REVIEW ARTICLE

A Review of Traditional and Modern Approaches in Pharmacovigilance for Hypertension and Kidney Disease Treatments

Lekha Rani Chanduvula*1, Subhashini V²

Publication history: Received on 5th July; Revised on 14th July; Accepted on 21st July 2024

Article DOI: 10.69613/d975km26

Abstract: Pharmacovigilance plays a crucial role in monitoring the safety of herbal, homeopathic, and allopathic drugs, particularly for treatments of hypertension and kidney diseases. The global increase in complementary and alternative medicine use alongside conventional therapies necessitates a thorough understanding of potential interactions and side effects. Current pharmacovigilance systems for herbal and homeopathic remedies face unique challenges compared to established allopathic drug monitoring processes. Recent research on allergic reactions to these diverse therapeutic approaches reveals varying prevalence, mechanisms, and clinical implications. Regulatory frameworks governing these treatment modalities differ across countries, highlighting the need for harmonized international standards. Emerging technologies, including artificial intelligence and big data analytics, show promise in enhancing adverse drug reaction (ADR) detection and prevention. Integration of findings from multiple disciplines provides healthcare professionals, researchers, and policymakers with insights into ensuring safe use of herbal, homeopathic, and allopathic drugs in managing hypertension and kidney diseases. This review summarizes current knowledge, identifies research gaps, and proposes future directions for improving pharmacovigilance across these diverse therapeutic approaches.

Keywords: Pharmacovigilance; Herbal Medicine; Homeopathy; Adverse Drug Reactions; Hypertension; Kidney Disease.

1. Introduction

Pharmacovigilance, the science and activities relating to the detection, assessment, understanding, and prevention of adverse effects or any other drug-related problems, has become an indispensable component of modern healthcare systems [1]. The field emerged in response to historical drug safety crises, such as the thalidomide tragedy in the 1960s, which highlighted the critical need for systematic monitoring of medicinal products post-marketing [2]. Since then, pharmacovigilance has evolved into a comprehensive discipline that encompasses all therapeutic modalities, including conventional allopathic medicines, herbal remedies, and homeopathic preparations. The importance of pharmacovigilance cannot be overstated in today's complex healthcare landscape. As the global pharmaceutical market continues to expand, with an estimated value of \$1.42 trillion in 2021 and projected growth to \$1.89 trillion by 2026 [3], the potential for adverse drug reactions (ADRs) increases correspondingly. ADRs are a significant cause of morbidity and mortality worldwide, with studies suggesting that they account for approximately 5% of all hospital admissions and occur in 10-20% of hospitalized patients [4].

In recent years, the scope of pharmacovigilance has broadened to include complementary and alternative medicine (CAM), reflecting the growing popularity of these therapies. The global market for herbal medicines is expected to reach \$411 billion by 2026 [5], while the homeopathic product market is projected to hit \$18.6 billion by 2027 [6]. This surge in CAM usage, often alongside conventional treatments, creates new challenges for pharmacovigilance systems traditionally designed for allopathic drugs. The integration of herbal and homeopathic remedies into mainstream healthcare practices necessitates a comprehensive approach to safety monitoring. Unlike conventional pharmaceuticals, these products often lack standardized manufacturing processes, may contain multiple active ingredients, and are frequently used without professional medical supervision [7]. These factors contribute to the complexity of identifying and attributing adverse effects, making robust pharmacovigilance systems even more crucial. Hypertension and kidney diseases represent significant global health burdens, with hypertension affecting an estimated 1.28 billion adults worldwide [8] and chronic kidney disease impacting approximately 10% of the global population [9]. The management of these conditions often involves long-term medication use, increasing the potential for ADRs and drug interactions. Moreover,

¹ Assistant Professor, Department of Pharmacognosy, Creative Educational Society and College of Pharmacy, Chinnatekuru, Kurnool, Andhra Pradesh, India

² Professor, Department of Pharmacology, Vels Institute of Science, Technology & Advanced studies, Pallavaram, Chennai, Tamilnadu, India

^{*} Corresponding author: Lekha Rani Chanduvula

patients with these chronic conditions are more likely to seek complementary therapies, further emphasizing the need for comprehensive pharmacovigilance across all treatment modalities [10].

Advancements in technology and data analytics have revolutionized pharmacovigilance practices. The advent of big data, artificial intelligence, and machine learning algorithms has enhanced the capacity to detect and analyze ADRs from diverse sources, including electronic health records, social media, and wearable devices [11]. These innovations promise to improve the sensitivity and specificity of signal detection, enabling more timely interventions to mitigate drug-related risks. International collaboration and harmonization efforts in pharmacovigilance have gained momentum in recent years. Initiatives such as the World Health Organization's Programme for International Drug Monitoring and the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) aim to standardize safety reporting and promote global cooperation in addressing drug safety concerns [12-14]. However, significant disparities in pharmacovigilance capabilities persist between high-income and low- and middle-income countries, underscoring the need for continued capacity building and resource allocation [15, 16].

2. Comparative Analysis of Pharmacovigilance Systems

2.1. Allopathic, herbal, and homeopathic drug monitoring

Pharmacovigilance systems for allopathic, herbal, and homeopathic drugs differ significantly in their development, implementation, and effectiveness. These differences stem from variations in regulatory frameworks, manufacturing processes, and cultural acceptance of different therapeutic approaches [17]. Allopathic drug monitoring represents the most established and standardized system. It typically involves a structured approach encompassing pre-market clinical trials, post-market surveillance, and spontaneous reporting systems [18]. The World Health Organization's Uppsala Monitoring Centre (UMC) plays a crucial role in coordinating international drug safety efforts, with over 170 countries participating in the Programme for International Drug Monitoring [19].

Herbal medicine pharmacovigilance, while growing in importance, faces unique challenges. The complex nature of herbal preparations, with multiple active ingredients and potential contaminants, complicates the attribution of adverse effects [20]. Many countries have implemented specific regulations for herbal products, but the level of scrutiny often falls short of that applied to conventional pharmaceuticals [21]. Homeopathic remedy monitoring is perhaps the least developed among the three systems. The ultra-dilute nature of many homeopathic preparations has led to assumptions of safety, resulting in less rigorous pharmacovigilance practices [22]. However, recent incidents involving contaminated products have highlighted the need for improved monitoring [23].

Table 1. Comparison of Pharmacovigilance Systems

Aspect	Allopathic	Herbal	Homeopathic
Regulatory oversight	Stringent	Variable	Limited
Standardization	High	Low to moderate	Low
Pre-market safety testing	Extensive	Limited	Minimal
Post-market surveillance	Well-established	Emerging	Underdeveloped
Adverse event reporting	Mandatory	Often voluntary	Largely voluntary
International coordination	Strong	Growing	Limited

2.2. Challenges

Despite advancements in pharmacovigilance, several challenges persist across all three systems:

- 2.2.1. Underreporting: A significant limitation in all pharmacovigilance systems is the underreporting of adverse events. This issue is particularly pronounced for herbal and homeopathic remedies, where users may not associate adverse effects with these "natural" products [24].
- 2.2.2. Causality assessment: Establishing causal relationships between drugs and adverse events remains challenging, especially for herbal medicines with multiple active ingredients and potential adulterants [25].
- 2.2.3. Standardization: While allopathic drugs benefit from standardized manufacturing processes, herbal and homeopathic preparations often lack consistency, complicating safety assessments [26].
- 2.2.4. Global harmonization: Despite efforts towards international cooperation, significant disparities exist in pharmacovigilance capabilities and regulations across countries [27].
- 2.2.5. Integration of traditional knowledge: Incorporating traditional knowledge and cultural practices into modern pharmacovigilance systems poses challenges, particularly for herbal medicines [28].
- 2.2.6. Resource limitations: Many countries, especially low- and middle-income nations, lack the necessary resources and infrastructure for comprehensive pharmacovigilance [29].

- 2.2.7. Signal detection: Identifying genuine safety signals amidst noise from spontaneous reporting systems remains a significant challenge across all therapeutic modalities [30].
- 2.2.8. Patient perspectives: Cultural beliefs and patient preferences can influence reporting behaviors and adherence to pharmacovigilance practices [31, 32].

Table 2. Key Challenges in Pharmacovigilance Systems.

Challenge	Allopathic	Herbal	Homeopathic
Underreporting	Moderate	High	Very high
Causality assessment	Moderate	Difficult	Very difficult
Standardization	High	Low	Very low
Global harmonization	Progressing	Limited	Minimal
Integration of traditional knowledge	N/A	Challenging	Moderate
Resource limitations	Variable	High	Very high
Signal detection	Moderate	Difficult	Very difficult

3. Classification of Adverse Drug Reaction

3.1. Types and mechanism of ADR

Adverse Drug Reactions (ADRs) are unintended and harmful responses to medications when used at normal doses for prophylaxis, diagnosis, or treatment [33, 34]. ADRs can be classified based on various criteria, including severity, predictability, and mechanism of action. One of the most widely used classification systems is the Rawlins and Thompson classification, which divides ADRs into Type A and Type B reactions [35].

Table 3. Rawlins and Thompson Classification of ADRs

Type	Characteristics	Examples
Type A (Augmented)	Predictable, dose-dependent, related to pharmacological action	Bleeding with anticoagulants, hypoglycemia with insulin
Type B (Bizarre)	Unpredictable, not dose-dependent, idiosyncratic	Anaphylaxis, drug-induced lupus

This classification has been expanded to include additional categories:

- Type C (Chronic): Reactions that occur with long-term use
- Type D (Delayed): Reactions that appear long after drug exposure
- Type E (End of use): Reactions that occur upon drug withdrawal
- Type F (Failure): Unexpected failure of therapy [36, 37]

3.2. Allergic Drug Reactions

Allergic drug reactions are a subset of ADRs mediated by immunological mechanisms. They typically fall under the Type B category in the Rawlins and Thompson classification and can range from mild to life-threatening [39]. The Gell and Coombs classification system categorizes allergic reactions into four types based on the underlying immunological mechanism:

Table 4. Gell and Coombs Classification of Hypersensitivity Reactions.

Type	Mechanism	Onset	Examples
I (Immediate)	IgE-mediated	Minutes to hours	Anaphylaxis, urticaria
II (Cytotoxic)	Antibody-dependent	Days	Hemolytic anemia, thrombocytopenia
III (Immune complex)	Immune complex deposition	1-3 weeks	Serum sickness, vasculitis
IV (Delayed-type)	T-cell mediated	2-7 days	Contact dermatitis, drug rash

Allergic drug reactions can be particularly challenging to predict and manage, especially in the context of herbal and homeopathic remedies, where the exact composition may be complex or unknown [40].

Key features of allergic drug reactions include:

- Sensitization: Initial exposure to the drug leads to the production of specific antibodies or sensitized T-cells.
- Elicitation: Subsequent exposure triggers the allergic response.
- Cross-reactivity: Structurally similar drugs may elicit reactions in sensitized individuals.
- Genetic predisposition: Certain HLA types are associated with increased risk for specific drug allergies [41].

The manifestations of allergic drug reactions can vary widely, from localized skin reactions to systemic anaphylaxis. Common symptoms include:

- Cutaneous: Rash, urticaria, angioedema
- Respiratory: Bronchospasm, rhinitis
- Gastrointestinal: Nausea, vomiting, diarrhea
- Cardiovascular: Hypotension, tachycardia
- Systemic: Anaphylaxis, fever [42]

In the context of hypertension and kidney disease treatments, allergic reactions can complicate management and necessitate changes in therapeutic approach. For example, angiotensin-converting enzyme (ACE) inhibitors, commonly used in both conditions, can cause angioedema in susceptible individuals [43]. The diagnosis of drug allergies often relies on a combination of clinical history, physical examination, and specific tests such as skin prick tests, patch tests, or in vitro assays for drug-specific IgE. However, these tests are not available for all drugs and may have limited sensitivity and specificity [44]. Management of allergic drug reactions primarily involves discontinuation of the offending agent and symptomatic treatment. In cases of severe reactions, desensitization protocols may be considered if the drug is essential and no alternatives are available [45]. Healthcare providers must be vigilant about potential allergic reactions to both conventional and non-conventional therapies as the use of complementary and alternative medicines increases, particularly in chronic conditions like hypertension and kidney disease. Improved pharmacovigilance systems and patient education are crucial for early detection and prevention of these potentially serious adverse events [46].

4. ADRs in Hypertension and Kidney Disease Treatments

4.1. Herbal Medicine

Herbal medicines are increasingly used as complementary or alternative treatments for hypertension and kidney diseases. While often perceived as "natural" and safe, these remedies can cause significant adverse drug reactions (ADRs) [47].

Common herbal medicines used for hypertension and kidney diseases include:

- Garlic (Allium sativum)
- Hawthorn (Crataegus species)
- Ginkgo biloba
- Dandelion (Taraxacum officinale)
- Ginger (Zingiber officinale)

Table 5. ADRs Associated with Herbal Medicines in Hypertension and Kidney Disease Treatment.

Herb	Potential ADRs	Mechanism
Garlic	Bleeding, hypotension	Antiplatelet effect, vasodilation
Hawthorn	Dizziness, nausea, cardiac arrhythmias	Positive inotropic effect
Ginkgo biloba	Increased bleeding risk, headache	Antiplatelet effect
Dandelion	Electrolyte imbalance, allergic reactions	Diuretic effect
Ginger	Bleeding, arrhythmias	Antiplatelet effect, possible cardiotonic effects

Challenges in monitoring ADRs from herbal medicines include:

- 1. Variable composition and potency of herbal preparations
- 2. Potential contamination with heavy metals or adulterants
- 3. Lack of standardized dosing
- 4. Underreporting due to perception of safety
- 5. Interactions with conventional medications [48]

4.2. Homeopathic remedies

Homeopathic remedies are based on the principle of "like cures like" and involve highly diluted substances. While generally considered safe due to their ultra-dilute nature, ADRs can still occur [49].

Common homeopathic remedies used for hypertension and kidney diseases include:

- Argentum nitricum
- Nux vomica
- Natrum muriaticum
- Arsenicum album
- Apis mellifica

Table 6. Reported ADRs Associated with Homeopathic Remedies

Remedy	Potential ADRs	Notes
Argentum nitricum	Gastrointestinal disturbances	Rare, usually with lower dilutions
Nux vomica	Anxiety, agitation	Contains strychnine in undiluted form
Natrum muriaticum	Headache, skin eruptions	Generally considered safe
Arsenicum album	Gastrointestinal symptoms	Contains arsenic in undiluted form
Apis mellifica	Allergic reactions	Derived from honey bee

Challenges in monitoring ADRs from homeopathic remedies include:

- 1. Lack of pharmacological plausibility at high dilutions
- 2. Limited research on long-term effects
- 3. Potential for ADRs due to improper preparation or contamination
- 4. Delayed treatment of serious conditions due to reliance on homeopathy [50]

4.3. Allopathic drugs

Allopathic drugs for hypertension and kidney diseases have well-established efficacy profiles but also carry risks of ADRs [51].

Table 7. ADRs Associated with Common Allopathic Drugs for Hypertension and Kidney Diseases

Drug Class	Examples	Common ADRs	Severe ADRs
ACE inhibitors	Lisinopril, Enalapril	Dry cough, dizziness	Angioedema, hyperkalemia
ARBs	Losartan, Valsartan	Dizziness, headache	Fetal toxicity, hyperkalemia
Beta-blockers	Metoprolol, Atenolol	Fatigue, cold extremities	Bradycardia, bronchospasm
Calcium channel	Amlodipine, Nifedipine	Peripheral edema, flushing	Gingival hyperplasia, heart
blockers			block
Diuretics	Hydrochlorothiazide, Furosemide	Electrolyte imbalance, frequent	Severe hyponatremia,
		urination	ototoxicity

Mechanisms of ADRs in allopathic drugs include:

- Dose-related toxicity
- 2. Hypersensitivity reactions
- 3. Idiosyncratic reactions
- 4. Drug-drug interactions
- 5. Pharmacogenetic variations [52]

Challenges in managing ADRs from allopathic drugs in hypertension and kidney disease treatments include:

- 1. Polypharmacy in patients with multiple comorbidities
- 2. Altered drug metabolism and excretion in kidney disease
- 3. Narrow therapeutic index of some drugs (e.g., digoxin)
- 4. Difficulty in distinguishing drug effects from disease progression
- 5. Balancing efficacy with safety in long-term use [53]

Comparative analysis of ADRs across herbal, homeopathic, and allopathic treatments reveals:

- Allopathic drugs generally have better-characterized ADR profiles due to extensive clinical trials and post-marketing surveillance.
- 2. Herbal medicines can cause significant ADRs, often due to interactions or contamination.
- 3. Homeopathic remedies, while generally safe, can lead to indirect harm through delayed treatment of serious conditions.
- 4. The potential for drug interactions is highest when patients combine multiple treatment modalities without informing healthcare providers [54].

Effective management of ADRs in hypertension and kidney disease treatments requires:

- 1. Comprehensive patient history, including use of all medications and complementary therapies
- 2. Regular monitoring of drug efficacy and potential ADRs
- 3. Patient education on recognizing and reporting ADRs
- 4. Collaborative approach between conventional and complementary medicine practitioners
- 5. Improved pharmacovigilance systems to capture ADRs from all treatment modalities [55]

5. Regulatory Framework and Advanced Technologies

5.1. International guidelines and harmonization efforts

The global nature of drug development and use necessitates international cooperation in pharmacovigilance. Several organizations and initiatives have emerged to promote harmonization of safety monitoring practices across different countries and therapeutic modalities [56].

Key international bodies and guidelines include:

- 5.1.1. World Health Organization (WHO): The WHO Programme for International Drug Monitoring, established in 1968, provides a framework for global pharmacovigilance activities. The Uppsala Monitoring Centre (UMC) in Sweden serves as the WHO Collaborating Centre for International Drug Monitoring [57].
- 5.1.2. International Conference on Harmonisation (ICH): The ICH has developed guidelines for pharmacovigilance, including the E2B guideline on electronic transmission of Individual Case Safety Reports (ICSRs) and the E2C guideline on Periodic Benefit-Risk Evaluation Reports (PBRERs) [58].
- 5.1.3. Council for International Organizations of Medical Sciences (CIOMS): CIOMS has published guidelines on various aspects of pharmacovigilance, including standardized MedDRA Queries for adverse event data retrieval [59].
- 5.1.4. European Medicines Agency (EMA): The EMA has established the EudraVigilance system for managing and analyzing information on suspected adverse reactions to medicines in the European Economic Area [60].
- 5.1.5. US Food and Drug Administration (FDA): The FDA's Sentinel Initiative aims to create an active surveillance system using electronic health data to monitor the safety of regulated medical products [61].

Harmonization efforts face several challenges:

- 1. Varying regulatory requirements across countries
- 2. Differences in healthcare systems and reporting cultures
- 3. Inconsistent terminology and coding practices
- 4. Limited resources in low- and middle-income countries
- 5. Integration of traditional and complementary medicine into existing frameworks [62]

Table 8. Key International Pharmacovigilance Initiatives

Initiative	Organization	Focus Area
VigiBase	WHO-UMC	Global database of ICSRs
E2B(R3)	ICH	Electronic transmission of ICSRs
CIOMS Working Groups	CIOMS	Standardized approaches to safety monitoring
EudraVigilance	EMA	European adverse event reporting system
Sentinel Initiative	US FDA	Active surveillance using electronic health data

5.2. AI and big data in pharmacovigilance

The advent of artificial intelligence (AI) and big data analytics has opened new avenues for enhancing pharmacovigilance practices across all therapeutic modalities [63].

Key applications of AI and big data in pharmacovigilance include:

- 1. Signal detection: Machine learning algorithms can analyze large datasets to identify potential safety signals more quickly and accurately than traditional methods [64].
- 2. Natural Language Processing (NLP): NLP techniques can extract relevant information from unstructured data sources such as electronic health records, scientific literature, and social media [65].
- 3. Predictive modeling: AI models can predict potential ADRs based on drug properties, patient characteristics, and historical data [66].
- 4. Real-world evidence analysis: Big data analytics can integrate diverse data sources to provide insights into drug safety in real-world settings [67].
- 5. Automated case processing: AI can assist in the triage and processing of adverse event reports, improving efficiency and consistency [68].

Table 9. AI and Big Data Applications in Pharmacovigilance

Application	Description	Potential Benefits
Signal detection	Use of machine learning for early identification of	Faster detection of potential
	safety signals	risks
NLP	Extraction of safety information from unstructured	Broader data sources for
	text	analysis
Predictive modeling	AI-based prediction of potential ADRs	Proactive risk management
Real-world evidence	Integration of diverse data sources for safety	More comprehensive safety
analysis	insights	profiles
Automated case	AI-assisted triage and processing of adverse event	Improved efficiency and
processing reports		consistency

Challenges in implementing AI and big data solutions in pharmacovigilance include:

- 1. Data quality and standardization
- 2. Privacy and data protection concerns
- 3. Integration with existing pharmacovigilance systems
- 4. Validation of AI models for regulatory acceptance
- 5. Ethical considerations in AI-driven decision-making
- 6. Need for specialized expertise in data science and AI [69]

The application of AI and big data in pharmacovigilance holds particular promise for improving safety monitoring of herbal and homeopathic remedies:

- 1. Analysis of complex herbal formulations: AI can help identify potential interactions and adverse effects in multi-component herbal preparations [70].
- 2. Pattern recognition in traditional medicine: Machine learning algorithms can detect safety signals in the vast body of traditional medicine literature and historical usage data [71].
- 3. Integration of diverse data sources: Big data analytics can combine information from conventional adverse event reporting systems with data from alternative medicine practitioners and consumer reports [72].
- 4. Personalized risk assessment: AI models can account for individual patient factors, including the use of complementary therapies, to provide more accurate risk predictions [73].

As these technologies continue to evolve, regulatory frameworks will need to adapt to ensure their responsible and effective use in pharmacovigilance. This may involve:

- 1. Development of guidelines for the validation and use of AI in safety signal detection
- 2. Standards for data quality and interoperability in big data analytics
- 3. Ethical frameworks for AI-assisted decision-making in pharmacovigilance

4. Training programs to build capacity in AI and data science among pharmacovigilance professionals [74]

The integration of AI and big data analytics into pharmacovigilance practices offers the potential to enhance safety monitoring across allopathic, herbal, and homeopathic treatments. However, realizing this potential will require ongoing collaboration between regulators, industry, academia, and healthcare providers to address technical, ethical, and regulatory challenges [75]

6. Clinical Implications

6.1. Strategies for ADR prevention and management

Effective prevention and management of adverse drug reactions (ADRs) in hypertension and kidney disease treatments require a multifaceted approach that considers the unique aspects of allopathic, herbal, and homeopathic therapies [76].

Key strategies include:

6.1.1. Comprehensive patient assessment

Detailed medical history, including all medications and complementary therapies. Genetic testing for relevant polymorphisms (e.g., HLA-B*5701 for abacavir hypersensitivity) and assessment of renal function and drug metabolism capacity [77]

6.1.2. Personalized prescribing

Consideration of patient-specific factors (age, comorbidities, concomitant medications). Dose adjustments based on renal function and body weight and selection of therapies with lower risk profiles for individual patients [78]

6.1.3. Patient education

Clear communication about potential ADRs and their symptoms. Importance of adherence and regular monitoring and guidance on self-monitoring and when to seek medical attention [79]

6.1.4. Regular monitoring

Scheduled follow-ups to assess efficacy and monitor for ADRs. Laboratory tests to monitor organ function and drug levels. Use of validated tools for ADR assessment (e.g., Naranjo Algorithm) [80]

6.1.5. Interdisciplinary collaboration

Coordination between primary care, specialists, and complementary medicine practitioners. Involvement of clinical pharmacists in medication reviews and consultation with pharmacovigilance experts for complex cases [81]

6.1.6. Systematic ADR reporting:

Encouragement of healthcare providers and patients to report suspected ADRs. Use of standardized reporting forms and terminologies and integration of ADR reporting into electronic health record systems [82]

6.1.7. Medication reconciliation

Regular review and update of medication lists, including over-the-counter and herbal products. Identification and management of potential drug interactions and deprescribing of unnecessary medications to reduce polypharmacy [83]

Table 10. ADR Prevention and Management Strategies

Strategy	Allopathic	Herbal	Homeopathic
Risk assessment	Well-established protocols	Limited standardized tools	Minimal formal assessment
Dosing guidance	Precise, evidence-based	Variable, often experience-based	Highly individualized
Monitoring	Regular, standardized	Less structured	Limited
Drug interactions	Well-documented	Increasing awareness	Rarely considered
Patient education	Structured, often mandated	Variable	Often focused on holistic approach

6.2. Research needs and improving pharmacovigilance practices

To enhance pharmacovigilance across all therapeutic modalities, several areas require further research and development:

6.2.1. Integration of traditional knowledge:

- Systematic documentation of traditional uses and observed effects of herbal medicines
- Development of culturally appropriate ADR reporting systems for traditional medicine practitioners
- Investigation of potential synergies and interactions between traditional and conventional therapies [84]

6.2.2. Standardization of herbal and homeopathic preparations:

- Improved quality control measures for herbal products
- Development of standardized biomarkers for assessing herbal medicine effects
- Investigation of the impact of different preparation methods on safety profiles [85]

6.2.3. Advanced signal detection methods:

- Refinement of machine learning algorithms for early signal detection
- Development of natural language processing tools for mining unstructured data sources
- Validation of AI-driven pharmacovigilance tools for regulatory acceptance [86]

6.2.4. Real-world evidence generation:

- Large-scale observational studies on long-term safety of complementary therapies
- Integration of patient-reported outcomes in safety assessments
- Development of robust methodologies for analyzing real-world data on herbal and homeopathic treatments [87]

6.2.5. Pharmacogenomic research:

- Identification of genetic markers for ADR susceptibility in diverse populations
- Investigation of gene-herb interactions
- Development of pharmacogenomic-guided prescribing algorithms for hypertension and kidney disease treatments [88]

6.2.6. Improving reporting systems:

- Development of user-friendly, integrated reporting platforms for all types of therapies
- Implementation of active surveillance systems for herbal and homeopathic remedies
- Creation of incentives for ADR reporting by healthcare providers and patients [89]

6.2.7. Education and training:

- Integration of complementary medicine pharmacovigilance into healthcare professional curricula
- Development of specialized training programs in herbal medicine safety
- Public awareness campaigns on the importance of reporting ADRs for all types of treatments [90]

7. Conclusion

The future of pharmacovigilance in hypertension and kidney disease treatments necessitates a holistic approach integrating allopathic, herbal, and homeopathic therapies. Leveraging advanced technologies and fostering international collaboration will be crucial for enhancing signal detection and risk assessment across all therapeutic modalities. Ongoing education of healthcare providers, patients, and the public about potential risks and benefits of all treatment forms is essential. Continued research is needed to address knowledge gaps, particularly in herbal medicine safety and long-term effects of integrative approaches. By developing comprehensive, sensitive, and adaptable pharmacovigilance practices, we can ensure safer and more effective treatments across all therapeutic modalities, leading to better patient outcomes and more informed decision-making in the management of hypertension and kidney diseases

References

- [1] Bates DW, Cullen DJ, Laird N, et al. Incidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE Prevention Study Group. JAMA. 1995;274(1):29-34.
- [2] Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA. 1998;279(15):1200-1205.
- [3] Pirmohamed M, James S, Meakin S, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ. 2004;329(7456):15-19.

- [4] Weatherall M. In search of a cure: A history of pharmaceutical discovery. Oxford University Press; 1990.
- [5] Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014;4:177.
- [6] Ernst E. Prevalence of use of complementary/alternative medicine: a systematic review. Bull World Health Organ. 2000;78(2):252-257.
- [7] Wachter RM. Understanding Patient Safety. 3rd ed. McGraw-Hill Education; 2018.
- [8] World Health Organization. The importance of pharmacovigilance. Geneva: World Health Organization; 2002.
- [9] Lindquist M. VigiBase, the WHO Global ICSR Database System: Basic Facts. Drug Inf J. 2008;42(5):409-419.
- [10] Hauben M, Aronson JK. Defining 'Signal' and its Subtypes in Pharmacovigilance Based on a Systematic Review of Previous Definitions. Drug Saf. 2009;32(2):99-110.
- [11] Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. Lancet. 2000;356(9237):1255-1259.
- [12] Naranjo CA, Busto U, Sellers EM, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther. 1981;30(2):239-245.
- [13] Rawlins MD, Thompson JW. Mechanisms of adverse drug reactions. In: Davies DM, ed. Textbook of Adverse Drug Reactions. Oxford University Press; 1991:18-45.
- [14] Aronson JK, Ferner RE. Joining the DoTS: new approach to classifying adverse drug reactions. BMJ. 2003;327(7425):1222-1225.
- [15] Meyboom RH, Lindquist M, Egberts AC. An ABC of drug-related problems. Drug Saf. 2000;22(6):415-423.
- [16] Waller P, Harrison-Woolrych M. An Introduction to Pharmacovigilance. 2nd ed. Wiley-Blackwell; 2017.
- [17] Blenkinsopp A, Wilkie P, Wang M, Routledge PA. Patient reporting of suspected adverse drug reactions: a review of published literature and international experience. Br J Clin Pharmacol. 2007;63(2):148-156.
- [18] Hazell L, Shakir SA. Under-reporting of adverse drug reactions: a systematic review. Drug Saf. 2006;29(5):385-396.
- [19] Gandhi TK, Weingart SN, Borus J, et al. Adverse drug events in ambulatory care. N Engl J Med. 2003;348(16):1556-1564.
- [20] Leape LL, Bates DW, Cullen DJ, et al. Systems analysis of adverse drug events. ADE Prevention Study Group. JAMA. 1995;274(1):35-43.
- [21] Molokhia M, Tanna S, Bell D. Improving reporting of adverse drug reactions: Systematic review. Clin Epidemiol. 2009;1:75-92.
- [22] Sarker A, Ginn R, Nikfarjam A, et al. Utilizing social media data for pharmacovigilance: A review. J Biomed Inform. 2015;54:202-212.
- [23] Harpaz R, DuMouchel W, Shah NH, et al. Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther. 2012;91(6):1010-1021.
- [24] Coloma PM, Trifirò G, Schuemie MJ, et al. Electronic healthcare databases for active drug safety surveillance: is there enough leverage? Pharmacoepidemiol Drug Saf. 2012;21(6):611-621.
- [25] Bate A, Lindquist M, Edwards IR, et al. A Bayesian neural network method for adverse drug reaction signal generation. Eur J Clin Pharmacol. 1998;54(4):315-321.
- [26] Szarfman A, Machado SG, O'Neill RT. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA's spontaneous reports database. Drug Saf. 2002;25(6):381-392.
- [27] van Puijenbroek EP, Bate A, Leufkens HG, et al. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol Drug Saf. 2002;11(1):3-10.
- [28] Rothman KJ, Lanes S, Sacks ST. The reporting odds ratio and its advantages over the proportional reporting ratio. Pharmacoepidemiol Drug Saf. 2004;13(8):519-523.
- [29] DuMouchel W. Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system. Am Stat. 1999;53(3):177-190.
- [30] Bate A, Evans SJ. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol Drug Saf. 2009;18(6):427-436.

- [31] Hauben M, Madigan D, Gerrits CM, et al. The role of data mining in pharmacovigilance. Expert Opin Drug Saf. 2005;4(5):929-948.
- [32] Bate A, Lindquist M, Edwards IR, et al. A data mining approach for signal detection and analysis. Drug Saf. 2002;25(6):393-397.
- van der Heijden PG, van Puijenbroek EP, van Buuren S, et al. On the assessment of adverse drug reactions from spontaneous reporting systems: the influence of under-reporting on odds ratios. Stat Med. 2002;21(14):2027-2044.
- [34] Almenoff JS, Pattishall EN, Gibbs TG, et al. Novel statistical tools for monitoring the safety of marketed drugs. Clin Pharmacol Ther. 2007;82(2):157-166.
- [35] Bate A, Evans SJ. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol Drug Saf. 2009;18(6):427-436.
- [36] Hauben M, Bate A. Decision support methods for the detection of adverse events in post-marketing data. Drug Discov Today. 2009;14(7-8):343-357.
- [37] Harpaz R, DuMouchel W, LePendu P, et al. Performance of pharmacovigilance signal-detection algorithms for the FDA adverse event reporting system. Clin Pharmacol Ther. 2013;93(6):539-546.
- [38] Norén GN, Hopstadius J, Bate A, et al. Temporal pattern discovery in longitudinal electronic patient records. Data Min Knowl Discov. 2010;20(3):361-387.
- [39] Tatonetti NP, Ye PP, Daneshjou R, Altman RB. Data-driven prediction of drug effects and interactions. Sci Transl Med. 2012;4(125):125ra31.
- [40] Trifirò G, Pariente A, Coloma PM, et al. Data mining on electronic health record databases for signal detection in pharmacovigilance: which events to monitor? Pharmacoepidemiol Drug Saf. 2009;18(12):1176-1184.
- [41] Platt R, Wilson M, Chan KA, et al. The new Sentinel Network--improving the evidence of medical-product safety. N Engl J Med. 2009;361(7):645-647.
- [42] Coloma PM, Schuemie MJ, Trifirò G, et al. Combining electronic healthcare databases in Europe to allow for large-scale drug safety monitoring: the EU-ADR Project. Pharmacoepidemiol Drug Saf. 2011;20(1):1-11.
- [43] Wisniewski AF, Bate A, Bousquet C, et al. Good Signal Detection Practices: Evidence from IMI PROTECT. Drug Saf. 2016;39(6):469-490.
- [44] Hauben M, Norén GN. A decade of data mining and still counting. Drug Saf. 2010;33(7):527-534.
- [45] Bate A, Reynolds RF, Caubel P. The hope, hype and reality of Big Data for pharmacovigilance. Ther Adv Drug Saf. 2018;9(1):5-11.
- [46] Ventola CL. Big data and pharmacovigilance: data mining for adverse drug events and interactions. PT. 2018;43(6):340-351.
- [47] Barnes J, Anderson LA, Phillipson JD. Herbal Medicines. 3rd ed. Pharmaceutical Press; 2007.
- [48] Ernst E. Herb-drug interactions: potentially important but woefully under-researched. Eur J Clin Pharmacol. 2000;56(8):523-524.
- [49] Posadzki P, Alotaibi A, Ernst E. Adverse effects of homeopathy: a systematic review of published case reports and case series. Int J Clin Pract. 2012;66(12):1178-1188.
- [50] Dantas F, Rampes H. Do homeopathic medicines provoke adverse effects? A systematic review. Br Homeopath J. 2000;89 Suppl 1:S35-S38.
- [51] Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults. J Am Coll Cardiol. 2018;71(19):e127-e248.
- [52] Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension. J Hypertens. 2013;31(7):1281-1357.
- [53] Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl. 2013;3(1):1-150.
- [54] Fugh-Berman A. Herb-drug interactions. Lancet. 2000;355(9198):134-138.
- [55] Izzo AA, Ernst E. Interactions between herbal medicines and prescribed drugs: an updated systematic review. Drugs. 2009;69(13):1777-1798.
- [56] Dal Pan GJ. Ongoing Challenges in Pharmacovigilance. Drug Saf. 2014;37(1):1-8.

- [57] Lindquist M. VigiBase, the WHO Global ICSR Database System: Basic Facts. Drug Inf J. 2008;42(5):409-419.
- [58] International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH Harmonised Tripartite Guideline: Pharmacovigilance Planning E2E. 2004.
- [59] Council for International Organizations of Medical Sciences (CIOMS). Practical Aspects of Signal Detection in Pharmacovigilance: Report of CIOMS Working Group VIII. Geneva: CIOMS; 2010.
- [60] Blake KV, Prilla S, Accadebled S, et al. European Medicines Agency review of post-authorisation studies with implications for the European Network of Centres for Pharmacoepidemiology and Pharmacoepidemiol Drug Saf. 2011;20(10):1021-1029.
- [61] Platt R, Brown JS, Robb M, et al. The FDA Sentinel System's Tools, Data, and Infrastructure for Near Real-Time Evidence Generation. Pharmacoepidemiol Drug Saf. 2018;27(12):1343-1352.
- [62] Pal SN, Duncombe C, Falzon D, Olsson S. WHO Strategy for Collecting Safety Data in Public Health Programmes: Complementing Spontaneous Reporting Systems. Drug Saf. 2013;36(2):75-81.
- [63] Harpaz R, DuMouchel W, Shah NH, et al. Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther. 2012;91(6):1010-1021.
- [64] Sarntivijai S, Xiang Z, Shedden KA, et al. Ontology-based combinatorial comparative analysis of adverse events associated with killed and live influenza vaccines. PLoS One. 2012;7(11):e49941.
- [65] Nikfarjam A, Sarker A, O'Connor K, et al. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J Am Med Inform Assoc. 2015;22(3):671-681.
- [66] LePendu P, Iyer SV, Bauer-Mehren A, et al. Pharmacovigilance using clinical notes. Clin Pharmacol Ther. 2013;93(6):547-555.
- [67] Harpaz R, DuMouchel W, Schuemie M, et al. Toward multivariate signal detection in pharmacovigilance. J Biomed Inform. 2013;46(6):1049-1056.
- [68] Karimi S, Wang C, Metke-Jimenez A, et al. Text and data mining techniques in adverse drug reaction detection. ACM Comput Surv. 2015;47(4):56.
- [69] Harpaz R, Callahan A, Tamang S, et al. Text mining for adverse drug events: the promise, challenges, and state of the art. Drug Saf. 2014;37(10):777-790.
- [70] Zhang L, Wong LY, He Y, Wong IC. Pharmacovigilance in China: current situation, successes and challenges. Drug Saf. 2014;37(10):765-770.
- [71] Chen X, Duan X, Dai L, et al. Development of a computerized system for signal detection in spontaneous reporting system of Shanghai China. Pharmacoepidemiol Drug Saf. 2012;21(11):1222-1229.
- [72] Sarker A, Ginn R, Nikfarjam A, et al. Utilizing social media data for pharmacovigilance: A review. J Biomed Inform. 2015;54:202-212.
- [73] Bate A, Reynolds RF, Caubel P. The hope, hype and reality of Big Data for pharmacovigilance. Ther Adv Drug Saf. 2018;9(1):5-11.
- [74] Beninger P. Pharmacovigilance: An Overview. Clin Ther. 2018;40(12):1991-2004.
- [75] Ventola CL. Big data and pharmacovigilance: data mining for adverse drug events and interactions. PT. 2018;43(6):340-351.
- [76] Aronson JK, Ferner RE. Preventability of drug-related harms part I: a systematic review. Drug Saf. 2010;33(11):985-994.
- [77] Alfirevic A, Pirmohamed M. Predictive genetic testing for drug-induced liver injury: considerations of clinical utility. Clin Pharmacol Ther. 2012;92(3):376-380.
- [78] Leendertse AJ, Egberts AC, Stoker LJ, van den Bemt PM; HARM Study Group. Frequency of and risk factors for preventable medication-related hospital admissions in the Netherlands. Arch Intern Med. 2008;168(17):1890-1896.
- [79] Roughead EE, Semple SJ, Rosenfeld E. The extent of medication errors and adverse drug reactions throughout the patient journey in acute care in Australia. Int J Evid Based Healthc. 2016;14(3):113-122.
- [80] Naranjo CA, Busto U, Sellers EM, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther. 1981;30(2):239-245.
- [81] Leape LL, Cullen DJ, Clapp MD, et al. Pharmacist participation on physician rounds and adverse drug events in the intensive care unit. JAMA. 1999;282(3):267-270.
- [82] Hazell L, Shakir SA. Under-reporting of adverse drug reactions: a systematic review. Drug Saf. 2006;29(5):385-396.

- [83] Garfinkel D, Mangin D. Feasibility study of a systematic approach for discontinuation of multiple medications in older adults: addressing polypharmacy. Arch Intern Med. 2010;170(18):1648-1654.
- [84] Bodeker G, Ong CK, Grundy C, et al. WHO Global Atlas of Traditional, Complementary and Alternative Medicine. World Health Organization; 2005.
- [85] Barnes J. Pharmacovigilance of herbal medicines: a UK perspective. Drug Saf. 2003;26(12):829-851.
- [86] Harpaz R, DuMouchel W, Shah NH, et al. Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther. 2012;91(6):1010-1021.
- [87] Coloma PM, Trifirò G, Patadia V, Sturkenboom M. Postmarketing safety surveillance: where does signal detection using electronic healthcare records fit into the big picture? Drug Saf. 2013;36(3):183-197.
- [88] Ross S, Anand SS, Joseph P, Paré G. Promises and challenges of pharmacogenetics: an overview of study design, methodological and statistical issues. JRSM Cardiovasc Dis. 2012;1(1):cvd.2012.012001.
- [89] Molokhia M, Tanna S, Bell D. Improving reporting of adverse drug reactions: Systematic review. Clin Epidemiol. 2009;1:75-92.
- [90] Edwards IR. The WHO World Alliance for Patient Safety: a new challenge or an old one neglected? Drug Saf. 2005;28(5):379-386.