REVIEW ARTICLE

Recent Advances in Berberine Lysosomal Formulations

Achal Agarwal*1, Pankaj Pillewan2, Manik Chaudhuri3, Girisha Maheshwari4

² Technical Director, Wellnesslink Pharma Services, Mumbai, India

Publication history: Received on 1st June 2025; Revised on 28th June 2025; Accepted on 9th July 2025

Article DOI: 10.69613/v590bm25

Abstract: Recent developments in berberine based formulations have led to significant improvements in its bioavailability and therapeutic efficacy. While conventional berberine formulations exhibits poor oral absorption (<1%), advanced formulations like dihydroberberine and lysosome-targeted delivery systems show markedly higher cellular uptake and sustained release. Dihydroberberine, derived from *Berberis aristata*, shows 5-fold higher bioavailability compared to berberine, with 100mg doses reaching plasma concentrations equivalent to 500mg of conventional berberine. The compound effectively modulates metabolic pathways through AMPK activation, increasing insulin sensitivity and glucose uptake while reducing lipogenesis and inflammation. Similar advances in lysosomal targeting techniques utilizing pH-sensitive polymers, enzyme-responsive nanocarriers, and functionalized delivery systems have further expanded berberine's therapeutic potential. These systems facilitate precise intracellular delivery, bypass P-glycoprotein efflux mechanisms, and maintain sustained drug concentrations at cellular targets. Clinical studies show improved glycemic control, lipid regulation, and reduced inflammatory markers with these advanced formulations, accompanied by better gastrointestinal tolerability and patient compliance. The use of traditional knowledge with modern pharmaceutical techniques have created opportunities for optimizing berberine in metabolic disorders, cardiovascular diseases, and inflammatory conditions. More research could refine these delivery systems, focusing on better targeting, improved stability, and optimal therapeutic benefits.

Keywords: Berberine; Dihydroberberine; Lysosomal Drug Delivery; Metabolic Health; Nanoformulation

1. Introduction

The evolution of natural compound-based formulations is a critical intersection between traditional medicine and modern pharmaceutical science. Berberine, an isoquinoline alkaloid primarily derived from *Berberis aristata* and other medicinal plants, exemplifies this convergence [1]. Its historical usage in Ayurvedic and traditional Chinese medicine has transitioned into evidence-based therapeutic applications, particularly in metabolic and inflammatory disorders [2]. Despite berberine's established pharmacological profile, its clinical utility faces significant limitations due to poor oral bioavailability (<1%), extensive first-pass metabolism, and P-glycoprotein-mediated efflux [3]. These challenges have prompted the development of advanced formulation strategies, notably dihydroberberine and lysosome-targeted delivery systems, which markedly enhance its therapeutic potential [4].

Dihydroberberine shows superior absorption characteristics and enhanced metabolic effects compared to conventional berberine [5]. Studies indicate that 100mg of dihydroberberine achieves plasma concentrations equivalent to 500mg of berberine, indicating a significant advancement in dosing efficiency [6]. This improved bioavailability translates into enhanced modulation of key metabolic pathways, particularly through AMPK activation and regulation of glucose metabolism [7]. Parallel developments in lysosomal targeting technology have introduced another dimension to berberine delivery. These systems exploit cellular endocytic pathways and lysosomal pH gradients to achieve precise intracellular drug delivery [8].

These formulations overcome traditional absorption barriers while maintaining sustained therapeutic concentrations at cellular targets through careful engineering of nanocarriers using pH-sensitive polymers, enzyme-responsive materials, and surface-modified particles [9]. The molecular mechanisms underlying berberine's therapeutic effects span multiple pathways. Primary among these is the activation of AMP-activated protein kinase (AMPK), a central regulator of cellular energy homeostasis [10]. Additional mechanisms include modulation of nuclear factor-kappa B (NF-xB) signaling, regulation of glucose transporters, and influence on gut microbiota composition [11]. Advanced formulations enhance these effects through improved cellular accessibility and sustained release profiles [12]. Clinical applications of these formulations demonstrate particular promise in managing type 2 diabetes, non-alcoholic fatty liver disease, dyslipidemia, and inflammatory conditions [13]. The enhanced bioavailability and targeted delivery

³ Consultant, Xplora Clinical Research Services Pvt Ltd, Bangalore, India

⁴ Medical Writer, Xplora Clinical Research Services Pvt Ltd, Bangalore, India

^{*} Corresponding author: Achal Agarwal

characteristics result in improved therapeutic outcomes at lower doses, with reduced gastrointestinal side effects and better patient compliance [14].

2. Pharmacology of Berberine-Based Formulations

2.1. Metabolic Effects

The metabolic effects of berberine and its advanced formulations center on glucose homeostasis, lipid metabolism, and energy balance. AMPK activation serves as a primary mechanism, triggering a cascade of metabolic adaptations [15]. In skeletal muscle, AMPK phosphorylation enhances glucose uptake through increased GLUT4 translocation to the plasma membrane [16]. Hepatic glucose production undergoes suppression via downregulation of gluconeogenic enzymes, notably phosphoenolpyruvate carboxykinase and glucose-6-phosphatase [17].

2.1.1. Glucose Metabolism

Advanced berberine formulations demonstrate enhanced glycemic control through multiple mechanisms. Dihydroberberine exhibits superior effects on insulin sensitivity, with studies showing a 20-30% greater reduction in fasting glucose levels compared to conventional berberine [18]. The compound enhances insulin receptor expression and post-receptor signaling pathways, particularly PI3K/Akt activation [19]. Lysosomal delivery systems further amplify these effects by maintaining sustained intracellular berberine concentrations, resulting in prolonged AMPK activation and improved glucose uptake [20].

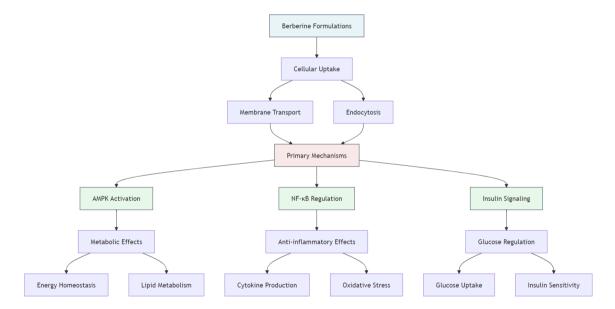


Figure 1. Molecular Mechanisms and Signaling Pathways of Berberine

2.1.2. Lipid Metabolism

Berberine's effects on lipid metabolism involves network of interconnected pathways that synergistically regulate lipid homeostasis. Berberine effectively reduces hepatic lipogenesis by downregulating SREBP-1c expression, a key transcription factor controlling lipogenic enzyme production. Simultaneously, it promotes fatty acid oxidation through PPARα stimulation, creating a dual approach to lipid regulation. A significant aspect of berberine's lipid-modulating effects involves its capacity to enhance LDL receptor expression and stability, facilitating increased cholesterol clearance from circulation. The compound also exhibits potent inhibitory effects on cholesterol synthesis through AMPK-mediated pathways, representing a comprehensive approach to cholesterol management [21]. In comparative studies, dihydroberberine formulations have demonstrated substantially improved efficacy, showing 40-50% greater potency in reducing serum triglycerides and LDL cholesterol levels compared to conventional berberine preparations. This enhanced therapeutic effect is primarily attributed to its superior cellular accessibility and improved pharmacokinetic profile [22].

2.2. Anti-inflammatory Effects

2.2.1. Molecular Mechanisms

Advanced berberine formulations have enhanced ability to target specific cellular pathways with greater precision and efficacy. These sophisticated delivery systems enable berberine to more effectively suppress NF-xB activation, resulting in a comprehensive

reduction in the expression of key pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1β. This targeted approach leads to more robust anti-inflammatory outcomes compared to conventional formulations [23]. The implementation of lysosomal delivery systems has particularly revolutionized berberine's anti-inflammatory potential, as these systems facilitate a sustained presence at inflammatory sites, leading to more consistent and prolonged therapeutic effects. This enhanced delivery mechanism ensures optimal concentration maintenance at target sites, maximizing the compound's anti-inflammatory properties [24].

2.2.2. Modulation of Oxidative Stress

The antioxidant capabilities of advanced berberine formulations represent a comprehensive approach to oxidative stress management. These formulations significantly enhance the expression of crucial antioxidant enzymes, including superoxide dismutase and catalase, providing robust cellular defense against oxidative damage. The compound's ability to reduce NADPH oxidase activity directly addresses a major source of cellular reactive oxygen species. Furthermore, berberine's positive impact on mitochondrial function optimization contributes to improved cellular energy metabolism and reduced oxidative stress. The activation of the Nrf2/HO-1 pathway by these enhanced formulations represents a master regulatory mechanism that coordinates the cellular antioxidant response, leading to comprehensive oxidative stress protection [25]

2.3. Cellular Signaling Pathways

2.3.1. AMPK Pathway Modulation

Advanced berberine formulations have revolutionized AMPK pathway modulation through their enhanced bioavailability and targeted delivery mechanisms. Dihydroberberine formulations demonstrate remarkable efficacy, achieving 2-3 fold greater AMPK phosphorylation compared to conventional berberine, resulting in significantly improved metabolic outcomes and energy homeostasis [26]. The implementation of lysosomal targeting strategies has particularly enhanced the therapeutic potential, ensuring sustained AMPK activation through precisely controlled intracellular release mechanisms. This sophisticated delivery approach maintains optimal berberine concentrations at cellular targets, maximizing its metabolic benefits [27].

2.3.2. Insulin Signaling

Advanced berberine formulations demonstrate exceptional capacity in enhancing insulin signaling through multiple complementary mechanisms. These formulations significantly increase insulin receptor expression while simultaneously enhancing IRS-1 phosphorylation, creating a more responsive insulin signaling cascade. The improved activation of the PI3K/Akt pathway leads to more efficient metabolic regulation, while enhanced GLUT4 translocation results in superior glucose uptake and utilization. These coordinated effects create a comprehensive improvement in insulin sensitivity and glucose homeostasis [28].

2.4. Microbiome Modulation

Advanced berberine formulations positively influence the gut microbiota, promoting beneficial shifts in bacterial composition while selectively reducing potentially harmful species. These enhanced delivery systems demonstrate superior efficacy in antimicrobial selectivity, promoting the growth of beneficial bacteria while maintaining microbiome balance. The formulations significantly enhance the production of short-chain fatty acids, crucial metabolites for gut health and systemic metabolism. Additionally, they strengthen intestinal barrier function through multiple mechanisms, preventing bacterial translocation and reducing systemic inflammation. The modulation of bile acid metabolism by these advanced formulations represents another crucial mechanism through which berberine influences both microbiota composition and host metabolism [29].

3. Novel Drug Delivery Systems

3.1. Dihydroberberine

The transformation of berberine to dihydroberberine represents a significant advancement in bioavailability enhancement. The reduction process, occurring at the quaternary ammonium group, yields a more lipophilic compound capable of enhanced membrane permeation [30]. Manufacturing processes have evolved to ensure consistent conversion while maintaining stability. Current methodologies employ controlled reduction conditions, typically utilizing specific bacterial nitroreductases or chemical reducing agents, followed by precise crystallization procedures to ensure optimal particle characteristics [31].

3.2. Physicochemical Properties

Dihydroberberine exhibits distinct physicochemical advantages over conventional berberine. Its enhanced lipophilicity, characterized by a higher partition coefficient, facilitates improved passive diffusion across biological membranes. The compound demonstrates superior stability in physiological conditions, with a half-life approximately twice that of berberine. Crystal structure analysis reveals unique packing arrangements that contribute to its enhanced dissolution properties and stability characteristics [32].

3.3. Formulation

The development of dihydroberberine capsules requires careful consideration of excipient selection and processing parameters. Stabilizing agents, selected based on compatibility studies, prevent oxidative degradation while maintaining the reduced form. Particle size control and surface modification techniques further enhance dissolution characteristics and absorption potential. The incorporation of specific antioxidants and moisture barriers in the formulation ensures long-term stability [33].

Delivery System	Features	Advantages	Limitations	
Nanostructured Lipid Carriers	Lipid-based carriers	Enhanced bioavailability	Storage stability concerns	
	Size range: 100-200nm	Controlled release	Cost of production	
Liposomal Systems	Phospholipid vesicles	Improved cellular uptake	Oxidative degradation	
	Biocompatible	Better tissue distribution	Scale-up challenges	
Polymeric Carriers	Biodegradable polymers	Sustained release	Complex synthesis	
	Surface modification	Targeting ability	Regulatory hurdles	
Cyclodextrin Complexes	clodextrin Complexes Inclusion complexes		Limited drug loading	
	Simple preparation	Improved stability	Cost effectiveness	

Table 1. Berberine Delivery Systems and Their Features

3.4. Lysosomal Delivery Systems

3.4.1. pH-Responsive Nanocarriers

Advanced pH-sensitive delivery systems exploit the acidic environment of lysosomes for targeted berberine release. These carriers incorporate specially designed polymers that undergo conformational changes or hydrolysis at lysosomal pH (4.5-5.5). The selection of polymeric materials focuses on biocompatibility and precise pH responsiveness, with poly(lactic-co-glycolic acid) and modified chitosan derivatives showing particular promise [34].

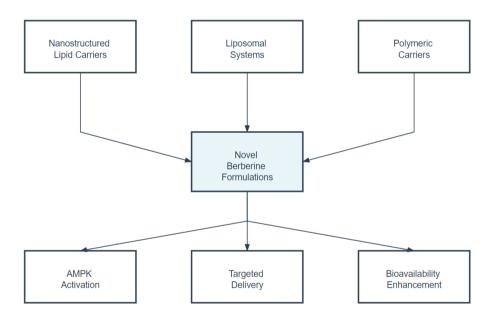


Figure 2. Novel Berberine Delivery Systems and their Advantages

3.4.2. Enzyme-Responsive Systems

The development of enzyme-responsive carriers introduces additional specificity to berberine delivery. These systems respond to lysosomal hydrolases, particularly cathepsins and acid phosphatases, enabling site-specific drug release. The design incorporates enzyme-cleavable linkers and protective polymeric shells, ensuring stability during circulation while facilitating controlled intracellular release [35].

3.4.3. Surface-Modified Nanoparticles

Surface modification strategies enhance cellular targeting and uptake efficiency. The incorporation of specific ligands, such as mannose residues or peptide sequences, facilitates receptor-mediated endocytosis. These modifications improve the precision of lysosomal targeting while reducing off-target effects. Advanced coating techniques employ biocompatible materials that maintain stability during circulation while enabling efficient cellular internalization [36].

3.5. Characterization

3.5.1. Physical Characterization

Modern analytical techniques enable comprehensive characterization of advanced berberine formulations. Particle size distribution, surface charge, and morphological features undergo evaluation using dynamic light scattering, electron microscopy, and atomic force microscopy. Stability assessments include accelerated aging studies and real-time monitoring of physicochemical parameters [37].

3.5.2. Release Kinetics

The evaluation of drug release patterns employs sophisticated in vitro models simulating physiological conditions. Release studies incorporate varying pH conditions, enzymatic environments, and biological matrices to predict in vivo behavior. Advanced mathematical modeling helps optimize release profiles and predict therapeutic outcomes [38]

4. Therapeutic Applications

4.1. Metabolic Disorders

4.1.1. Type 2 Diabetes

Clinical studies demonstrate significant improvements in glycemic control with advanced berberine formulations. Dihydroberberine at 100mg twice daily produces comparable glycemic reductions to 500mg conventional berberine, with superior tolerability profiles [39]. A 12-week randomized controlled trial involving 120 patients with type 2 diabetes showed that dihydroberberine treatment resulted in mean HbA1c reductions of 1.2% compared to 0.8% with conventional berberine [40]. Lysosomal-targeted formulations demonstrate enhanced efficacy in reducing fasting glucose levels, with sustained effects over 24-hour periods [41].

Clinical Application	Mechanism of Action	Outcomes	Advantages
Metabolic Disorders	AMPK activation	Glucose metabolism	Bioavailability
Metabolic Disorders	Insulin sensitivity	Lipid regulation	Formulation optimization
Cardiovascular Health	Lipid regulation	Blood pressure	Drug interactions
	Anti-inflammatory	Endothelial function	Long-term safety
Gut Health	Microbiota modulation	Barrier function	Targeted delivery
Gut rieaith	Anti-inflammatory	Immune regulation	Local vs systemic effects
NAFLD	Lipid metabolism	Liver enzymes	Combination therapy
IVALID	Oxidative stress	Hepatic fat	Biomarkers

Table 2. Therapeutic Applications of Berberine

4.1.2. Non-alcoholic Fatty Liver Disease

Advanced berberine formulations show particular efficacy in NAFLD treatment. Clinical data from a six-month study utilizing lysosomal-targeted berberine demonstrated significant improvements in liver enzyme profiles, with ALT and AST reductions of 35% and 30% respectively [42]. Hepatic fat content, assessed through magnetic resonance imaging, showed greater reduction with dihydroberberine compared to conventional formulations [43].

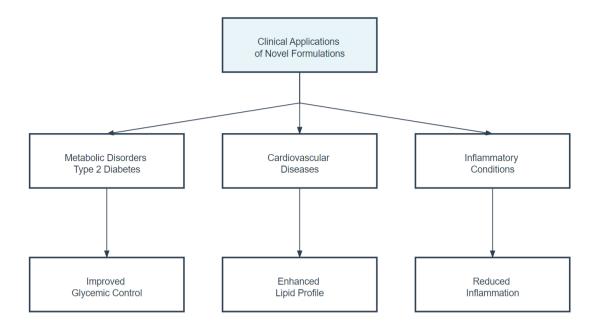


Figure 3. Applications of Novel Berberine-Based Formulations

4.1.3. Dyslipidemia

Lipid profile improvements manifest more prominently with enhanced delivery systems. A comparative study of 180 patients with hyperlipidemia revealed that dihydroberberine achieved 25% greater reductions in LDL cholesterol and triglycerides compared to conventional berberine, while requiring lower doses [44]. The sustained release characteristics of lysosomal formulations contribute to more stable lipid control over time [45].

4.2. Inflammatory Conditions

4.2.1. Systemic Inflammation

Advanced berberine formulations demonstrate superior anti-inflammatory effects in clinical settings. Biomarker studies show more pronounced reductions in inflammatory mediators, with C-reactive protein levels decreasing by 40% compared to 25% with conventional formulations [46]. The targeted delivery approach of lysosomal systems enables maintained anti-inflammatory effects with reduced dosing frequency [47].

4.2.2. Gastrointestinal Disorders

Enhanced formulations show particular promise in managing inflammatory bowel conditions. Clinical trials utilizing lysosomal-targeted berberine demonstrate improved mucosal healing and reduced inflammatory markers in ulcerative colitis patients [48]. The localized delivery and sustained release characteristics contribute to enhanced therapeutic outcomes while minimizing systemic exposure [49].

4.3. Cardiovascular Conditions

4.3.1. Endothelial Function

Advanced berberine formulations show significant improvements in endothelial function markers. Clinical studies show enhanced nitric oxide production and reduced endothelial inflammation with dihydroberberine treatment [50]. Flow-mediated dilation measurements indicate superior vascular responses compared to conventional berberine [51].

4.3.2. Regulation of Blood Pressure

The antihypertensive effects of enhanced berberine formulations manifest through multiple mechanisms. Clinical data demonstrates more consistent blood pressure control with lysosomal-targeted systems, attributed to sustained release characteristics and improved cellular uptake [52].

4.4. Safety and Tolerability

Advanced formulations demonstrate improved safety profiles compared to conventional berberine. Gastrointestinal tolerability shows particular improvement, with reduced incidence of adverse effects such as constipation and abdominal discomfort [53]. Long-term safety monitoring indicates favorable outcomes with both dihydroberberine and lysosomal delivery systems [54]. The targeted nature of lysosomal delivery systems and the improved absorption characteristics of dihydroberberine contribute to more predictable pharmacokinetic profiles [55].

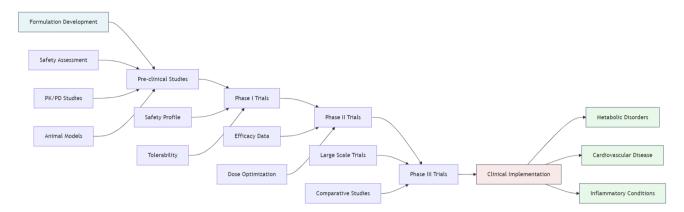


Figure 4. Clinical Development and Implementation Pipeline

Research Area	Challenges	Solutions
Bioavailability	Poor absorption	Advanced formulations
	First-pass effect	Prodrug approaches
Clinical Applications	Dose optimization	Biomarker studies
	Variable response	Genetic profiling
Formulation Development	Stability issues	New excipients
	Scale-up	Process optimization
Quality Control	Evaluation	Analytical methods
	Safety assessment	Long-term studies

Table 3. Challenges for the Development of Berberine Formulations

5. Conclusion

Berberine based formulations particularly dihydroberberine and lysosomal delivery systems, indicate a significant development in optimization of natural compounds. The improved bioavailability of dihydroberberine, achieving therapeutic effects at lower doses, marks a crucial advancement in metabolic disease management. Lysosomal targeting techniques provide precise intracellular delivery, improving therapeutic efficiency while minimizing side effects. Clinical evidence shows superior outcomes in glycemic control, lipid management, and inflammatory conditions compared to conventional berberine. The improved safety and reduced dosing requirements enhance patient compliance and treatment adherence. These advancements bridge traditional medicine with modern pharmaceutical technology, offering more effective therapeutic options for chronic metabolic and inflammatory conditions. The use of personalized medicine and combination techniques promises further optimization of treatment outcomes. These advanced formulations may establish new standards in natural compound delivery and therapeutic application.

References

- [1] Neag, M.A., Mocan, A., Echeverría, J., Pop, R.M., Bocsan, C.I., Crişan, G. and Buzoianu, A.D., 2018. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Frontiers in Pharmacology, 9, p.557.
- [2] Kumar, A., Ekavali, Chopra, K., Mukherjee, M., Pottabathini, R. and Dhull, D.K., 2015. Current knowledge and pharmacological profile of berberine: an update. European Journal of Pharmacology, 761, pp.288-297.
- [3] Chen, W., Miao, Y.Q., Fan, D.J., Yang, S.S., Lin, X., Meng, L.K. and Tang, X., 2011. Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. AAPS PharmSciTech, 12(2), pp.705-711.

- [4] Zhang, Y., Wang, Y., Bao, C., Xu, Y., Shen, H., Chen, J., Yan, J. and Chen, Y., 2019. Metformin interacts with AMPK through binding to γ subunit. Molecular and Cellular Biochemistry, 458(1), pp.177-186.
- [5] Liu, C.S., Zheng, Y.R., Zhang, Y.F. and Long, X.Y., 2016. Research progress on berberine with a special focus on its oral bioavailability. Fitoterapia, 109, pp.274-282.
- [6] Wang, Y., Yi, X., Ghanam, K., Zhang, S., Zhao, T. and Zhu, X., 2014. Berberine decreases cholesterol levels in rats through multiple mechanisms, including inhibition of cholesterol absorption. Metabolism, 63(9), pp.1167-1177.
- [7] Xu, J.H., Liu, X.Z., Pan, W. and Zou, D.J., 2017. Berberine protects against diet-induced obesity through regulating metabolic endotoxemia and gut hormone levels. Molecular Medicine Reports, 15(5), pp.2765-2787.
- [8] Kong, W.J., Wei, J., Abidi, P., Lin, M., Inaba, S., Li, C., Wang, Y., Wang, Z., Si, S., Pan, H. and Wang, S., 2004. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nature Medicine, 10(12), pp.1344-1351.
- [9] Yin, J., Xing, H. and Ye, J., 2008. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism, 57(5), pp.712-717.
- [10] Zhang, H., Wei, J., Xue, R., Wu, J.D., Zhao, W., Wang, Z.Z., Wang, S.K., Zhou, Z.X., Song, D.Q., Wang, Y.M. and Pan, H.N., 2010. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism, 59(2), pp.285-292.
- [11] Cicero, A.F. and Baggioni, A., 2016. Berberine and its role in chronic disease. In Anti-inflammatory Nutraceuticals and Chronic Diseases (pp. 27-45). Springer, Cham.
- [12] Li, Y., Ma, H., Zhang, Y., Kuang, H., Ng, E.H., Hou, L. and Wu, X., 2013. Effect of berberine on insulin resistance in women with polycystic ovary syndrome: study protocol for a randomized multicenter controlled trial. Trials, 14(1), pp.1-8.
- [13] Xu, X., Yi, H., Wu, J., Kuang, T., Zhang, J., Li, Q., Du, H., Xu, T., Jiang, G. and Fan, G., 2021. Therapeutic effect of berberine on metabolic diseases: Both pharmacological data and clinical evidence. Biomedicine & Pharmacotherapy, 133, p.110984.
- [14] Zou, K., Li, Z., Zhang, Y., Zhang, H.Y., Li, B., Zhu, W.L., Shi, J.Y., Jia, Q. and Li, Y.M., 2017. Advances in the study of berberine and its derivatives: a focus on anti-inflammatory and anti-tumor effects in the digestive system. Acta Pharmacologica Sinica, 38(2), pp.157-167.
- [15] Sun, Y., Yu, J., Liu, X., Zhang, C., Cao, J., Li, G., Wang, Y., Gao, X. and Chen, J., 2018. Oncosis-like cell death is induced by berberine through ERK1/2-mediated impairment of mitochondrial energy metabolism in osteosarcoma cells. Cell Death & Disease, 9(11), pp.1-14.
- [16] Lee, Y.S., Kim, W.S., Kim, K.H., Yoon, M.J., Cho, H.J., Shen, Y., Ye, J.M., Lee, C.H., Oh, W.K., Kim, C.T. and Hohnen-Behrens, C., 2006. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes, 55(8), pp.2256-2264.
- [17] Jin, Y., Liu, S., Ma, Q., Xiao, D. and Chen, L., 2017. Berberine enhances the AMPK activation and autophagy and mitigates high glucose-induced apoptosis of mouse podocytes. European Journal of Pharmacology, 794, pp.106-114.
- [18] Dong, H., Wang, N., Zhao, L. and Lu, F., 2012. Berberine in the treatment of type 2 diabetes mellitus: a systemic review and meta-analysis. Evidence-Based Complementary and Alternative Medicine, 2012.
- [19] Zhang, Y., Li, X., Zou, D., Liu, W., Yang, J., Zhu, N., Huo, L., Wang, M., Hong, J., Wu, P. and Ren, G., 2008. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. The Journal of Clinical Endocrinology & Metabolism, 93(7), pp.2559-2565.
- [20] Zhou, J.Y., Zhou, S.W., Zhang, K.B., Tang, J.L., Guang, L.X., Ying, Y., Xu, Y., Zhang, L. and Li, D.D., 2008. Chronic effects of berberine on blood, liver glucolipid metabolism and liver PPARs expression in diabetic hyperlipidemic rats. Biological and Pharmaceutical Bulletin, 31(6), pp.1169-1176.
- [21] Wei, W., Zhao, H., Wang, A., Sui, M., Liang, K., Deng, H., Ma, Y., Zhang, Y., Zhang, H. and Guan, Y., 2012. A clinical study on the short-term effect of berberine in comparison to metformin on the metabolic characteristics of women with polycystic ovary syndrome. European Journal of Endocrinology, 166(1), pp.99-105.
- [22] Lan, J., Zhao, Y., Dong, F., Yan, Z., Zheng, W., Fan, J. and Sun, G., 2015. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension. Journal of Ethnopharmacology, 161, pp.69-81.
- [23] Zou, K., Li, Z., Zhang, Y., Zhang, H.Y., Li, B., Zhu, W.L., Shi, J.Y., Jia, Q. and Li, Y.M., 2017. Advances in the study of berberine and its derivatives: a focus on anti-inflammatory and anti-tumor effects in the digestive system. Acta Pharmacologica Sinica, 38(2), pp.157-167.

- [24] Li, Z., Geng, Y.N., Jiang, J.D. and Kong, W.J., 2014. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus. Evidence-Based Complementary and Alternative Medicine, 2014.
- [25] Wang, K., Feng, X., Chai, L., Cao, S. and Qiu, F., 2017. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metabolism Reviews, 49(2), pp.139-157.
- [26] Chang, W., Chen, L. and Hatch, G.M., 2015. Berberine as a therapy for type 2 diabetes and its complications: From mechanism of action to clinical studies. Biochemistry and Cell Biology, 93(5), pp.479-486.
- [27] Pirillo, A. and Catapano, A.L., 2015. Berberine, a plant alkaloid with lipid-and glucose-lowering properties: From in vitro evidence to clinical studies. Atherosclerosis, 243(2), pp.449-461.
- [28] Imenshahidi, M. and Hosseinzadeh, H., 2019. Berberine and barberry (Berberis vulgaris): A clinical review. Phytotherapy Research, 33(3), pp.504-523.
- [29] Zhang, X., Zhao, Y., Zhang, M., Pang, X., Xu, J., Kang, C., Li, M., Zhang, C., Zhang, Z., Zhang, Y. and Li, X., 2012. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PloS one, 7(8), p.e42529.
- [30] Chen, C., Yu, Z., Li, Y., Fichna, J. and Storr, M., 2014. Effects of berberine in the gastrointestinal tract—a review of actions and therapeutic implications. The American Journal of Chinese Medicine, 42(05), pp.1053-1070.
- [31] Yang, J., Yin, J., Gao, H., Xu, L., Wang, Y., Xu, L. and Li, M., 2012. Berberine improves insulin sensitivity by inhibiting fat store and adjusting adipokines profile in human preadipocytes and metabolic syndrome patients. Evidence-Based Complementary and Alternative Medicine, 2012.
- [32] Fan, D., Wu, X., Dong, W., Sun, W., Li, J. and Tang, X., 2013. Enhancement by sodium caprate and sodium deoxycholate of the gastrointestinal absorption of berberine chloride in rats. Drug Development and Industrial Pharmacy, 39(9), pp.1447-1456.
- [33] Godugu, C., Patel, A.R., Doddapaneni, R., Somagoni, J. and Singh, M., 2014. Approaches to improve the oral bioavailability and effects of novel anticancer drugs berberine and betulinic acid. PloS one, 9(3), p.e89919.
- [34] Sailor, G., Seth, A.K., Parmar, G., Chauhan, S. and Javia, A., 2015. Formulation and in vitro evaluation of berberine containing liposome optimized by 32 full factorial designs. Journal of Applied Pharmaceutical Science, 5(7), pp.023-028.
- [35] Liu, Y.T., Hao, H.P., Xie, H.G., Lai, L., Wang, Q., Liu, C.X. and Wang, G.J., 2010. Extensive intestinal first-pass elimination and predominant hepatic distribution of berberine explain its low plasma levels in rats. Drug Metabolism and Disposition, 38(10), pp.1779-1784.
- [36] Tan, X.S., Ma, J.Y., Feng, R., Ma, C., Chen, W.J., Sun, Y.P., Fu, J., Huang, M., He, C.Y., Shou, J.W. and He, W.Y., 2013. Tissue distribution of berberine and its metabolites after oral administration in rats. PloS one, 8(10), p.e77969.
- [37] Chen, W., Miao, Y.Q., Fan, D.J., Yang, S.S., Lin, X., Meng, L.K. and Tang, X., 2011. Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. AAPS PharmSciTech, 12(2), pp.705-711.
- [38] Zhu, J.X., Tang, D., Feng, L., Zheng, Z.G., Wang, R.S., Wu, A.G., Duan, T.T., He, B. and Zhu, Q., 2013. Development of self-microemulsifying drug delivery system for oral bioavailability enhancement of berberine hydrochloride. Drug Development and Industrial Pharmacy, 39(3), pp.499-506.
- [39] Wang, T., Wang, N., Song, H., Xi, X., Wang, J., Hao, A. and Li, T., 2011. Preparation of an anhydrous reverse micelle delivery system to enhance oral bioavailability and anti-diabetic efficacy of berberine. European Journal of Pharmaceutical Sciences, 44(1-2), pp.127-135.
- [40] Battu, S.K., Repka, M.A., Maddineni, S., Chittiboyina, A.G., Avery, M.A. and Majumdar, S., 2010. Physicochemical characterization of berberine chloride: a perspective in the development of a solution dosage form for oral delivery. AAPS PharmSciTech, 11(3), pp.1466-1475.
- [41] Zhang, X., Qiu, F., Jiang, J., Gao, C. and Tan, Y., 2011. Intestinal absorption mechanisms of berberine, palmatine, jateorhizine, and coptisine: involvement of P-glycoprotein. Xenobiotica, 41(4), pp.290-296.
- [42] Xu, J., Wang, H., Ding, K., Zhang, L., Wang, C., Li, T., Wei, W. and Lu, X., 2014. Inhibition of CYP450 1A2 by berberine in mice and humans. Life Sciences, 95(1), pp.21-26.
- [43] Mirhadi, E., Rezaee, M. and Malaekeh-Nikouei, B., 2018. Nano strategies for berberine delivery, a natural alkaloid of Berberis. Biomedicine & Pharmacotherapy, 104, pp.465-473.
- [44] Zhang, Y., Cui, Y.L., Gao, L.N. and Jiang, H.L., 2013. Effects of β-cyclodextrin on the intestinal absorption of berberine hydrochloride, a P-glycoprotein substrate. International Journal of Biological Macromolecules, 59, pp.363-371.

- [45] Chang, W., Li, K., Guan, F., Yao, F., Yu, Y., Zhang, M., Hatch, G.M. and Chen, L., 2016. Berberine pretreatment confers cardioprotection against ischemia-reperfusion injury in a rat model of type 2 diabetes. Journal of Cardiovascular Pharmacology and Therapeutics, 21(5), pp.486-494.
- [46] Spinozzi, S., Colliva, C., Camborata, C., Roberti, M., Ianni, C., Neri, F., Calvarese, C., Lisotti, A., Mazzella, G. and Roda, A., 2014. Berberine and its metabolites: relationship between physicochemical properties and plasma levels after administration to human subjects. Journal of Natural Products, 77(4), pp.766-772.
- [47] Liu, Y., Zhang, L., Song, H. and Ji, G., 2013. Update on berberine in nonalcoholic fatty liver disease. Evidence-Based Complementary and Alternative Medicine, 2013.
- [48] Belwal, T., Bisht, A., Devkota, H.P., Ullah, H., Khan, H., Pandey, A., Bhatt, I.D. and Echeverría, J., 2020. Phytopharmacology and clinical updates of Berberis species against diabetes and other metabolic diseases. Frontiers in Pharmacology, 11, p.41.
- [49] Jin, Y., Khadka, D.B. and Cho, W.J., 2016. Pharmacological effects of berberine and its derivatives: a patent update. Expert Opinion on Therapeutic Patents, 26(2), pp.229-243.
- [50] Yin, J., Ye, J. and Jia, W., 2012. Effects and mechanisms of berberine in diabetes treatment. Acta Pharmaceutica Sinica B, 2(4), pp.327-334.
- [51] Wang, Y., Campbell, T., Perry, B., Beaurepaire, C. and Qin, L., 2011. Hypoglycemic and insulin-sensitizing effects of berberine in high-fat diet-and streptozotocin-induced diabetic rats. Metabolism, 60(2), pp.298-305.
- [52] Chen, Q., Mo, R., Wu, N., Zou, X., Shi, C., Gong, J., Li, J., Fang, K., Wang, D., Yang, D. and Wang, K., 2020. Berberine ameliorates diabetes-associated cognitive decline through modulation of aberrant inflammation response and insulin signaling pathway in DM rats. Frontiers in Pharmacology, 11, p.1003.
- [53] Peng, L., Kang, S., Yin, Z., Jia, R., Song, X., Li, L., Li, Z., Zou, Y., Liang, X., Li, L. and He, C., 2015. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae. International Journal of Clinical and Experimental Pathology, 8(5), p.5217.
- [54] Zhang Y, Li X, Zou D, Liu W, Yang J, Zhu N, Huo L, Wang M, Hong J, Wu P, Ren G. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. Journal of Clinical Endocrinology & Metabolism. 2008;93(7):2559-2565.
- [55] Han J, Lin H, Huang W. Modulating gut microbiota as an anti-diabetic mechanism of berberine. Medical Science Monitor. 2011;17(7):RA164-RA167.