REVIEW ARTICLE

A Review on Applications of Mucoadhesive Drug Delivery Systems

Mohan Sri Veera Pradeep Addala*1, Jyothsna Kasani²

Publication history: Received on 30th May 2025; Revised on 26th June 2025; Accepted on 6th July 2025

Article DOI: 10.69613/zkrcve55

Abstract: Mucoadhesive drug delivery systems offer better therapeutic efficacy through prolonged contact with mucosal surfaces. The interaction between mucoadhesive polymers and the mucin layer enables improved drug bioavailability while overcoming limitations of conventional formulations such as rapid clearance and frequent dosing requirements. Recent developments in polymer science have introduced stimuli-responsive, biodegradable, and multifunctional polymers that enable precise control over drug release kinetics. Various mucosal routes including buccal, nasal, ocular, vaginal, and rectal have shown distinct advantages in bypassing hepatic first-pass metabolism. Novel techniques involving nanostructured carriers, polymer conjugates, and hybrid systems have further improved site-specific targeting capabilities. Smart polymers and bioinspired designs are enabling the development of personalized drug delivery platforms with improved patient compliance. The mechanisms of mucoadhesion, involving initial contact and consolidation phases, are governed by multiple physicochemical factors including polymer molecular weight, chain flexibility, and surface chemistry. Current research focuses on optimizing polymer properties and developing innovative formulation strategies to improve therapeutic outcomes across diverse clinical applications.

Keywords: Mucoadhesion; Polymers; Drug Delivery; Bioavailability; Controlled Release

1. Introduction

Mucoadhesive drug delivery systems have emerged as sophisticated pharmaceutical platforms that fundamentally alter the way medications interact with biological surfaces [1]. The concept, which gained prominence in pharmaceutical research during the 1980s, focuses on the development of formulations that establish intimate contact with mucosal membranes, thereby enhancing drug absorption and therapeutic efficacy [2].

The primary advantage of mucoadhesive systems lies in their ability to overcome the limitations associated with conventional drug delivery methods. These systems prolong the residence time of drugs at the site of absorption, leading to improved bioavailability and reduced dosing frequency by adhering to mucosal surfaces [3].

The mucoadhesive approach is particularly valuable for drugs that undergo extensive first-pass metabolism or suffer from poor absorption in the gastrointestinal tract [4]. Adhesion, defined as the interfacial bonding between surfaces, plays a crucial role in pharmaceutical applications. The American Society for Testing and Materials (ASTM) characterizes adhesion as the state where two surfaces maintain contact through interfacial forces, encompassing both chemical bonding and mechanical interlocking [5]. Mucoadhesion specifically refers to the attachment between a synthetic material and mucous membranes, facilitated by various physicochemical interactions [6].

Recent advances in polymer science have significantly expanded the capabilities of mucoadhesive drug delivery systems. The development of smart polymers, responsive to environmental stimuli, has enabled precise control over drug release profiles [7]. Additionally, the integration of nanotechnology has led to enhanced tissue penetration and targeted drug delivery [8]. The evolution of mucoadhesive systems has been marked by significant milestones in formulation development. From initial applications using natural polymers like gum tragacanth in the 1940s to contemporary synthetic polymers with enhanced functionality, the field has witnessed continuous innovation [9]. Modern mucoadhesive formulations incorporate various therapeutic agents, including peptide drugs, which traditionally face challenges in delivery due to enzymatic degradation and poor membrane permeability [10].

^{*} Corresponding author: Mohan Sri Veera Pradeep Addala

2. Mechanisms of Mucoadhesion

2.1. Mechanisms

The process of mucoadhesion occurs through a complex interplay of surface phenomena and molecular interactions. The mechanism can be broadly categorized into two sequential phases: the contact stage and the consolidation stage [11].

2.1.1. Contact Stage

During the initial contact phase, intimate contact is established between the mucoadhesive material and the mucosal surface. This phase involves the spreading and swelling of the formulation, leading to the development of deep contact with the mucus layer. The efficiency of this stage depends largely on the wetting properties of the mucoadhesive polymer and its ability to spread across the biological surface [12].

2.1.2. Consolidation Stage

The consolidation phase involves the formation of various chemical and mechanical bonds. As the polymer chains become more flexible through hydration, they penetrate the mucus network and establish secondary chemical bonds. These interactions include hydrogen bonding, van der Waals forces, and electrostatic attractions, which collectively strengthen the adhesive interface [13].

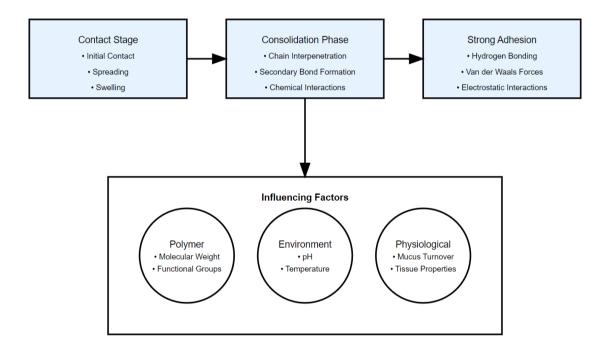


Figure 1: Mechanism of Mucoadhesion - Sequential Phases

2.2. Theories of Mucoadhesion

Several theories have been proposed to explain the complex phenomenon of mucoadhesion, each addressing specific aspects of the adhesion process.

2.2.1. Electronic Theory

The electronic theory describes the formation of an electrical double layer at the mucoadhesive interface due to electron transfer between the polymer and mucus surfaces. This electron transfer results from differences in electronic structures, creating attractive forces that contribute to mucoadhesion strength [14].

2.2.2. Adsorption Theory

The adsorption theory emphasizes the role of chemical interactions in mucoadhesion. These interactions can be classified into:

- Primary bonds (covalent bonds): Relatively rare but extremely strong
- Secondary bonds: Including hydrogen bonds, van der Waals forces, and electrostatic interactions

The theory suggests that these surface forces are primarily responsible for the adhesive strength between the polymer and mucus layer [15].

2.2.3. Diffusion Theory

This theory proposes that mucoadhesion results from the interpenetration of polymer chains with mucin molecules. The depth of penetration depends on:

- Diffusion coefficient of polymer chains
- Contact time
- Chain flexibility
- Molecular weight of polymers

The strength of adhesion increases with greater chain interpenetration, typically requiring a penetration depth of 0.2-0.5 µm [16].

2.2.4. Wetting Theory

The wetting theory applies primarily to liquid or low-viscosity mucoadhesive systems. It analyzes the ability of a mucoadhesive to spread over a biological surface, characterized by:

- Surface tension
- Contact angle
- Spreading coefficient

The theory is expressed mathematically through Young's equation:

$$\gamma SV = \gamma SL + \gamma LV \cos \theta$$

where γSV , γSL , and γLV represent the surface tensions of solid-vapor, solid-liquid, and liquid-vapor interfaces respectively, and θ is the contact angle [17].

2.2.5. Fracture Theory

The fracture theory examines the force required to separate two surfaces after adhesion. The maximum tensile stress (σ m) needed for separation is given by:

$$\sigma m = [(E \times \epsilon)/L]^{1/2}$$

where E represents the Young's modulus of elasticity, e is the fracture energy, and L is the critical crack length [18].

3. Factor Affecting Mucoadhesion

3.1. Polymer-Related Factors

3.1.1. Molecular Weight and Chain Length

The molecular weight of polymers significantly influences their mucoadhesive properties. Linear polymers with higher molecular weights generally demonstrate stronger mucoadhesion due to enhanced chain entanglement with mucin molecules. For instance, polyethylene glycol shows increased mucoadhesive strength as its molecular weight increases from 20,000 to 200,000 Da. However, beyond a critical molecular weight, typically around 100,000 Da, the adhesive strength may plateau or decrease due to reduced chain mobility and interpenetration [19].

3.1.2. Structural Configuration

The spatial arrangement of polymer chains plays a crucial role in determining mucoadhesive strength. Linear polymers generally exhibit superior mucoadhesion compared to branched or crosslinked structures, as linear configurations allow for better interpenetration with the mucus network. The presence of flexible side chains can enhance mucoadhesion by increasing the surface area available for interaction, while highly branched structures may sterically hinder effective contact with mucosal surfaces [20].

Table 1. Parameters Affecting Mucoadhesive Performance

Parameter	Optimal Range	Effect on Mucoadhesion	Critical Considerations
Molecular Weight	10^4 - 10^7 Da	Higher MW increases entanglement	Too high MW reduces chain mobility
рН	4-6	Affects polymer ionization	Dependent on polymer pKa
Contact Time	15-300 sec	Influences bond formation	Application site-specific
Hydration Level	30-60%	Enables chain mobility	Over-hydration weakens bonds
Applied Force	0.1-0.5 N	Promotes initial contact	Excessive force may damage tissue

3.1.3. Functional Groups

The presence and distribution of specific functional groups significantly affect mucoadhesive properties. Polymers containing carboxyl, hydroxyl, amide, and sulfate groups demonstrate enhanced mucoadhesion through hydrogen bonding and electrostatic interactions. The density and accessibility of these functional groups determine the strength of molecular interactions with mucin glycoproteins [21].

3.2. Environmental and Physiological Factors

3.2.1. pH and Ionic Strength

The pH of the surrounding environment substantially influences mucoadhesion by affecting polymer ionization and mucin network structure. Most mucoadhesive polymers exhibit optimal adhesion within specific pH ranges that correspond to their pKa values. For example, polyacrylic acid derivatives show maximum adhesion at pH 4-5, where they maintain an optimal balance between ionized and non-ionized groups [22].

3.2.2. Hydration and Swelling

The degree of polymer hydration critically affects mucoadhesive performance. Initial hydration is essential for polymer chain mobility and interpenetration, but excessive hydration can create an over-lubricated surface that weakens adhesive bonds. The optimal degree of hydration varies among polymers and depends on their chemical structure and crosslinking density [23].

3.2.3. Contact Time and Applied Pressure

The duration of initial contact and the force applied during this period significantly impact mucoadhesive bond formation. Longer contact times allow for better polymer chain interpenetration, while appropriate application pressure ensures intimate contact between the polymer and mucosal surface. Studies indicate that a minimum contact time of 15-30 seconds is typically required for effective mucoadhesion [24].

3.3. Physiological Variables

3.3.1. Mucus Turnover Rate

The natural turnover of the mucus layer affects the duration of mucoadhesion. Higher mucus turnover rates, such as those in the gastrointestinal tract, can limit the residence time of mucoadhesive systems. This factor necessitates the development of formulations with rapid initial adhesion and strong binding properties [25].

3.3.2. Disease States

Various pathological conditions can alter mucus composition and secretion rates, thereby affecting mucoadhesion. Conditions such as the common cold, bacterial infections, and inflammatory diseases can modify the physicochemical properties of mucus, potentially impacting the performance of mucoadhesive drug delivery systems [26].

4. Mucoadesive Polymers

4.1. Classification of Mucoadhesive Polymers

4.1.1. Natural Polymers

Natural polymers possess inherent biocompatibility and biodegradability advantages in mucoadhesive applications. Chitosan, derived from chitin, exhibits exceptional mucoadhesive properties due to its cationic nature and ability to form ionic interactions

with negatively charged mucin. Similarly, sodium alginate and hyaluronic acid demonstrate significant mucoadhesive strength through hydrogen bonding and chain entanglement mechanisms. These natural polymers often serve as primary matrices in controlled-release formulations [27].

4.1.2. Synthetic Polymers

Synthetic polymers offer greater control over molecular weight, structure, and functional group density. Poly(acrylic acid) derivatives, particularly Carbopol® and polycarbophil, demonstrate superior mucoadhesive properties due to their high density of carboxyl groups. Cellulose derivatives, including hydroxypropyl methylcellulose (HPMC) and sodium carboxymethylcellulose (NaCMC), provide excellent film-forming properties alongside their mucoadhesive characteristics [28].

4.1.3. Modified and Smart Polymers

Recent advances have led to the development of modified polymers with enhanced functionality. Thiolated polymers (thiomers) exhibit improved mucoadhesive properties through the formation of disulfide bonds with mucin glycoproteins. Temperature-sensitive polymers like poly(N-isopropylacrylamide) undergo conformational changes at physiological temperatures, enabling targeted drug release [29].

Polymer Class Examples **Properties** Mechanism of Mucoadhesion Natural Polymers Cationic, biodegradable Chitosan Electrostatic interactions, hydrogen bonding Sodium alginate Anionic, gel-forming Carboxyl group interactions Hyaluronic acid Viscoelastic, biocompatible Chain entanglement, hydrogen bonding Synthetic Carbopol High molecular Carboxyl group interactions weight, рНsensitive Polymers Polyacrylic acid Strong mucoadhesion Hydrogen bonding, chain interpenetration **HPMC** Non-ionic, film-forming Physical entanglement Modified Thiolated chitosan Enhanced mucoadhesion Disulfide bond formation

Chain flexibility, interpenetration

Specific biological recognition

Improved hydration

Site-specific binding

Table 2. Classification and Properties of Common Mucoadhesive Polymers

4.2. Drug Delivery Systems and Applications

PEGylated polymers

Lectin-modified

polymers

4.3. Buccal Drug Delivery

Buccal delivery systems exploit the rich vasculature and relatively immobile mucosa of the oral cavity. Various formulation approaches include:

4.3.1. Buccal Tablets

Polymers

Matrix tablets incorporating mucoadhesive polymers provide sustained drug release while maintaining adhesion for extended periods. The incorporation of enzyme inhibitors and permeation enhancers improves bioavailability of peptide and protein drugs [30].

4.3.2. Buccal Films

Polymeric films offer advantages in terms of flexibility and patient comfort. Multi-layered films with an impermeable backing layer ensure unidirectional drug release toward the mucosa. The combination of hydrophilic and hydrophobic polymers enables controlled release profiles while maintaining structural integrity [31].

4.3.3. Nasal Drug Delivery

Nasal delivery systems overcome the blood-brain barrier for targeting central nervous system disorders. Mucoadhesive microspheres and nanoparticles enhance residence time in the nasal cavity, counteracting mucociliary clearance. The incorporation of absorption enhancers facilitates the delivery of large molecular weight drugs and vaccines [32].

4.4. Vaginal Drug Delivery

Vaginal formulations benefit from extended residence time through mucoadhesion. Semi-solid preparations, including gels and creams, provide improved distribution and intimate contact with vaginal mucosa. Novel approaches incorporate pH-responsive polymers to maintain optimal environmental conditions for drug stability and absorption [33].

4.5. Novel Formulations

4.5.1. Nanostructured Systems

Nanoparticulate carriers combined with mucoadhesive polymers demonstrate enhanced penetration and cellular uptake. Surface modification with mucoadhesive polymers improves the retention of nanoparticles at absorption sites. The incorporation of targeting ligands enables site-specific drug delivery [34].

4.5.2. Stimuli-Responsive Systems

Smart delivery systems respond to physiological triggers such as pH, temperature, or enzyme activity. These systems enable precise control over drug release timing and location. The integration of multiple stimuli-responsive elements allows for sophisticated drug delivery profiles [35].

Table 3. Applications and Formulation Techniques for Different Routes of Administration

Route	Formulation Types	Advantages	Therapeutic Applications
Buccal	Films, tablets	Avoids first-pass metabolism	Peptides, cardiovascular drugs
	Patches, gels	High patient compliance	Hormones
Nasal	Sprays, powders	Rapid absorption	CNS drugs, vaccines
	Microspheres	Direct brain targeting	Anti-migraine drugs
Vaginal	Gels, tablets	Extended retention	Anti-fungal, hormonal
	Films, rings	Local/systemic delivery	Contraceptives
Ocular	Inserts, gels	Increased bioavailability	Anti-glaucoma, antibiotics
	Nanoparticles	Reduced dosing frequency	Anti-inflammatory

5. Evaluation Methods and Characterization

5.1. Physical Characterization

5.1.1. Surface Analysis

Advanced microscopic techniques provide detailed surface characterization of mucoadhesive formulations. Scanning electron microscopy (SEM) reveals surface morphology and porosity, while atomic force microscopy (AFM) enables quantitative measurement of surface roughness and adhesion forces at the molecular level. X-ray photoelectron spectroscopy (XPS) analysis provides information about surface chemical composition and functional group distribution [36].

5.1.2. Rheological Studies

Rheological measurements assess the viscoelastic properties crucial for mucoadhesion. Dynamic oscillatory testing determines storage modulus (G') and loss modulus (G''), providing insights into polymer-mucin interactions. The synergistic increase in viscosity upon mixing polymer solutions with mucin indicates the strength of mucoadhesive bonds. Temperature and shear-dependent rheological behavior help predict formulation performance under physiological conditions [37]

Table 4. Evaluation of Mucoadhesive Systems

Test Category	Method	Parameters Measured	Advantages/Limitations
Physical Tests	Texture Analysis	Detachment force, work of adhesion	Quantitative, reproducible
	Rheological Studies	Viscosity, viscoelastic properties	Real-time measurements
	Surface Analysis	Morphology, roughness	Detailed surface characterization
Chemical Tests	FTIR Spectroscopy	Molecular interactions	Non-destructive analysis
	Zeta Potential	Surface charge	Prediction of stability
Biological Tests	Wash-off Test	Retention time	Simulates physiological conditions
	Tissue Uptake Studies	Drug absorption	Ex vivo correlation

5.2. Mucoadhesion Strength

5.2.1. Tensile Strength

Modified physical balance apparatus measures the force required to detach the formulation from mucosal tissue. The maximum detachment force and work of adhesion provide quantitative measures of mucoadhesive strength. The texture analyzer enables precise control of contact force and time, ensuring reproducible measurements [38].

5.2.2. Shear Strength

Wilhelmy plate method and flow channel technique evaluate the resistance to shear forces. These measurements simulate the mechanical stresses encountered in physiological environments. The sliding angle method determines the critical angle at which the formulation detaches from the mucosal surface [39].

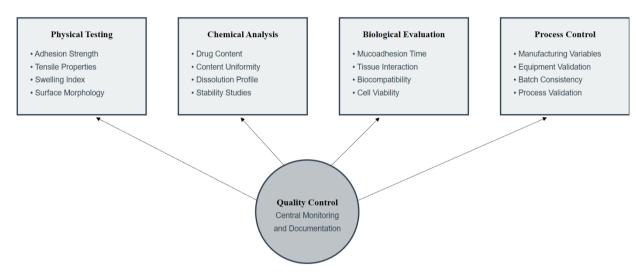


Figure 2. Evaluation of Mucoadhesive Drug Delivery Systems

5.3. In Vitro Evaluation

5.3.1. Drug Release Studies

Modified dissolution apparatus incorporating mucosal tissue or synthetic membranes assess drug release patterns. The implementation of biorelevant media simulates physiological conditions more accurately. Mathematical modeling of release kinetics helps optimize formulation parameters for desired therapeutic outcomes [40].

5.3.2. Permeation Studies

Franz diffusion cells evaluate drug permeation across mucosal barriers. The use of fresh or frozen mucosal tissue provides physiologically relevant data. Electrical resistance measurements monitor tissue integrity throughout the experiments. The incorporation of specialized chambers allows evaluation of different mucosal routes [41].

5.4. Ex Vivo and In Vivo Studies

5.4.1. Residence Time

Gamma scintigraphy and fluorescence imaging techniques track the retention of labeled formulations in mucosal tissues. Real-time visualization of formulation distribution and clearance provides valuable insights into in vivo performance. The wash-off method quantifies the percentage of formulation retained under simulated physiological conditions [42].

5.4.2. Mucosal Tissue Interaction

Histological examination assesses the impact of formulations on mucosal tissue integrity. Confocal microscopy enables visualization of polymer penetration into mucosal layers. Biochemical assays evaluate potential inflammatory responses or tissue irritation [43].

5.5. Stability

5.5.1. Physical Stability

Accelerated stability studies evaluate changes in physical properties under stressed conditions. Monitoring of surface morphology, mechanical properties, and mucoadhesive strength over time ensures formulation robustness. The impact of temperature and humidity on polymer characteristics influences shelf-life determination [44].

5.5.2. Chemical Stability

Analytical techniques including HPLC and spectroscopic methods monitor drug stability within the formulation. The evaluation of polymer degradation products ensures safety during long-term storage. Stability in simulated physiological fluids predicts in vivo performance [45].

Parameter Critical Range Testing Methods Mitigation **Impact** 2-8°C (Cold chain) DSC analysis Physical stability Temperature Temperature-controlled storage Chemical 15-25°C (Room temp) Viscosity monitoring Protective packaging degradation Humidity 25-65% RH Karl Fischer titration Polymer hydration Moisture-proof packaging Weight gain Physical changes Desiccant inclusion UV protection Photostability studies Chemical stability Light Exposure Amber containers Active degradation Color change Light-resistant packaging monitoring рН Formulation specific pH monitoring Drug stability Buffer systems Chemical assays Polymer integrity pH adjusters Microbial Limits USP/EP Microbial testing Product safety Preservative systems Shelf life specifications Sterility testing Aseptic processing Mechanical Transport simulation Drop testing Physical integrity Protective packaging

Content uniformity

Shock absorbers

Table 5. Stability and Storage of Mucoadhesive Formulations

6. Conclusion

Stress

Mucoadhesive drug delivery systems offer innovative solutions to traditional drug delivery challenges by improving the drug retention. Novel polymeric systems have remarkable potential in improving therapeutic outcomes across various routes of administration. The selection of appropriate polymers and formulation techniques must consider these complex interactions to achieve optimal therapeutic efficacy. Smart polymers and modified materials with enhanced mucoadhesive properties have expanded the possibilities for controlled and targeted drug delivery. These innovations have particularly benefited the delivery of challenging therapeutic agents, including proteins, peptides, and vaccines. The use of nanotechnology, the development of stimuli-responsive systems, and the application of artificial intelligence in formulation design show promising directions for future research. However, challenges remain in translating laboratory success to clinical applications, particularly in addressing individual variability in mucosal conditions and ensuring consistent *in vivo* performance.

References

[1] Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev. 2005;57(11):1556-68.

Vibration studies

- [2] Peppas NA, Sahlin JJ. Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials. 1996;17(16):1553-61.
- [3] Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71(3):505-18.
- [4] Mansuri S, Kesharwani P, Jain K, Tekade RK, Jain NK. Mucoadhesion: A promising approach in drug delivery system. React Funct Polym. 2016;100:151-72.
- [5] Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011;11(6):748-64.
- [6] Boddupalli BM, Mohammed ZN, Nath RA, Banji D. Mucoadhesive drug delivery system: An overview. J Adv Pharm Technol Res. 2010;1(4):381-7.

- [7] Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev. 2005;57(11):1595-639.
- [8] Bernkop-Schnürch A, Dünnhaupt S. Chitosan-based drug delivery systems. Eur J Pharm Biopharm. 2012;81(3):463-9.
- [9] Shaikh R, Raj Singh TR, Garland MJ, Woolfson AD, Donnelly RF. Mucoadhesive drug delivery systems. J Pharm Bioallied Sci. 2011;3(1):89-100.
- [10] Serra L, Doménech J, Peppas NA. Engineering design and molecular dynamics of mucoadhesive drug delivery systems as targeting agents. Eur J Pharm Biopharm. 2009;71(3):519-28.
- [11] Dodou D, Breedveld P, Wieringa PA. Mucoadhesives in the gastrointestinal tract: revisiting the principles of mucoadhesion. Eur J Pharm Biopharm. 2005;60(1):1-16.
- [12] Huang Y, Leobandung W, Foss A, Peppas NA. Molecular aspects of muco- and bioadhesion: tethered structures and site-specific surfaces. J Control Release. 2000;65(1-2):63-71.
- [13] Sogias IA, Williams AC, Khutoryanskiy VV. Why is chitosan mucoadhesive? Biomacromolecules. 2008;9(7):1837-42.
- [14] Grabovac V, Guggi D, Bernkop-Schnürch A. Comparison of the mucoadhesive properties of various polymers. Adv Drug Deliv Rev. 2005;57(11):1713-23.
- [15] Carvalho FC, Bruschi ML, Evangelista RC, Gremião MP. Mucoadhesive drug delivery systems. Braz J Pharm Sci. 2010;46(1):1-17.
- [16] Roy S, Prabhakar B. Bioadhesive polymeric platforms for transmucosal drug delivery systems—a review. Trop J Pharm Res. 2010;9(1):91-104.
- [17] Lehr CM, Bouwstra JA, Schacht EH, Junginger HE. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm. 1992;78(1-3):43-8.
- [18] Park K, Robinson JR. Bioadhesive polymers as platforms for oral-controlled drug delivery: method to study bioadhesion. Int J Pharm. 1984;19(2):107-27.
- [19] Hassan EE, Gallo JM. A simple rheological method for the in vitro assessment of mucin-polymer bioadhesive bond strength. Pharm Res. 1990;7(5):491-5.
- [20] Harding SE, Davis SS, Deacon MP, Fiebrig I. Biopolymer mucoadhesives. Biotechnol Genet Eng Rev. 1999;16(1):41-86.
- [21] Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery a promising option for orally less efficient drugs. J Control Release. 2006;114(1):15-40.
- [22] Lee JW, Park JH, Robinson JR. Bioadhesive-based dosage forms: the next generation. J Pharm Sci. 2000;89(7):850-66.
- [23] Ahuja A, Khar RK, Ali J. Mucoadhesive drug delivery systems. Drug Dev Ind Pharm. 1997;23(5):489-515.
- [24] Salamat-Miller N, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Deliv Rev. 2005;57(11):1666-91.
- [25] Mythri G, Kavitha K, Kumar MR, Singh SD. Novel mucoadhesive polymers—a review. J Appl Pharm Sci. 2011;1(8):37-42.
- [26] Varum FJ, McConnell EL, Sousa JJ, Veiga F, Basit AW. Mucoadhesion and the gastrointestinal tract. Crit Rev Ther Drug Carrier Syst. 2008;25(3):207-58.
- [27] Bernkop-Schnürch A. Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev. 2005;57(11):1569-82.
- [28] Hombach J, Bernkop-Schnürch A. Chitosan solutions and particles: evaluation of their permeation enhancing potential on MDCK cells used as blood brain barrier model. Int J Pharm. 2009;376(1-2):104-9.
- [29] Peppas NA, Buri PA. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Control Release. 1985;2:257-75.
- [30] Duchêne D, Ponchel G. Bioadhesion: a new pharmacotechnical method for improving therapeutic efficiency. STP Pharma. 1989;5(12):830-8.
- [31] Khutoryanskiy VV. Beyond PEGylation: Alternative surface-modification of nanoparticles with mucus-inert biomaterials. Adv Drug Deliv Rev. 2018;124:140-9.
- [32] Ugwoke MI, Agu RU, Verbeke N, Kinget R. Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. Adv Drug Deliv Rev. 2005;57(11):1640-65.
- [33] das Neves J, Bahia MF. Gels as vaginal drug delivery systems. Int J Pharm. 2006;318(1-2):1-14.
- [34] Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158-71.

- [35] Yun Chang J, Oh YK, Soo Kong H, Jung Kim E, Deuk Jang D, Tang Nam K, et al. Prolonged antifungal effects of clotrimazole-containing mucoadhesive thermosensitive gels on vaginitis. J Control Release. 2002;82(1):39-50.
- [36] Madsen F, Eberth K, Smart JD. A rheological examination of the mucoadhesive/mucus interaction: the effect of mucoadhesive type and concentration. J Control Release. 1998;50(1-3):167-78.
- [37] Sriamornsak P, Wattanakorn N, Nunthanid J, Puttipipatkhachorn S. Mucoadhesion of pectin as evidence by wettability and chain interpenetration. Carbohydr Polym. 2008;74(3):458-67.
- [38] Thirawong N, Nunthanid J, Puttipipatkhachorn S, Sriamornsak P. Mucoadhesive properties of various pectins on gastrointestinal mucosa: An in vitro evaluation using texture analyzer. Eur J Pharm Biopharm. 2007;67(1):132-40.
- [39] Hägerström H, Edsman K. Limitations of the rheological mucoadhesion measurement method: the effect of the choice of conditions and the rheological synergism parameter. Eur J Pharm Sci. 2003;18(5):349-57.
- [40] Shojaei AH, Li X. Mechanisms of buccal mucoadhesion of novel copolymers of acrylic acid and polyethylene glycol monomethylether monomethacrylate. J Control Release. 1997;47(2):151-61.
- [41] Batchelor H, Tang M, Dettmar P, Hampson F, Jolliffe I, Craig D. Feasibility of a bioadhesive drug delivery system targeted to oesophageal tissue. Eur J Pharm Biopharm. 2004;57(2):295-303.
- [42] Sosnik A, das Neves J, Sarmento B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Prog Polym Sci. 2014;39(12):2030-75.
- [43] Nielsen LS, Schubert L, Hansen J. Bioadhesive drug delivery systems. I. Characterisation of mucoadhesive properties of systems based on glyceryl mono-oleate and glyceryl monolinoleate. Eur J Pharm Sci. 1998;6(3):231-9.
- [44] Sigurdsson HH, Loftsson T, Lehr CM. Assessment of mucoadhesion by a resonant mirror biosensor. Int J Pharm. 2006;325(1-2):75-81.
- [45] Mortazavi SA, Smart JD. An investigation into the role of water movement and mucus gel dehydration in mucoadhesion. J Control Release. 1993;25(3):197-203.