REVIEW ARTICLE

A Review on Applications of Implantable Drug Delivery Systems

JODIR Journal of Pharma Insights and Research

Asha Latha Nalam*1, Kasani Jyothsna2

¹UG Scholar, Department of Pharmaceutics, Koringa College of Pharmacy, Korangi, Tallarevu, Andhra Pradesh, India ² Assistant Professor, Department of Pharmaceutics, Koringa College of Pharmacy, Korangi, Tallarevu, Andhra Pradesh, India

Publication history: Received on 31st May 2025; Revised on 27th June 2025; Accepted on 7th July 2025

Article DOI: 10.69613/3frbmp90

Abstract: Implantable drug delivery systems (IDDS) provide precise and sustained medication release at targeted anatomical sites. These systems overcome traditional drug delivery limitations through sophisticated mechanisms including diffusion-controlled release, osmotic pressure gradients, and biodegradable polymer matrices. The evolution of IDDS includes passive polymeric implants, both biodegradable and non-biodegradable, as well as active systems like mechanical and osmotic pumps. Modern manufacturing techniques such as hot melt extrusion, compression molding, and emerging 3D printing technologies have enhanced the precision and scalability of IDDS production. While these systems offer numerous advantages including improved bioavailability, reduced dosing frequency, and targeted therapeutic action, challenges persist regarding surgical implementation, biocompatibility, and reversibility. Clinical applications span multiple therapeutic areas, with notable success in contraception, cancer therapy, and chronic pain management. Recent developments in smart materials and microelectronics have led to more sophisticated systems capable of responsive drug release. The continuous advancement in polymer science, manufacturing technologies, and understanding of biological interfaces suggests expanding applications for IDDS in personalized medicine and chronic disease management.

Keywords: Implantable devices; Controlled release; Biodegradable polymers; Drug delivery systems; Therapeutic implants

1. Introduction

Implantable drug delivery systems (IDDS) represent a specialized branch of medical technology that enables controlled medication release through surgically placed devices within the body [1]. These systems have transformed therapeutic approaches by offering precise drug administration at specific anatomical sites over extended periods. The fundamental concept originated from the need to overcome limitations associated with conventional drug delivery methods, such as poor patient compliance, frequent dosing requirements, and systemic side effects [2]. The evolution of IDDS began with simple subcutaneous implants and has progressed to sophisticated devices incorporating advanced materials and release mechanisms [3]. Modern implantable systems utilize various technologies including polymer matrices, mechanical pumps, and osmotic systems to achieve controlled drug release. The incorporation of biocompatible materials and smart delivery mechanisms has enabled these devices to maintain therapeutic drug levels while minimizing adverse effects [4].

IDDS design principles focus on achieving optimal drug release kinetics while ensuring biocompatibility and long-term stability. The systems can be broadly categorized into passive and active delivery mechanisms, with each type offering distinct advantages for specific therapeutic applications [5]. Passive systems rely on diffusion or degradation-controlled release, while active systems employ external energy sources or mechanical components to regulate drug delivery [6]. Recent technological advances have significantly improved IDDS capabilities through innovations in materials science, manufacturing processes, and drug formulation techniques [7]. The integration of microelectronics and smart materials has led to the development of more sophisticated systems capable of responding to physiological signals or external stimuli [8].

The concept of implantable drug delivery emerged in the 1970s with the development of the first sustained-release systems [9]. The initial breakthrough came with Robert Fischell's creation of the first fully implantable infusion pump, which later received FDA approval as an insulin delivery system [10]. This innovation paved the way for more advanced delivery mechanisms and expanded therapeutic applications. Modern systems utilize biocompatible polymers, ranging from non-degradable materials like silicone and polyurethanes to biodegradable options such as polylactic acid (PLA) and poly(lactic-co-glycolic acid) (PLGA) [11]. These materials provide controlled release properties while ensuring compatibility with biological tissues.

^{*} Corresponding author: Asha Latha Nalam

Current delivery systems employ multiple release mechanisms, including matrix-based diffusion, membrane-controlled release, and osmotic pumping [12]. These mechanisms enable precise control over drug release rates and duration. Advanced manufacturing methods, including hot melt extrusion, precision molding, and 3D printing, have enhanced the production capabilities and design flexibility of IDDS [13].

Figure 1. Manufacturing Process Decision Tree for Implantable Drug Delivery Systems

2. Classification of Implantable Drug Delivery Systems

2.1. Passive Polymeric Implants

Passive polymeric implants represent fundamental drug delivery systems characterized by their reliance on natural diffusion processes and material properties for drug release. These systems can be categorized based on their degradation characteristics and release mechanisms [14].

2.1.1. Non-biodegradable Systems

Non-biodegradable implants maintain structural integrity throughout their therapeutic lifetime and utilize either matrix-controlled or membrane-enclosed reservoir designs. The matrix systems incorporate uniformly dispersed drug molecules within a stable polymer network, where release kinetics depend primarily on drug diffusion and polymer properties [15]. Reservoir systems feature a drug core encapsulated by a rate-controlling membrane, offering more precise release control through membrane porosity and permeability characteristics [16].

Common polymers employed in non-biodegradable systems include:

- Polyurethanes: Offering excellent mechanical properties and biocompatibility
- Silicone elastomers: Providing stable drug release and tissue compatibility
- Polyethylene vinyl acetate (PEVA): Enabling controlled diffusion rates
- Polyacrylates: Contributing to structural stability and drug retention

2.1.2. Biodegradable Systems

Biodegradable implants undergo controlled degradation within the body, eliminating the need for surgical removal. These systems utilize biocompatible polymers that decompose into non-toxic byproducts through hydrolysis or enzymatic degradation [17]. Drug release occurs through a combination of diffusion and polymer erosion mechanisms.

Table 2. Common Polymers Used in Implantable Drug Delivery Systems

Polymer Type	Chemical Composition	Degradation Time	Applications
PLGA	Poly(lactic-co-glycolic acid)	1-12 months	Controlled release implants
PCL	Polycaprolactone	2-4 years	Long-term delivery
PLA	Polylactic acid	12-24 months	Biodegradable implants
Silicone	Polydimethylsiloxane	Non-degradable	Contraceptive implants
PEG	Polyethylene glycol	Variable	Hydrogel-based systems

The main biodegradable polymers include:

- Polylactic acid (PLA)
- Polyglycolic acid (PGA)
- Poly(lactic-co-glycolic acid) (PLGA)
- Polycaprolactone (PCL)

The release kinetics in biodegradable systems depend on multiple factors like polymer molecular weight and composition, drug distribution within the matrix, environmental conditions (pH, temperature, enzymatic activity), device geometry and surface area [18].

Table 1. Classification of Implantable Drug Delivery Systems

Category	Mechanism	Examples	Duration	of
			Action	
Passive Matrix Systems	Diffusion-controlled	Silicone-based implants, PLGA matrices	1-24 months	
Reservoir Systems	Membrane-controlled	Subcutaneous implants, Intravaginal rings	1-60 months	
Active Mechanical	Osmotic/Peristaltic	Programmable pumps, Infusion devices	3-84 months	
Systems	pumps			
Smart Systems	Responsive delivery	Glucose-responsive insulin pumps, Electronic	6-36 months	
		implants		
Biodegradable Systems	Erosion-controlled	PLGA microspheres, PLA implants	1-12 months	

2.2. Active Implantable Systems

Active implantable systems incorporate mechanical or electronic components to control drug release, offering enhanced precision and adaptability compared to passive systems [19].

2.2.1. Mechanical Pumps

Mechanical pump systems utilize various driving forces to achieve controlled drug delivery:

- a) Osmotic Pumps: Osmotic pumps operate through controlled fluid movement across a semipermeable membrane, generating pressure that drives drug release. These systems maintain consistent release rates independent of drug concentration and physiological variations [20].
- b) Peristaltic Pumps: These electronically controlled systems use mechanical action to generate precise drug delivery rates. While offering excellent control, their reliance on power sources and complex mechanisms increases cost and maintenance requirements [21].

2.2.2. Smart Delivery Systems

Advanced active implants incorporate responsive elements that modulate drug release based on physiological parameters or external triggers [22]. These systems may include:

- Biosensors for real-time monitoring
- Microprocessor-controlled release mechanisms
- Remote activation capabilities
- Feedback control systems

3. Manufacturing Methods

3.1. Polymer-Related Factors

3.1.1. Hot Melt Extrusion

Hot melt extrusion represents a continuous manufacturing process particularly suited for thermoplastic polymers and stable drug compounds. The process involves dissolving the active pharmaceutical ingredient in an appropriate solvent, followed by incorporation into a polymer matrix. The polymer-drug mixture undergoes controlled heating and mechanical shearing through an extruder, producing a uniform matrix system [23]. The process parameters, including temperature, screw speed, and feed rate, significantly influence the final product characteristics. Critical control points during hot melt extrusion include thermal stability of components, mixing efficiency, and die pressure control. The extruded material requires precise cooling and sizing to achieve desired implant dimensions [24].

Table 3. Manufacturing Methods and Their Characteristics

Method	Resolution	Scale-up Potential	Material Compatibility	Cost
Hot Melt Extrusion	Medium	High	Thermoplastic polymers	Low
Injection Molding	High	High	Most polymers	Medium
3D Printing	Very High	Low-Medium	Limited materials	High
Compression Molding	Medium	Medium	Most polymers	Low
Solvent Casting	Low-Medium	Low	Most polymers	Medium

3.2. Compression and Compaction

Compression-based manufacturing involves the formation of implants through direct compression of drug-polymer mixtures. The process begins with the preparation of a uniform powder blend, followed by lyophilization to create a porous structure. The resulting material undergoes controlled compression using hydraulic or mechanical presses under specific pressure conditions [25].

This method proves particularly advantageous for thermolabile compounds, as it eliminates exposure to elevated temperatures. However, the resulting implants often exhibit more variable internal structures compared to melt-processed systems, potentially affecting release kinetics and mechanical properties [26].

3.3. Precision Molding

Molding techniques enable the production of implants with complex geometries and precise dimensional control. The process involves heating polymer-drug mixtures to their flow point, followed by injection or compression into temperature-controlled molds. The molecular weight distribution of polymers requires careful monitoring during processing, as thermal exposure can affect degradation characteristics and drug release profiles [27].

Advanced molding technologies incorporate precise temperature control systems and automated material handling to ensure consistent product quality. The mold design significantly influences product characteristics, including surface finish, internal structure, and release properties [28].

3.4. Manufacturing

3.4.1. Three-Dimensional Printing

Three-dimensional printing technology enables the production of implants with complex internal architectures and precise drug distribution patterns. The process utilizes computer-aided design models to create layer-by-layer structures, allowing unprecedented control over implant geometry and drug loading patterns. Current applications focus primarily on development and small-scale production, though technological advances continue to expand manufacturing capabilities [29].

3.4.2. Microelectronic Fabrication

Integration of microelectronic components requires specialized manufacturing processes combining traditional pharmaceutical techniques with precision electronics assembly. These systems incorporate sensors, control circuits, and drug reservoirs within a single device, necessitating clean room conditions and sophisticated quality control measures [30].

3.5. Quality Control and Characterization

Manufacturing processes require comprehensive quality control systems encompassing raw material analysis, in-process testing, and final product characterization. Critical quality attributes include:

3.5.1. Physical Characteristics

Dimensional accuracy, surface properties, and mechanical strength undergo rigorous testing using advanced analytical techniques. Scanning electron microscopy and surface profilometry provide detailed structural information, while mechanical testing ensures adequate strength and flexibility [31].

3.5.2. Chemical Analysis

Drug content uniformity, chemical stability, and dissolution characteristics require careful evaluation through various analytical methods. High-performance liquid chromatography, spectroscopic techniques, and thermal analysis provide comprehensive chemical characterization [32].

4. Properties of Implantable Drug Delivery Systems

Implantable drug delivery systems must exhibit specific performance attributes to ensure therapeutic efficacy and patient safety. The primary release kinetics should maintain drug concentrations within the therapeutic window throughout the intended treatment duration. Zero-order release kinetics, characterized by constant drug release rates independent of concentration gradients, represents the ideal delivery profile for many applications [33].

The selection of materials for IDDS construction demands careful consideration of multiple factors. Polymeric materials must demonstrate excellent biocompatibility, maintaining stability under physiological conditions while avoiding adverse tissue reactions. The mechanical properties should match the intended implantation site, providing adequate strength while avoiding stress shielding effects [34].

Long-term tissue compatibility represents a critical requirement for implantable systems. The materials must resist degradation under physiological conditions while maintaining their structural and functional properties. Surface characteristics play a crucial role in preventing protein adsorption and cellular adhesion that could impair device function or trigger inflammatory responses [35]. Implantable systems must withstand sterilization processes without compromising drug stability or device functionality. Common sterilization methods include gamma radiation, ethylene oxide treatment, and steam autoclaving. The selected sterilization method

must ensure complete microbial elimination while preserving the physical and chemical properties of both the drug and device materials [36].

5. Clinical Applications

5.1. Contraceptives

Implantable contraceptive systems have shown remarkable success in providing long-term, reversible contraception. These systems typically utilize hormone-releasing polymeric implants placed subdermally, delivering controlled doses of progestins over extended periods. Modern contraceptive implants incorporate advanced polymer technologies to achieve consistent hormone release rates while minimizing local tissue reactions [37].

5.2. Pain Management

Implantable systems for chronic pain management deliver analysis medications directly to specific anatomical sites. These systems particularly benefit patients requiring long-term pain control, such as those with chronic back pain or cancer-related pain. The targeted delivery approach minimizes systemic exposure to analysesics while maintaining effective local drug concentrations [38].

Application Area	Drug Type	Clinical Benefits	Challenges
Cancer Therapy	Chemotherapeutics	Targeted delivery, Reduced systemic toxicity	Local tissue reactions
Pain Management	Opioids/Analgesics	Continuous relief, Reduced dependence	Device removal needs
Hormonal Therapy	Peptide hormones	Stable blood levels, Better compliance	Initial burst release
CNS Disorders	Neurotransmitters	Blood-brain barrier bypass	Complex placement
Diabetes	Insulin	Automated delivery, Better glycemic control	Sensor reliability

Table 4. Clinical Applications and Challenges

5.3. Cancer Therapy

Cancer therapy applications utilize implantable systems to deliver chemotherapeutic agents directly to tumor sites. This approach enables higher local drug concentrations while reducing systemic toxicity. Advanced systems incorporate multiple drug reservoirs, allowing combination therapy delivery with precise temporal control [39].

5.4. Neurological Disorders

Implantable systems for neurological disorders focus on delivering therapeutic agents across the blood-brain barrier. These applications require particularly precise control over drug release rates and distribution patterns. Modern systems incorporate advanced materials designed to minimize glial scarring and maintain long-term functionality in the central nervous system environment [40].

5.5. Endocrine Disorders

The treatment of endocrine disorders benefits from implantable systems capable of maintaining steady hormone levels. These applications require sophisticated control mechanisms to match physiological hormone patterns. Recent developments include feedback-controlled systems that respond to real-time measurements of hormone levels [41].

6. Advantages and Limitations

6.1. Therapeutic Benefits

Implantable drug delivery systems offer significant therapeutic advantages compared to conventional administration routes. The sustained release profiles maintain drug concentrations within therapeutic windows, minimizing fluctuations associated with periodic dosing. Direct delivery to target tissues enables higher local drug concentrations while reducing systemic exposure, resulting in improved therapeutic indices [42].

The bypass of first-pass metabolism enhances bioavailability for many compounds, allowing reduced total drug doses. Additionally, the elimination of frequent dosing requirements significantly improves patient compliance, particularly crucial in chronic conditions requiring long-term therapy [43].

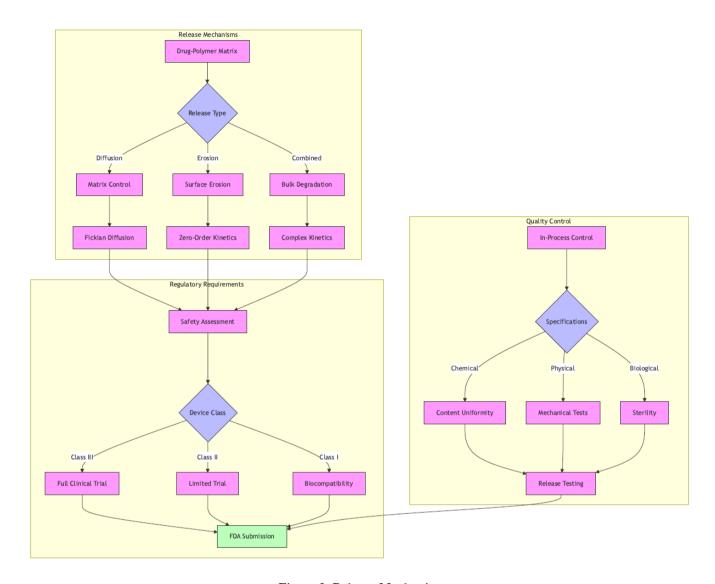


Figure 2. Release Mechanism

6.2. Clinical Efficiency

The long-term drug delivery capability of implantable systems reduces healthcare resource utilization by minimizing the frequency of clinical interventions. Precise dosing control and predictable release kinetics enable better therapeutic management and reduced monitoring requirements. The systems also provide healthcare providers with improved control over treatment adherence and outcomes [44].

Table 5. Characterization of Implantable Systems

Parameter	Test Method	Acceptance Criteria	Critical Factors
Drug Content	HPLC/UV Spectroscopy	90-110% label claim	Method validation
Sterility	USP <71>	No microbial growth	Aseptic processing
Release Profile	In vitro dissolution	Q-value ±15%	Sink conditions
Mechanical Strength	Tensile/Compression	Product-specific	Material properties
Stability	Accelerated aging	90-110% potency	Storage conditions

6.3. Limitations

Despite their advantages, implantable systems face several technical challenges. The requirement for surgical intervention during placement and removal introduces procedural risks and potential complications. Material limitations can affect long-term stability and release consistency, particularly in biodegradable systems where degradation kinetics may vary among patients [45]. The clinical application of implantable systems requires careful patient selection and monitoring. Potential complications include infection risks,

tissue reactions, and implant migration. The semi-permanent nature of some systems can complicate treatment modification or discontinuation when adverse effects occur [46].

7. Conclusion

Implantable drug delivery systems offer better control over drug administration and patient compliance. These systems have evolved from simple matrix devices to sophisticated smart implants capable of responding to physiological signals and delivering medications with precise temporal and spatial control. The combination of advanced polymeric materials, micro/nanotechnology, and smart systems has expanded the possibilities for controlled release mechanisms. Biodegradable systems have eliminated the need for implant removal, while stimuli-responsive materials have enabled dynamic drug delivery in response to physiological needs. 3D printing and other advanced manufacturing techniques have facilitated the production of customized implants, moving towards personalized medicine approaches. However, several challenges optimization of long-term stability, prevention of burst release, mitigation of foreign body responses, and reduction of manufacturing costs. More research is essential in realizing the full potential of these sophisticated therapeutic tools, ultimately leading to improved health outcomes and quality of life for patients across various disease conditions.

References

- [1] Yang Y, Li W. Implantable drug delivery systems: an overview. Drug Deliv. 2021;28(1):1248-1261.
- [2] Stewart SA, Domínguez-Robles J, McIlorum VJ, Donnelly RF. Implantable polymeric drug delivery devices: Classification, manufacture, materials, and clinical applications. Polymers. 2018;10(12):1379.
- [3] Meng E, Hoang T. MEMS-enabled implantable drug delivery systems. Adv Drug Deliv Rev. 2012;64(14):1628-38.
- [4] Blass BE. Basic principles of drug discovery and development. Academic Press; 2021.
- [5] Lee JH, Yeo Y. Controlled drug delivery from pharmaceutical nanocarriers. Chem Eng Sci. 2015;125:75-84.
- [6] Rosen H, Abribat T. The rise and rise of drug delivery. Nat Rev Drug Discov. 2005;4(5):381-5.
- [7] Cobo A, Sheybani R, Meng E. MEMS: enabled drug delivery systems. Adv Healthc Mater. 2015;4(7):969-82.
- [8] Staples M, Daniel K, Cima MJ, Langer R. Application of micro- and nano-electromechanical devices to drug delivery. Pharm Res. 2006;23(5):847-63.
- [9] Hoffman AS. The origins and evolution of "controlled" drug delivery systems. J Control Release. 2008;132(3):153-63.
- [10] Fischell RE. Microcomputer-controlled devices for human implantation. Johns Hopkins APL Technical Digest. 1994;15(2):115-21.
- [11] Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49(12):832-64.
- [12] Siegel RA, Rathbone MJ. Overview of controlled release mechanisms. In: Fundamentals and Applications of Controlled Release Drug Delivery. Springer; 2012:19-43.
- [13] Goole J, Amighi K. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. Int J Pharm. 2016;499(1-2):376-94.
- [14] Park K. Controlled drug delivery systems: Past forward and future back. J Control Release. 2014;190:3-8.
- [15] Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng. 2010;1:149-73.
- [16] Langer R, Peppas NA. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 2003;49(12):2990-3006.
- [17] Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 2012;64:72-82.
- [18] Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377-97.
- [19] Kleiner LW, Wright JC, Wang Y. Evolution of implantable and insertable drug delivery systems. J Control Release. 2014;181:1-10.
- [20] Santini JT Jr, Cima MJ, Langer R. A controlled-release microchip. Nature. 1999;397(6717):335-8.

- [21] Dash AK, Cudworth GC 2nd. Therapeutic applications of implantable drug delivery systems. J Pharmacol Toxicol Methods. 1998;40(1):1-12.
- [22] Mouw JK, Chaudhuri O, Cozzolino M, Mooney DJ. Smart materials for drug delivery. Expert Opin Drug Deliv. 2014;11(7):1047-50.
- [23] Repka MA, Bandari S, Kallakunta VR, Vo AQ, McFall H, Pimparade MB, Bhagurkar AM. Melt extrusion with poorly soluble drugs An integrated review. Int J Pharm. 2018;535(1-2):68-85.
- [24] Patil H, Tiwari RV, Repka MA. Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS PharmSciTech. 2016;17(1):20-42.
- [25] Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev. 2013;65(1):104-20.
- [26] Agrawal R, Naveen Y. Pharmaceutical processing A review on wet granulation technology. Int J Pharm Front Res. 2011;1(1):65-83.
- [27] Zema L, Loreti G, Melocchi A, Maroni A, Gazzaniga A. Injection molding and its application to drug delivery. J Control Release. 2012;159(3):324-31.
- [28] Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39-50.
- [29] Alhnan MA, Okwuosa TC, Sadia M, Wan KW, Ahmed W, Arafat B. Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res. 2016;33(8):1817-32.
- [30] Staples M. Microchips and controlled-release drug reservoirs. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(4):400-17.
- [31] Swarbrick J. Encyclopedia of Pharmaceutical Technology. 3rd ed. Informa Healthcare; 2013.
- [32] Maggio RM, Castellano PM, Kaufman TS. A new principal component analysis-based approach for testing "similarity" of drug dissolution profiles. Eur J Pharm Sci. 2008;34(1):66-77.
- [33] Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm. 2008;364(2):328-43.
- [34] Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29(20):2941-53.
- [35] Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86-100.
- [36] Rogers WJ. Sterilisation techniques for polymeric implants and devices. In: Jenkins M, editor. Biomedical Polymers. Woodhead Publishing; 2007:151-72.
- [37] Mansour D. The benefits and risks of using a levonorgestrel-releasing intrauterine system for contraception. Contraception. 2012;85(3):224-34.
- [38] Deer TR, Pope JE, Hayek SM, Lamer TJ, Veizi IE, Erdek M, et al. The Polyanalgesic Consensus Conference (PACC): Recommendations for intrathecal drug delivery: guidance for improving safety and mitigating risks. Neuromodulation. 2017;20(2):155-76.
- [39] Wang Y, Sun L, Mei Z, Zhang F, He M, Fletcher C, et al. 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma. Mater Des. 2020;186:108336.
- [40] Kaushik A, Jayant RD, Nair M. Advances in nano-based drug delivery systems for CNS diseases. Expert Opin Drug Deliv. 2018;15(6):535-50.
- [41] Blackshear PJ. Implantable drug-delivery systems. Sci Am. 1979;241(6):66-73.
- [42] Anselmo AC, Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. J Control Release. 2014;190:15-28.
- [43] Park K. Drug delivery research: The invention cycle. Mol Pharm. 2016;13(7):2143-7.
- [44] Stewart SA, Domínguez-Robles J, McIlorum VJ, Mancuso E, Lamprou DA, Donnelly RF. Development of a biodegradable subcutaneous implant for prolonged drug delivery using 3D printing. Pharmaceutics. 2020;12(2):105.
- [45] Ratner BD. The biocompatibility manifesto: biocompatibility for the twenty-first century. J Cardiovasc Transl Res. 2011;4(5):523-7.
- [46] Onuki Y, Bhardwaj U, Papadimitrakopoulos F, Burgess DJ. A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diabetes Sci Technol. 2008;2(6):1003-15.