REVIEW ARTICLE

A Review on Therapeutic Advances and Challenges in Treating Neurological Disorders

JOPIR

Journal of Pharma Insights and Research

Shyam Venkata Krishna Arjun K*1, Govinda Rao Kamala²

- UG Scholar, Department of Pharmaceutical Chemistry, Koringa College of Pharmacy, Korangi, Kakinada, Andbra Pradesh, India
- ² Professor and Vice Principal, Department of Pharmaceutical Chemistry, Koringa College of Pharmacy, Korangi, Kakinada, Andhra Pradesh, India

Publication history: Received on 26th May 2025; Revised on 22nd June 2025; Accepted on 2nd July 2025

Article DOI: 10.69613/8ez1wm16

Abstract: Neurological disorders represent significant healthcare challenges worldwide, with increasing mortality and morbidity rates despite modern medical advances. The complexity of the central nervous system, coupled with the selective permeability of the blood-brain barrier, creates substantial obstacles in developing effective therapeutics. Recent developments in medicinal chemistry and drug design have led to novel approaches in treating various neurological conditions, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Duchenne muscular dystrophy. Neuropeptides, endogenous protein messengers synthesized by neurons, have emerged as promising therapeutic targets due to their crucial role in neuromodulation. The integration of computer-aided drug design, structure-based approaches, and advanced delivery systems has enhanced the potential for developing more effective neurological treatments. Clinical evidence suggests that targeting specific neuroreceptor systems and neurotransmitter pathways can yield improved therapeutic outcomes. However, challenges persist in drug delivery, biomarker identification, and translation of preclinical success to clinical efficacy. Recent collaborative efforts between regulatory agencies, research institutions, and pharmaceutical companies have accelerated the development of novel therapeutic tools and biomarkers for neurological disorders. Continued advancement in understanding disease mechanisms and drug development technologies offers promising prospects for treating these complex neurological conditions.

Keywords: Neurological disorders; Drug development; Neuropeptides; Blood-brain barrier; Neuropharmacology

1. Introduction

Neurological disorders represent one of the most significant challenges in modern medicine, affecting over 1 billion people globally [1]. These conditions manifest through various mechanisms and pathways, creating a complex web of therapeutic targets and necessitating diverse treatment approaches [2]. The blood-brain barrier (BBB), a highly selective semipermeable border of endothelial cells, prevents the passage of most molecules, including potentially therapeutic compounds. This protective mechanism, while essential for brain function, creates a substantial obstacle in drug development and delivery [3].

The evolution of neuropharmacology has been marked by significant breakthroughs in understanding neural circuitry and neurotransmitter systems. Modern therapeutic approaches focus on developing compounds that can modulate specific neural pathways while minimizing interference with other brain functions [4]. This precision-based approach has led to the development of targeted therapies that show improved efficacy and reduced side effects compared to traditional broad-spectrum treatments [5]. Drug development in this field requires extensive consideration of multiple factors, including molecular size, lipophilicity, plasma protein binding, and the ability to penetrate the BBB [6].

The increasing prevalence of neurological disorders presents a growing challenge to healthcare systems worldwide [7]. In neurodegenerative conditions, multiple pathological processes occur simultaneously. For instance, in Alzheimer's and Parkinson's disease, protein misfolding and aggregation trigger a cascade of events including mitochondrial dysfunction, oxidative stress, and neuroinflammation. These processes create a complex pathological environment that requires multi-targeted therapeutic approaches [8]. Demographic shifts, particularly the aging of populations in developed countries, have contributed to a substantial increase in the prevalence of these disorders [9].

Alzheimer's disease involves the accumulation of β-amyloid plaques extracellularly and neurofibrillary tangles intracellularly, leading to synaptic dysfunction and neuronal death. These pathological changes primarily affect regions involved in memory formation and cognitive processing, such as the hippocampus and cortex [10]. Parkinson's disease is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, leading to both motor symptoms (tremor, rigidity, bradykinesia) and non-motor symptoms (depression, anxiety, sleep disorders) [11]. Huntington's disease, caused by an expanded CAG repeat in the huntingtin

^{*} Corresponding author: Shyam Venkata Krishna Arjun K

gene, results in the production of mutant huntingtin protein, leading to widespread neuronal dysfunction and death, particularly in the striatum and cortex [12].

Duchenne muscular dystrophy represents a severe form of muscular dystrophy, where the absence of functional dystrophin protein leads to progressive muscle degeneration. The condition affects not only skeletal muscles but also cardiac muscle, leading to significant disability and reduced life expectancy [13]. Amyotrophic lateral sclerosis involves the progressive degeneration of both upper and lower motor neurons, resulting in muscle weakness, atrophy, and eventually complete paralysis [14].

Neurological conditions affecting brain function include epilepsy, which manifests through abnormal synchronization of neuronal activity, leading to recurrent seizures. The condition can arise from various underlying causes, including genetic mutations, brain injury, or developmental abnormalities [15]. Stroke, characterized by the sudden interruption of blood flow to specific brain regions, requires rapid intervention to prevent permanent neurological damage. The time-sensitive nature of stroke treatment has led to the development of various therapeutic approaches, including thrombolytic therapy and endovascular interventions [16].

Disease Category	Features	Primary Symptoms	Treatment
Neurodegenerative	Progressive neuronal	Cognitive decline, motor	Symptomatic therapy, disease-
Disorders	loss	dysfunction modifying agents	
Neuromuscular Disorders	Muscle weakness,	Progressive weakness,	Gene therapy, corticosteroids
	atrophy	mobility issues	
Cerebrovascular Disorders	Blood flow disruption Focal neurological deficits		Antithrombotics, neuroprotective
			agents
Neuroinflammatory	Immune system	Variable neurological	Immunomodulators, targeted biologics
Conditions	dysfunction	symptoms	

Table 1. Major Classes of Neurological Disorders and Their Characteristics

2. Treatment of Neurological Disorders

2.1. Molecular Targets and Mechanisms

Neurotransmitter systems constitute the fundamental chemical messaging network in the nervous system, serving as primary targets for therapeutic intervention [17]. These systems operate through complex interactions involving neurotransmitter synthesis, release, receptor binding, and reuptake mechanisms. The dopaminergic system, crucial for motor control, reward, and motivation, involves multiple receptor subtypes (D1-D5) and various regulatory proteins. The serotonergic system, with its 14 receptor subtypes, modulates mood, anxiety, and cognitive functions. The GABAergic system, the primary inhibitory neurotransmitter system, maintains neural circuit balance and prevents excessive neuronal excitation [18].

2.2. Drug Design

2.2.1. Structure-Based Approaches

Structure-based drug design utilizes detailed molecular information about therapeutic targets to develop effective compounds. This approach involves analyzing protein-ligand interactions at atomic resolution, enabling the optimization of binding affinity and selectivity. The process considers several crucial molecular aspects, including hydrogen bonding patterns and potential, Van der Waals interactions, electrostatic complementarity, conformational flexibility of both ligand and receptor, and water-mediated interactions.

The availability of high-resolution crystal structures of neurological targets has revolutionized drug design strategies [19]. These structures reveal crucial binding pockets, allosteric sites, and conformational changes that occur upon ligand binding. Crystal structures of G-protein coupled receptors (GPCRs) have provided vital insights into binding site architecture, receptor activation mechanisms, allosteric modulation sites, and structure-function relationships. This structural information enables the rational modification of lead compounds to enhance their therapeutic properties while minimizing unwanted effects [20].

2.2.2. Computer-Aided Drug Design

Modern computational methods have transformed the drug discovery process through various sophisticated approaches [21]. Virtual screening has become an essential tool, enabling high-throughput screening of large compound libraries. This includes structure-based virtual screening using docking algorithms, ligand-based virtual screening using pharmacophore models, and fragment-based drug design approaches. Molecular dynamics simulations have become increasingly important in drug design, allowing researchers to analyze protein flexibility, investigate binding and unbinding pathways, predict conformational changes, and assess protein-ligand

complex stability. These simulations provide crucial insights into the dynamic behavior of drug targets and their interactions with potential therapeutic compounds.

Machine learning applications have revolutionized drug discovery by enabling accurate predictions of drug-target interactions, ADME properties, toxicity profiles, and potential side effects [22]. These computational approaches significantly reduce the time and resources required for drug development by prioritizing promising compounds for experimental testing and identifying potential off-target interactions. The technology also assists in optimizing lead compounds for desired properties and predicting drug resistance mechanisms.

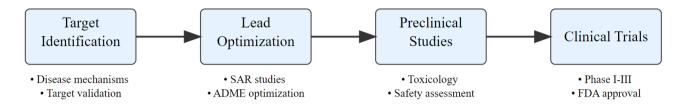


Figure 1. Neurological Drug Development Pipeline

3. Neuropeptide-Based Treatment

3.1. Neuropeptide Synthesis and Function

Neuropeptides represent a complex class of signaling molecules that emerge through sophisticated biological processing mechanisms. Their synthesis begins in the endoplasmic reticulum, where larger precursor proteins, known as prepropeptides, are initially produced. These prepropeptides undergo sequential enzymatic cleavage events in the Golgi apparatus and secretory vesicles, involving specific proteases such as prohormone convertases and carboxypeptidases [23]. The maturation process involves various post-translational modifications, including glycosylation, phosphorylation, sulfation, and amidation. These modifications are crucial in determining the final biological properties of the neuropeptides. For instance, C-terminal amidation, a common modification, can significantly enhance receptor binding affinity and protect against enzymatic degradation. The specificity of these modifications ensures precise targeting and recognition by their respective receptors [24]. Functionally, neuropeptides serve as versatile signaling molecules in the nervous system. They act as primary neurotransmitters, neuromodulators, and in some cases, neurohormones. In neurotransmission, they can directly mediate synaptic communication, while as neuromodulators, they fine-tune the activity of classical neurotransmitter systems. Their role in synaptic plasticity is particularly significant, as they can influence both short-term synaptic strength and long-term potentiation, processes crucial for learning and memory formation [25].

3.2. Signaling Mechanisms

The signaling mechanisms of neuropeptides primarily operate through G-protein coupled receptors (GPCRs) and ion channels. When binding to GPCRs, neuropeptides trigger conformational changes that activate specific G-protein subtypes (Gs, Gi/o, Gq/11), leading to the modulation of various cellular processes. These interactions can influence adenylyl cyclase activity, phospholipase C activation, and ion channel function. Some neuropeptides also directly interact with ionotropic receptors, causing immediate changes in membrane potential and cellular excitability [26]. The downstream effects of neuropeptide signaling involve complex cascades of second messenger systems. These include cyclic AMP (cAMP), inositol trisphosphate (IP3), diacylglycerol (DAG), and calcium signaling pathways. The activation of these pathways can lead to both rapid responses, such as changes in ion channel conductance and neurotransmitter release, and long-term effects involving gene transcription and protein synthesis. The temporal dynamics of these responses are particularly important, as they allow neuropeptides to exert both immediate and sustained influences on neural circuit function. The diversity of signaling mechanisms also enables neuropeptides to produce cell-type-specific responses and coordinate complex behavioral and physiological processes [27].

4. Barriers for Drug Development

4.1. Blood-Brain Barrier

4.1.1. Transport Mechanisms

The blood-brain barrier (BBB) represents a highly sophisticated biological interface that precisely controls the passage of molecules between the bloodstream and the central nervous system. This barrier consists of specialized endothelial cells connected by tight junctions, creating a highly selective semipermeable membrane. The transport of molecules across the BBB occurs through several

distinct mechanisms, including carrier-mediated transport (CMT), receptor-mediated transcytosis (RMT), and active efflux transport. Specific transport proteins, such as GLUT-1 for glucose and LAT-1 for large neutral amino acids, facilitate the controlled passage of essential nutrients [28]. Recent advances in drug delivery have focused on exploiting these endogenous transport mechanisms. For instance, the development of molecular Trojan horses that utilize receptor-mediated transcytosis has shown promising results. These approaches often target transferrin receptors, insulin receptors, or low-density lipoprotein receptors, which are naturally expressed on the BBB. Additionally, researchers have identified specific peptide sequences that can trigger adsorptive-mediated transcytosis, providing another pathway for drug delivery. The understanding of these transport mechanisms has led to the development of novel drug delivery strategies that can effectively bypass the BBB's restrictive properties [29].

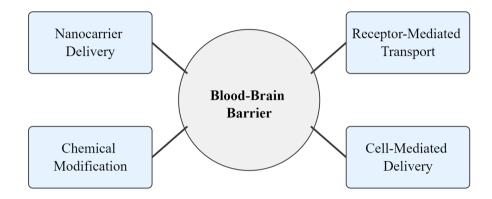


Figure 2. Techniques for Blood-Brain Barrier Drug Delivery

4.1.2. Drug Modification

Chemical modification of therapeutic compounds has emerged as a crucial strategy for enhancing BBB penetration. Lipidization, involving the addition of lipophilic groups to drug molecules, increases their membrane permeability and facilitates passive diffusion across the BBB. The conjugation of drugs with cell-penetrating peptides (CPPs) has shown particular promise. These peptides, often derived from natural proteins or designed synthetically, can transport attached cargo across biological membranes through various mechanisms, including direct penetration and endocytosis [30]. Nanocarrier systems represent another innovative approach to BBB drug delivery. These systems include liposomes, polymeric nanoparticles, dendrimers, and metal-based nanoparticles. Each type of nanocarrier offers unique advantages: Liposomes can be designed with specific lipid compositions that enhance BBB penetration while protecting their therapeutic cargo. Polymeric nanoparticles offer controlled release properties and can be modified with targeting ligands. Dendrimers provide precise control over size and surface chemistry, allowing for optimal BBB interaction. Metal-based nanoparticles can combine imaging and therapeutic capabilities, enabling real-time monitoring of drug delivery [31].

The development of these nanocarrier systems has been further enhanced by surface modification strategies, including the addition of targeting molecules, BBB-penetrating peptides, and stealth coatings to avoid immune system recognition. These modifications can significantly improve the delivery efficiency and specificity of therapeutic agents to the brain [32].

4.2. Pharmacokinetic Optimization

4.2.1. Absorption and Distribution

The optimization of molecular properties during drug development requires careful consideration of multiple physicochemical parameters that influence absorption. These include molecular weight, lipophilicity (LogP), polar surface area, and the number of hydrogen bond donors and acceptors. Drug developers must balance these properties to achieve optimal oral bioavailability while maintaining BBB penetration capability. The relationship between these molecular characteristics and absorption patterns often follows complex non-linear relationships, necessitating sophisticated modeling approaches during development [32]. Distribution patterns within the central nervous system play a crucial role in determining therapeutic success. Different brain regions exhibit varying degrees of drug penetration and accumulation, influenced by regional blood flow, local tissue binding, and specific transporter expression patterns. Advanced imaging techniques, including PET and SPECT, enable the tracking of drug distribution in real-time, providing valuable insights for therapeutic development [33]

Small Molecules

- BBB-penetrant drugs
- · Multi-target agents

Biologics

- Antibodies
- Protein therapeutics

Gene Therapy

- Viral vectors
- Gene editing

Cell Therapy

- Stem cells
- Modified cells

Figure 3. Modern Therapeutic Techniques in Neurological Disorders

4.2.2. Metabolism and Elimination

The comprehension of metabolic pathways is fundamental for predicting drug behavior in the body. Drug metabolism primarily occurs through Phase I and Phase II reactions, involving various enzyme systems, particularly cytochrome P450 enzymes. Understanding these pathways helps predict potential drug-drug interactions, which are especially critical in neurological conditions where patients often require multiple medications. Metabolic stability studies and identification of major metabolites guide dosing strategies and help anticipate potential safety issues [34]. Elimination routes significantly influence treatment protocols. Drugs may be eliminated through renal excretion, biliary excretion, or both pathways. The balance between these elimination routes affects drug half-life and consequently influences dosing frequency and duration. [35]

Table 2. Drug Development Challenges in Neurological Disorders

Challenge	Impact	Current Solutions	Alternative Treatment
Blood-Brain Barrier	Limited drug penetration	Chemical modification	Nanocarriers, targeted delivery
Complex Pathophysiology	Multiple therapeutic targets	Combination therapy	Multi-modal drug design
Biomarker Availability	Difficult monitoring	Imaging techniques	Novel molecular markers
Clinical Trial Design	Long duration, high cost	Adaptive trials	AI-assisted patient selection

5. Current Treatment for Neurological Disorders

5.1. FDA-Approved Treatments

Recent regulatory approvals have introduced innovative therapeutic approaches targeting specific disease mechanisms. These include monoclonal antibodies for migraine prevention, antisense oligonucleotides for spinal muscular atrophy, and novel small molecules for various neurodegenerative conditions. The trend toward mechanism-based therapeutics represents a significant advancement from traditional symptomatic treatments [36]. Combination therapy approaches have gained prominence, recognizing the complex nature of neurological disorders. These strategies often involve drugs with complementary mechanisms of action, addressing multiple pathological pathways simultaneously. This technique has shown particular promise in conditions like Alzheimer's disease and multiple sclerosis, where multiple disease mechanisms contribute to pathology [37]

5.2. Clinical Trials

5.2.1. Biomarkers

The development of novel biomarkers has revolutionized neurological drug development. These include fluid biomarkers (blood, CSF), genetic markers, and molecular imaging markers. Such biomarkers enable better patient stratification, allowing for more targeted therapeutic approaches and improved prediction of treatment response. The ability to monitor disease progression and treatment effects through biomarkers has significantly enhanced the efficiency of clinical trials [38]. Advanced imaging techniques, including functional MRI, diffusion tensor imaging, and molecular imaging, provide unprecedented insights into drug effects and disease progression. These methods enable the visualization of structural and functional changes in the brain, offering objective measures of treatment efficacy. The use of multiple imaging modalities provides complementary information about disease processes and therapeutic responses [39].

5.2.2. Clinical Trial Design

Adaptive trial designs have risen as powerful tools in neurological drug development. These designs allow for modifications to trial parameters based on interim analyses, potentially reducing trial duration and patient exposure to ineffective treatments. Bayesian statistical approaches and master protocols enable more efficient evaluation of multiple therapeutic candidates simultaneously [40]. Patient-reported outcomes have become increasingly central to clinical trial design and evaluation. These measures provide direct insights into the impact of treatments on quality of life and daily functioning. The incorporation of digital health technologies and wearable devices enables continuous monitoring of patient symptoms and treatment responses, providing richer data sets for

efficacy assessment. This patient-centric approach ensures that therapeutic development addresses outcomes that are most meaningful to those affected by neurological disorders [41].

6. Emerging Treatments

6.1. Gene Therapy

The field of gene therapy has witnessed remarkable advances through the development of sophisticated viral vectors. Adeno-associated viruses (AAVs) have emerged as particularly promising delivery vehicles due to their ability to target specific neuronal populations with high efficiency and minimal immunogenicity. These vectors can be engineered with specific serotypes and promoters to achieve cell-type-specific expression. The development of novel capsid variants through directed evolution has further enhanced the specificity and efficiency of gene delivery to the central nervous system [42]. CRISPR-based therapeutic approaches represent a revolutionary advancement in treating genetic neurological disorders. These systems offer unprecedented precision in genetic modification, allowing for correction of disease-causing mutations, gene regulation, and epigenetic modifications. Recent developments include base editing and prime editing technologies, which enable more precise genetic modifications with reduced off-target effects. The application of CRISPR technology has shown particular promise in treating monogenic neurological disorders, with several candidates advancing through preclinical and early clinical stages [43].

Technology	Application	Advantages	Limitations
AI/Machine Learning	Drug design, screening	Rapid analysis, prediction	Data quality dependence
Gene Therapy	Genetic disorders	Targeted treatment	Delivery challenges
Stem Cell Therapy	Regenerative medicine	Tissue repair potential	Integration issues
Nanocarriers	Drug delivery	Enhanced BBB crossing	Manufacturing complexity

Table 3. Emerging Treatments in Neurological Drug Development

6.2. Cell Therapy

Stem cell-based therapies have emerged as a powerful approach for treating neurological disorders. Various stem cell types, including mesenchymal stem cells, neural stem cells, and induced pluripotent stem cells (iPSCs), show potential for neuronal regeneration and repair. These cells can be engineered to produce therapeutic factors, replace damaged neurons, or provide trophic support to existing neural networks. Recent advances in cell manufacturing and characterization have improved the consistency and safety of cell-based therapies [44]. Modified cellular platforms have revolutionized targeted drug delivery to the brain. These include engineered cells that can cross the blood-brain barrier and deliver therapeutic cargo to specific brain regions. Novel approaches involve the use of cell-based carriers that can be loaded with drugs or therapeutic proteins. These platforms often incorporate targeting mechanisms to enhance delivery to specific neural populations, combining the benefits of cellular therapy with precise drug delivery capabilities [45]

7. Drug Development Tools

7.1. Computational Methods

7.1.1. Artificial Intelligence

Machine learning algorithms have transformed the drug development landscape by enabling rapid screening and optimization of drug candidates. Deep learning models can analyze vast chemical spaces to identify promising compounds with desired properties. These algorithms integrate multiple data types, including structural, pharmacological, and toxicological information, to make more accurate predictions about drug behavior. Advanced AI systems can now predict drug-likeness, synthetic accessibility, and potential development challenges early in the discovery process [46]. Neural networks have become increasingly sophisticated in predicting drug-target interactions and potential side effects. These systems can analyze complex patterns in biological data to identify previously unknown drug-target relationships and potential off-target effects. Modern architectures incorporate attention mechanisms and graph neural networks to better understand molecular structures and their interactions with biological targets [47].

7.1.2. Molecular Modeling

Advanced simulation techniques have revolutionized our understanding of drug-receptor interactions. Molecular dynamics simulations can now model protein-ligand interactions over biologically relevant timescales, providing insights into binding kinetics and conformational changes. Enhanced sampling methods and coarse-grained models enable the study of larger systems and longer time scales, offering more complete pictures of drug-target interactions [48]. Quantum mechanical calculations have become

essential tools in understanding fundamental aspects of drug-target binding. These calculations provide detailed insights into electronic structures, reaction mechanisms, and energetics of molecular interactions. Modern quantum methods, including density functional theory and ab initio approaches, offer increasingly accurate predictions of binding energies and chemical reactivity. The integration of quantum mechanics with molecular mechanics (QM/MM) enables the study of complex biological systems with quantum-level accuracy in critical regions [49].

7.2. Analytical Technologies

7.2.1. Imaging Techniques

Advanced neuroimaging methods have transformed our ability to track drug distribution and effects in the brain. High-resolution MRI techniques, including functional and molecular imaging, provide detailed information about drug action and disease progression. Novel contrast agents and imaging probes enable the visualization of specific molecular targets and cellular processes [50]. PET and SPECT imaging have become invaluable tools for receptor occupancy studies and drug development. These techniques enable the quantification of drug binding to specific targets in vivo, providing crucial information about dose-response relationships and target engagement. Advanced radiotracer development has expanded the range of molecular targets that can be studied, while improved image analysis methods enhance the accuracy of quantitative measurements [51].

Biomarker Type	Disease Application	Detection Method	Clinical Utility
Fluid Biomarkers	AD, PD, HD	CSF, blood analysis	Disease progression
Imaging Markers	All neurological disorders	MRI, PET, SPECT	Structural changes
Genetic Markers	Inherited disorders	DNA sequencing	Disease risk
Clinical Markers	All disorders	Clinical assessment	Treatment response

Table 4. Biomarkers in Neurological Disease Monitoring

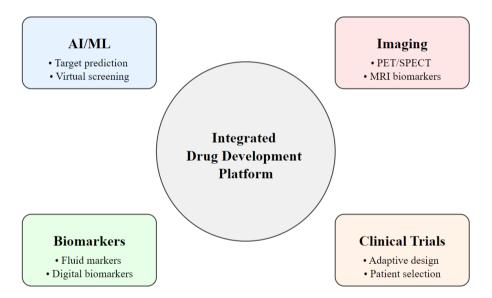


Figure 4. Technological Innovations in Neurological Drug Development

7.2.2. Biomarker Analysis

Novel proteomics approaches have revolutionized the identification of disease-specific markers. Advanced mass spectrometry techniques, including targeted and untargeted proteomics, enable comprehensive protein profiling with unprecedented sensitivity. These methods can identify novel biomarkers and track changes in protein expression patterns in response to disease and treatment [52]. Metabolomic profiling has enhanced our understanding of drug effects on cellular metabolism. High-resolution mass spectrometry and NMR spectroscopy enable the simultaneous measurement of hundreds of metabolites, providing detailed insights into drug mechanism of action and potential toxicity. Integration of metabolomics with other -omics approaches offers a systems-level view of drug effects on cellular function [53].

8. Conclusion

Neurological disorders present complex therapeutic challenges requiring innovative approaches in drug development. Recent advances in understanding disease mechanisms, coupled with technological developments in drug design and delivery systems, have opened new avenues for treatment. The emergence of neuropeptide-based therapies, enhanced computational methods, and novel delivery strategies has significantly improved the potential for successful therapeutic interventions. While substantial progress has been made in developing treatments for various neurological conditions, significant challenges remain, particularly regarding drug delivery across the blood-brain barrier and achieving optimal therapeutic efficacy. Integration of personalized medicine approaches, advanced biomarker development, and innovative clinical trial designs shows promise for future therapeutic success. Continued collaboration between research institutions, regulatory agencies, and pharmaceutical companies remains crucial for advancing the field of neurological therapeutics.

References

- [1] Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, et al. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol. 2020;19(3):255-265.
- [2] Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer's disease drug development pipeline: 2020. Alzheimers Dement. 2020;6:e12050.
- [3] Banks WA. Drug delivery to the brain in Alzheimer's disease: Consideration of the blood-brain barrier. Adv Drug Deliv Rev. 2012;64(7):629-639.
- [4] Pangalos MN, Schechter LE, Hurko O. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat Rev Drug Discov. 2007;6(7):521-532.
- [5] Mullard A. 2021 FDA approvals. Nat Rev Drug Discov. 2022;21(2):83-88.
- [6] Ghosh AK, Brindisi M, Tang J. Developing β-secretase inhibitors for treatment of Alzheimer's disease. J Neurochem. 2012;120(s1):71-83.
- [7] GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019. Lancet. 2020;396(10258):1204-1222.
- [8] Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353-356.
- [9] Dorsey ER, Sherer T, Okun MS, Bloem BR. The emerging evidence of the Parkinson pandemic. J Parkinsons Dis. 2018;8(s1):S3-S8.
- [10] Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell. 2019;179(2):312-339.
- [11] Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013.
- [12] Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, et al. Huntington disease. Nat Rev Dis Primers. 2015;1:15005.
- [13] Mah JK. Current and emerging treatment strategies for Duchenne muscular dystrophy. Neuropsychiatr Dis Treat. 2016;12:1795-1807.
- [14] Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med. 2017;377(2):162-172.
- [15] Devinsky O, Vezzani A, O'Brien TJ, Jette N, Scheffer IE, de Curtis M, et al. Epilepsy. Nat Rev Dis Primers. 2018;4:18024.
- [16] Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, et al. Ischaemic stroke. Nat Rev Dis Primers. 2019;5(1):70.
- [17] Shen J, Wang D, Wang X, Gupta S, Ayloo B, Wu S, et al. Neurotransmitter transporters: molecular function, regulation, and relevance to brain disease. Neuropharmacology. 2021;196:108681.
- [18] Nestler EJ, Lüscher C. The molecular basis of drug addiction: linking epigenetic to synaptic and circuit mechanisms. Neuron. 2019;102(1):48-59.
- [19] Congreve M, de Graaf C, Swain NA, Tate CG. Impact of GPCR structures on drug discovery. Cell. 2020;181(1):81-91.
- [20] Wu H, Cai J, Weiner DM, Zhou X. Structure-based drug design targeting G protein-coupled receptors. Curr Opin Struct Biol. 2021;69:123-134.

- [21] Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463-477.
- [22] Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev. 2019;119(18):10520-10594.
- [23] Hökfelt T, Bartfai T, Bloom F. Neuropeptides: opportunities for drug discovery. Lancet Neurol. 2003;2(8):463-472.
- [24] Kulkarni A, Cai Y, Petty S. Neuropeptides: functions, synthesis and mechanisms of action. ACS Chem Neurosci. 2018;9(12):2914-2929.
- [25] Van den Pol AN. Neuropeptide transmission in brain circuits. Neuron. 2012;76(1):98-115.
- [26] Hoyer D, Bartfai T. Neuropeptides and neuropeptide receptors: drug targets, and peptide and non-peptide ligands: a tribute to Prof. Dieter Seebach. Chem Biodivers. 2012;9(11):2367-2387.
- [27] Burbach JP. What are neuropeptides? Methods Mol Biol. 2011;789:1-36.
- [28] Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13-25.
- [29] Pardridge WM. Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front Aging Neurosci. 2020;11:373.
- [30] Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34-47.
- [31] Mikitsh JL, Chacko AM. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. Perspect Medicin Chem. 2014;6:11-24.
- [32] Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-brain barrier: from physiology to disease and back. Physiol Rev. 2019;99(1):21-78.
- [33] Lin JH. CSF as a surrogate for assessing CNS exposure: an industrial perspective. Curr Drug Metab. 2008;9(1):46-59.
- [34] Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. Biomed Res Int. 2014;2014:869269.
- [35] Cummings J, Aisen P, Lemere C, Atri A, Sabbagh M, Salloway S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimers Res Ther. 2021;13(1):98.
- [36] Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, et al. The amyloid-β pathway in Alzheimer's disease. Mol Psychiatry. 2021;26(10):5481-5503.
- [37] Zetterberg H, Blennow K. Moving fluid biomarkers for Alzheimer's disease from research tools to routine clinical diagnostics. Mol Neurodegener. 2021;16(1):10.
- [38] Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement. 2018;14(4):535-562.
- [39] Park JJH, Thorlund K, Mills EJ. Critical concepts in adaptive clinical trials. Clin Epidemiol. 2018;10:343-351.
- [40] Calvert M, Kyte D, Mercieca-Bebber R, Slade A, Chan AW, King MT, et al. Guidelines for inclusion of patient-reported outcomes in clinical trial protocols: the SPIRIT-PRO extension. JAMA. 2018;319(5):483-494.
- [41] Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18(5):358-378.
- [42] Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578(7794):229-236.
- [43] Goldman SA. Stem and progenitor cell-based therapy of the central nervous system: hopes, hype, and wishful thinking. Cell Stem Cell. 2016;18(2):174-188.
- [44] Steinbeck JA, Studer L. Moving stem cells to the clinic: potential and limitations for brain repair. Neuron. 2015;86(1):187-206
- [45] Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J Control Release. 2018;270:290-303.
- [46] Hampel H, O'Bryant SE, Molinuevo JL, Zetterberg H, Masters CL, Lista S, et al. Blood-based biomarkers for Alzheimer disease: Towards clinical implementation. Nat Rev Neurol. 2018;14(11):639-651.
- [47] Blennow K, Zetterberg H. Biomarkers for Alzheimer's disease: current status and prospects for the future. J Intern Med. 2018;284(6):643-663.

- [48] Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549(7673):523-527.
- [49] Sperling RA, Jack CR Jr, Black SE, Frosch MP, Greenberg SM, Hyman BT, et al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer's Association Research Roundtable Workgroup. Alzheimers Dement. 2011;7(4):367-385.
- [50] van den Berg B, Walgaard C, Drenthen J, Fokke C, Jacobs BC, van Doorn PA. Guillain-Barré syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol. 2014;10(8):469-482.
- [51] Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-1034.
- [52] Drucker DJ. Advances in oral peptide therapeutics. Nat Rev Drug Discov. 2020;19(4):277-289.
- [53] Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 2009;335(1):75-96.