkreutz J, Desset-Brèthes S, Nunn T, Tuleu C. Challenges of developing palatable oral paediatric formulations. Int J Pharm. 2009;365(1-2):1-3.
- [27] Siew A. Solving the taste challenge in pediatric formulations. Pharm Technol. 2016;40(12):24-27.
- [28] Walsh J, Ranmal SR, Ernest TB, Liu F. Patient acceptability, safety and access: a balancing act for selecting age-appropriate oral dosage forms for paediatric and geriatric populations. Int J Pharm. 2018;536(2):547-562.
- [29] Tuleu C, Legay H, Orlu-Gul M, Wan M. Blending and mixing through granulation. In: Engineering Drug Delivery Systems. Woodhead Publishing; 2020:23-55.
- [30] Pein M, Preis M, Eckert C, Kiene FE. Taste-masking assessment of solid oral dosage forms—A critical review. Int J Pharm. 2014;465(1-2):239-254.
- [31] Jannin V, Lemagnen G, Gueroult P, Larrouture D, Tuleu C. Rectal route in the 21st century to treat children. Adv Drug Deliv Rev. 2014;73:34-49.
- [32] Ayenew Z, Puri V, Kumar L, Bansal AK. Trends in pharmaceutical taste masking technologies: a patent review. Recent Pat Drug Deliv Formul. 2009;3(1):26-39.
- [33] Sohi H, Sultana Y, Khar RK. Taste masking technologies in oral pharmaceuticals: recent developments and approaches. Drug Dev Ind Pharm. 2004;30(5):429-448.
- [34] Jannin V, Cuppok Y. Hot-melt coating with lipid excipients. Int J Pharm. 2013;457(2):480-487.
- [35] Karaman R. Prodrugs for masking the bitter taste of drugs. In: Application of Nanotechnology in Drug Delivery. IntechOpen; 2014.
- [36] Hutteau F, Mathlouthi M. Physicochemical properties of sweeteners in artificial saliva and determination of a hydrophobicity scale for some sweeteners. Food Chem. 1998;63(2):199-206.
- [37] Szejtli J, Szente L. Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur J Pharm Biopharm. 2005;61(3):115-125.
- [38] Bhise K, Shaikh S, Bora D. Taste mask, design and evaluation of an oral formulation using ion exchange resin as drug carrier. AAPS PharmSciTech. 2008;9(2):557-562.

- [39] Lopez FL, Ernest TB, Tuleu C, Gul MO. Formulation approaches to pediatric oral drug delivery: benefits and limitations of current platforms. Expert Opin Drug Deliv. 2015;12(11):1727-1740.
- [40] Sarella PN, Vegi S, Vendi VK, Vipparthi AK, Valluri S. Exploring Aquasomes: A Promising Frontier in Nanotechnology-based Drug Delivery. Asian Journal of Pharmaceutical Research. 2024 May 28;14(2):153-61.
- [41] Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release. 2012;161(2):264-273.
- [42] Golan S, Haim-Zada M, Parnasa M, et al. Vitamin D nanoemulsion: a novel platform for neonatal and infant supplementation. Pediatr Res. 2015;78(5):557-561.
- [43] Müller RH, Gohla S, Keck CM. State of the art of nanocrystals--special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011;78(1):1-9.
- [44] Sayes CM, Aquino GV, Hickey AJ. Nanomaterial drug products: manufacturing and analytical perspectives. AAPS J. 2017;19(1):18-25.
- [45] Rieder MJ, Carleton B. Pharmacogenomics and adverse drug reactions in children. Front Genet. 2014;5:78.
- [46] Crews KR, Gaedigk A, Dunnenberger HM, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther. 2014;95(4):376-382.
- [47] Goyanes A, Buanz AB, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157-162.
- [48] Yoo DH, Kim IS, Van Le TK, Jung IH, Yoo HH, Kim DH. Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab Dispos. 2014;42(9):1508-1513.
- [49] Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature. 2015;526(7573):343-350.
- [50] Sarella PN, Vipparthi AK, Valluri S, Vegi S, Vendi VK. Nanorobotics: Pioneering Drug Delivery and Development in Pharmaceuticals. Research Journal of Pharmaceutical Dosage Forms and Technology. 2024 Feb 22;16(1):81-90.
- [51] Lopez FL, Ernest TB, Tuleu C, Gul MO. Formulation approaches to pediatric oral drug delivery: benefits and limitations of current platforms. Expert Opin Drug Deliv. 2015;12(11):1727-1740.
- [52] Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261-1268.
- [53] Meng E, Hoang T. MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Adv Drug Deliv Rev. 2012;64(14):1628-1638.
- [54] Batchelor HK, Fotaki N, Klein S. Paediatric oral biopharmaceutics: key considerations and current challenges. Adv Drug Deliv Rev. 2014;73:102-126.
- [55] Joseph PD, Craig JC, Caldwell PH. Clinical trials in children. Br J Clin Pharmacol. 2015;79(3):357-369.
- [56] Narla D, Thummala UK. Orodispersible Films for Enhanced Bioavailability of Carvedilol. Journal of Pharma Insights and Research. 2024 Apr 28;2(2):236-44.
- [57] Kern SE. Challenges in conducting clinical trials in children: approaches for improving performance. Expert Rev Clin Pharmacol. 2009;2(6):609-617.
- [58] Ruperto N, Martini A. Networking in paediatrics: the example of the Paediatric Rheumatology International Trials Organisation (PRINTO). Arch Dis Child. 2011;96(6):596-601.
- [59] Sen O, Jana S, Nandi G, Manna S. Recent progress in chitosan-based nanofibers as potential drug carriers in cancer therapy. International Journal of Polymeric Materials and Polymeric Biomaterials. 2024; 1-19.
- [60] Allegaert K, Sherwin C. Neonates and medicines: a roadmap to further improve neonatal pharmaceutical care. Eur J Pediatr. 2016;175(6):743-746.
- [61] Koren G, Rieder M, MacLeod SM. The global alliance for pediatric pharmacology: the future is here and now. Paediatr Drugs. 2009;11(1):4-5.
- [62] Yin HS, Parker RM, Sanders LM, et al. Liquid medication errors and dosing tools: a randomized controlled experiment. Pediatrics. 2016;138(4):e20160357.
- [63] van Riet-Nales DA, Doeve ME, Nicia AE, et al. The accuracy, precision and sustainability of different techniques for tablet subdivision: breaking by hand and the use of tablet splitters or a kitchen knife. Int J Pharm. 2014;466(1-2):44-51.
- [64] Aleksovski A, Dreu R, Gašperlin M, Planinšek O. Mini-tablets: a contemporary system for oral drug delivery in targeted patient groups. Expert Opin Drug Deliv. 2015;12(1):65-84.

- [65] Glass BD, Haywood A. Stability considerations in liquid dosage forms extemporaneously prepared from commercially available products. J Pharm Pharm Sci. 2006;9(3):398-426.
- [66] Nunn T, Williams J. Formulation of medicines for children. Br J Clin Pharmacol. 2005;59(6):674-676.
- [67] Elder DP, Kuentz M, Holm R. Pharmaceutical excipients quality, regulatory and biopharmaceutical considerations. Eur J Pharm Sci. 2016;87:88-99.
- [68] Haywood A, Glass BD. Liquid dosage forms extemporaneously prepared from commercially available products considering new evidence on stability. J Pharm Pharm Sci. 2013;16(3):441-455.

Author's short biography

Dr Rakshana V:

Assistant Professor, Departments of Pharmacy Practice, Doctor of Pharmacy, my research project /experience is mainly in the field of Pharmacy Practice.

Miss Jayashree S

UG Scholar passionate about advancing pharmaceutical knowledge. Actively engaged in research within the pharmacy department, with aspirations to expand her contributions to the field through continued studies and investigations.

Miss Saranya P

UG Scholar with a keen interest in pharmaceutical research. Currently focusing on various aspects within the field of pharmacy and aiming to contribute more to the scientific community through future research endeavors.

Mr Vivek A

UG Scholar dedicated to exploring innovative areas in pharmaceutical sciences. His research interests lie within the pharmacy department, and he is committed to pursuing further research opportunities to enhance the field.

Mr. Srikanth B

UG Scholar actively involved in pharmacy-related research. He is enthusiastic about expanding his research portfolio and making meaningful contributions to pharmaceutical sciences.

Dr. R. Srinivasan R

Dean and Professor with extensive experience in pharmaceutical research. His primary focus areas include the development, synthesis, characterization, and application of novel polymers. Dr. Srinivasan has led multiple projects in pharmaceutical analysis and quality assurance, contributing significantly to the field through his expertise and guidance

