REVIEW ARTICLE

A Review on the Role of Moxifloxacin in the Treatment and Management of Respiratory Tract Infections

Sourabh D Jain*1, Keerti Jain2, Amrin Khan3, Sumeet Prachand4, Arun K Gupta5

- Research Scholar, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medicaps University, Indore, Madhya Pradesh, India
- ² Assistant Professor, Department of Pharmaceutical Chemistry, Chameli Devi Institute of Pharmacy, Indore, Madhya Pradesh, India
- ³ Assistant Professor, Department of Pharmaceutics, BM College of Pharmaceutical Education and Research, Indore, Madhya Pradesh, India
- ⁴ Professor, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medicaps University, Indore, Madhya Pradesh, India
- ⁵ Principal, Department of Pharmaceutical Chemistry, Chameli Devi Institute of Pharmacy, Indore, Madhya Pradesh, India

Publication history: Received on 3rd June 2025; Revised on 29th June 2025; Accepted on 10th July 2025

Article DOI: 10.69613/ayysyk71

Abstract: Respiratory tract infections (RTIs) constitute a major global health burden, with significant impact on morbidity and mortality rates, particularly among vulnerable populations. Moxifloxacin, a fourth-generation fluoroquinolone, is an important antibiotic for treating various RTIs, including community-acquired pneumonia (CAP), acute exacerbations of chronic bronchitis (AECB), and acute bacterial sinusitis. The drug exhibits potent activity against key respiratory pathogens, including drug-resistant *Streptococcus pneumoniae*, *Haemophilus influenzae*, and atypical organisms. Its dual mechanism of action targeting bacterial DNA gyrase and topoisomerase IV, combined with favorable pharmacokinetic properties such as high bioavailability and extensive tissue penetration, contributes to its clinical effectiveness. Once-a-daily dose and the ability to switch between oral and intravenous formulations enhance its therapeutic utility. Clinical studies demonstrate comparable or superior efficacy to standard treatments across various RTIs. However, safety considerations include QT interval prolongation, tendinopathy risk, and rare cases of hepatotoxicity, necessitating careful patient selection and monitoring. The emergence of bacterial resistance mechanisms, including mutations in quinolone resistance-determining regions and efflux pumps, requires judicious use to maintain long-term effectiveness. Current evidence indicates that moxifloxacin is a valuable antimicrobial agent for RTIs, particularly in cases involving resistant pathogens or when first-line therapies are contraindicated.

Keywords: Moxifloxacin; Respiratory infections; Fluoroquinolones; Antimicrobial resistance; Pharmacokinetics

1. Introduction

Respiratory tract infections (RTIs) remain a significant healthcare challenge worldwide, affecting millions of patients annually and contributing substantially to healthcare costs [1]. The management of RTIs has increased due to evolving bacterial resistance patterns and the diverse patient populations requiring treatment, from otherwise healthy individuals to those with multiple comorbidities [2]. Moxifloxacin, introduced in the late 1990s, represents an important advancement in fluoroquinolone development [3]. Its chemical structure, featuring a methoxy group at the C-8 position and a bicyclic side chain at C-7, enhances its activity against Gram-positive organisms while maintaining effectiveness against Gram-negative pathogens [4]. The drug's molecular design also contributes to its improved safety profile compared to earlier fluoroquinolones [5].

The antimicrobial spectrum of moxifloxacin encompasses key respiratory pathogens, including *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Moraxella catarrhalis*, and atypical organisms such as *Mycoplasma pneumoniae* and *Legionella pneumophila* [6]. Its dual targeting mechanism, inhibiting both DNA gyrase and topoisomerase IV, provides enhanced bactericidal activity and reduces the likelihood of resistance development through single-step mutations [7]. Pharmacokinetic advantages of moxifloxacin include high oral bioavailability (approximately 90%), extensive tissue distribution, particularly in respiratory tissues, and a half-life supporting oncedaily administration [8]. These properties, combined with its broad antimicrobial spectrum, position moxifloxacin as a significant therapeutic option for various RTIs [9].

Moxifloxacin (1-cyclopropyl-7-[(S,S)-2,8-diazabicyclo[4.3.0]non-8-yl]-6-fluoro-8-methoxy-4-oxo-3-quinoline carboxylic acid) exhibits enhanced stability and bioavailability due to its unique molecular configuration [10]. The presence of the methoxy group at C-8 improves activity against anaerobic bacteria while reducing phototoxicity potential [11]

^{*} Corresponding author: Sourabh D Jain

Figure 1. Structure of Moxifloxacin

2. Pharmacology

2.1. Mechanism of Action

Moxifloxacin exerts its antimicrobial effects through a sophisticated dual-targeting mechanism that distinguishes it from many other antibacterial agents. The drug's primary mechanism involves the selective inhibition of two essential bacterial enzymes: DNA gyrase and topoisomerase IV [12]. These type II topoisomerases play crucial roles in DNA replication, transcription, repair, and recombination, making them vital targets for antibacterial therapy.

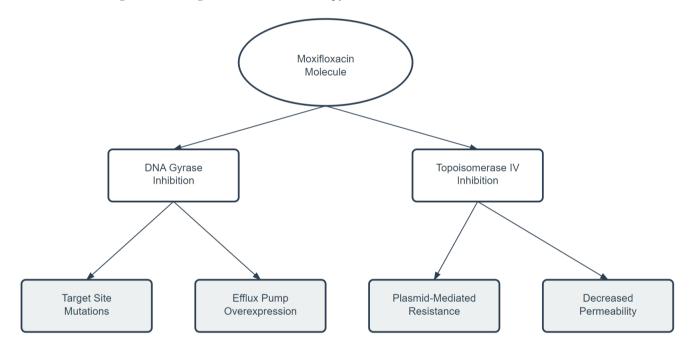


Figure 2. Mechanism of action and resistance of Moxifloxacin

The inhibitory action shows differential preferences based on bacterial classification. In Gram-negative organisms, DNA gyrase serves as the primary target, where moxifloxacin interferes with the enzyme's ability to supercoil DNA, thereby disrupting bacterial DNA synthesis [13]. Conversely, in Gram-positive bacteria, topoisomerase IV becomes the predominant target, where the drug interferes with chromosome segregation during cell division.

Table 1. Microbiological Spectrum of Moxifloxacin Against Common Respiratory Pathogens

Organism	MIC90 (mg/L)	Susceptibility Rate (%)
Streptococcus pneumoniae	0.25	98.2
- Penicillin-susceptible	0.12	99.5
- Penicillin-resistant	0.25	97.8
Haemophilus influenzae	0.06	99.8
Moraxella catarrhalis	0.12	99.9
Mycoplasma pneumoniae	0.12	99.0
Chlamydophila pneumoniae	0.12	99.5
Legionella pneumophila	0.06	99.0

This dual-targeting characteristic provides moxifloxacin with a significant therapeutic advantage. The drug creates a formidable barrier against resistance development, as bacteria would need to develop mutations in both targets to achieve significant resistance [14]. This mechanism also explains the broad spectrum of antimicrobial activity observed with moxifloxacin.

2.2. Pharmacokinetics

Moxifloxacin exhibits linear pharmacokinetics throughout its therapeutic dosing range, indicating proportional increases in systemic exposure with dose escalation [15]. This linear relationship simplifies dosing considerations and enhances the predictability of therapeutic outcomes. Following oral administration, moxifloxacin demonstrates rapid absorption kinetics, achieving peak plasma concentrations within a relatively narrow window of 1-3 hours [16]. This rapid absorption profile contributes to quick onset of antimicrobial activity. The drug's extensive volume of distribution, approximately 2 L/kg, indicates significant tissue penetration capabilities [17]. This characteristic ensures adequate drug concentrations at infection sites, particularly in respiratory tissues

Parameter	Value
Bioavailability (%)	90-92
Time to peak concentration (hours)	1-3
Peak serum concentration (mg/L)	3.1-4.5
Volume of distribution (L/kg)	1.7-2.7
Protein binding (%)	30-50
Half-life (hours)	11.5-15.6
Renal clearance (mL/min)	196-252
Area under curve (mg·h/L)	33.9-37.6

Table 2. Pharmacokinetic Parameters of Moxifloxacin (400 mg oral dose)

The distribution pattern of moxifloxacin particularly favours respiratory tract infections. Studies have demonstrated remarkable tissue penetration, with bronchial mucosa concentrations reaching 5.4 mg/kg [19]. Even more impressive are the concentrations achieved in alveolar macrophages, which exceed 56.7 mg/kg, suggesting excellent cellular penetration and potential activity against intracellular pathogens.

Tissue/Fluid	Concentration (mg/kg or mg/L)	Tissue: Plasma Ratio
Bronchial mucosa	5.4 ± 1.3	1.7
Epithelial lining fluid	20.7 ± 5.5	8.7
Alveolar macrophages	56.7 ± 30.8	21.2
Sinus mucosa	7.6 ± 1.7	2.0
Lung tissue	11.7 ± 4.9	3.7
Pleural fluid	2.8 ± 0.7	1.6

Table 3. Tissue Distribution of Moxifloxacin in Respiratory Sites

The drug's ability to maintain therapeutic concentrations in epithelial lining fluid for extended periods significantly contributes to its clinical efficacy in respiratory infections [20]. This sustained presence ensures continuous antimicrobial activity throughout the dosing interval, potentially improving treatment outcomes and reducing the likelihood of resistance development. A particularly noteworthy aspect of moxifloxacin's distribution profile is its consistent penetration into inflammatory fluids and tissues [21]. This characteristic remains robust even in challenging conditions where tissue barriers are present or blood flow patterns are altered, ensuring reliable drug delivery to infection sites. The moderate plasma protein binding of approximately 40% [18] further facilitates this distribution pattern, allowing a significant fraction of the drug to remain available for tissue penetration and antimicrobial activity

3. Moxifloxacin in Respiratory Tract Infections

3.1. Community-Acquired Pneumonia

Moxifloxacin demonstrates significant efficacy in treating CAP across severity levels [22]. Clinical success rates range from 93-95% in outpatient settings to 85-88% in hospitalized patients [23]. The drug shows particular effectiveness against resistant *Streptococcus pneumoniae* strains, with minimum inhibitory concentrations (MICs) significantly lower than other fluoroquinolones [24]. Studies comparing moxifloxacin with standard therapies demonstrate equivalent or superior outcomes. A multicenter trial involving 748 patients showed clinical cure rates of 93.4% for moxifloxacin versus 85.7% for amoxicillin-clavulanate in mild to moderate CAP [25]. In severe cases requiring hospitalization, moxifloxacin achieved comparable results to combination therapy with ceftriaxone and azithromycin [26].

3.2. Acute Exacerbations of Chronic Bronchitis

Clinical data supports moxifloxacin's role in AECB management, particularly in patients with risk factors for poor outcomes [27]. The drug's effectiveness stems from its activity against common AECB pathogens and its ability to achieve high concentrations in bronchial tissues [28]. A 5-day course of moxifloxacin demonstrates equivalence to longer traditional antibiotic regimens [29]. Clinical resolution rates reach 89% at end-of-therapy, with sustained response rates of 83% at follow-up [30]. The shorter treatment duration improves patient compliance and potentially reduces selection pressure for resistance development [31].

Category	Clinical Conditions	Typical Pathogens	Clinical Features
Upper RTIs	Acute bacterial sinusitis	S. pneumoniae	Facial pain/pressure
	Acute pharyngitis	H. influenzae	Nasal congestion
	Tonsilitis	M. catarrhalis	Purulent discharge
Lower RTIs	Community-acquired pneumonia	S. pneumoniae	Productive cough
	Acute bronchitis	Atypical organisms	Fever
	COPD exacerbations	H. influenzae	Dyspnea
Complicated RTIs	Hospital-acquired pneumonia	Resistant organisms	Severe symptoms
	Ventilator-associated pneumonia	Pseudomonas spp.	Multiple comorbidities
	Bronchiectasis	Mixed infections	Risk of complications

Table 4. Classification of Respiratory Tract Infections Treated with Moxifloxacin

3.3. Acute Bacterial Sinusitis

Moxifloxacin's efficacy in acute bacterial sinusitis relates to its excellent penetration into sinus tissues and activity against resistant pathogens [32]. Clinical studies report cure rates of 90% for moxifloxacin compared to 84% for amoxicillin-clavulanate [33]. The drug maintains effectiveness against penicillin-resistant *Streptococcus pneumoniae* strains commonly isolated from sinus infections [34].

4. Safety

4.1. Cardiovascular Effects

QT interval prolongation associated with moxifloxacin therapy has emerged as a crucial safety consideration that requires careful clinical attention. Electrocardiographic studies have consistently demonstrated that moxifloxacin administration results in QTc prolongation, with documented mean increases ranging from 6 to 12 milliseconds [35]. While this prolongation is generally modest and reversible, its clinical significance cannot be underestimated, particularly in vulnerable patient populations.

4.1.1. Monitoring

The observed QT interval changes necessitate a structured approach to patient assessment and monitoring. Research has shown that while these changes are typically moderate, they can become clinically significant in specific patient populations [36]. The magnitude of QT prolongation appears to be dose-dependent and exhibits temporal correlation with peak plasma concentrations, suggesting the importance of adherence to recommended dosing schedules.

4.1.2. Cardiac Risk Stratification

Pre-existing Cardiac Conditions: Patients with structural heart disease, congenital long QT syndrome, or a history of cardiac arrhythmias represent a high-risk group requiring particular attention. These individuals may demonstrate enhanced susceptibility to the QT-prolonging effects of moxifloxacin, necessitating more frequent cardiac monitoring during therapy.

Electrolyte Imbalance: Disturbances in electrolyte homeostasis, particularly involving potassium, magnesium, and calcium, can significantly amplify the QT-prolonging effects of moxifloxacin. Regular monitoring of electrolyte levels and prompt correction of any imbalances become essential components of risk management in these cases.

Drug Interactions: The concurrent administration of other medications known to affect cardiac conduction or prolong the QT interval requires careful evaluation. Common medications in this category include certain antiarrhythmics, antipsychotics, and specific antimicrobial agents. Combined effects on cardiac conduction may produce additive or synergistic QT prolongation.

4.1.3. Age-Related Factors:

Advanced age represents an independent risk factor for QT prolongation with moxifloxacin therapy. Elderly patients often exhibit altered drug metabolism, increased susceptibility to electrolyte disturbances, and higher prevalence of concurrent medications, all of which can enhance the risk of cardiac complications. These observations underscore the importance of implementing appropriate risk mitigation strategies, including thorough pre-treatment evaluation, careful patient selection, and regular monitoring during therapy, particularly in high-risk populations [35, 36]. The clinical decision to use moxifloxacin should always balance the potential benefits of therapy against these cardiovascular safety considerations.

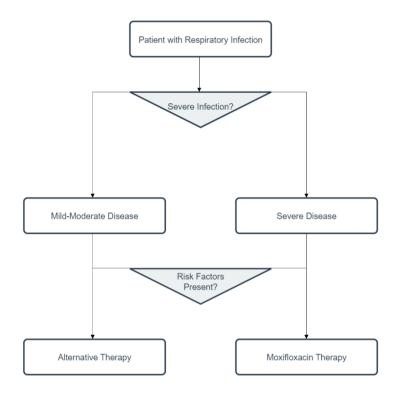


Figure 3. Treatment Algorithm for Moxifloxacin Use

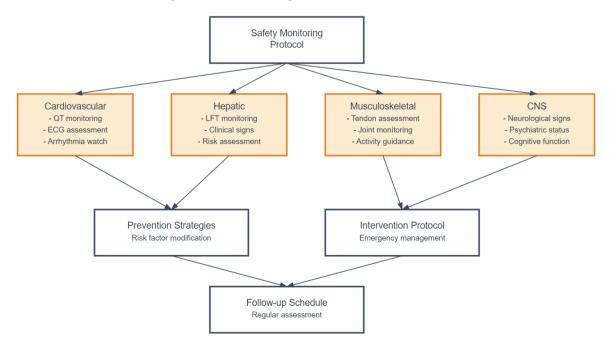


Figure 4. Safety Monitoring in Moxifloxacin Therapy

4.2. Musculoskeletal Effects

Tendinopathy risk, while class-related, appears less frequent with moxifloxacin compared to earlier fluoroquinolones [37]. The estimated incidence ranges from 0.14% to 0.4% [38]. Risk increases significantly in patients over 60 years and those receiving concurrent corticosteroid therapy [39].

4.3. Liver function

Adverse effects on Liver occur infrequently with moxifloxacin therapy [40]. Transient elevations in liver enzymes affect approximately 1-2% of patients, with severe hepatotoxicity reported in rare cases [41]. Risk factors for hepatic complications include pre-existing liver disease, alcohol use, and advanced age [42]. Regular monitoring of liver function becomes essential in patients with these risk factors.

4.4. Neurological Effects

Central nervous system effects manifest primarily as dizziness, headache, and rarely, seizures [43]. The incidence of CNS adverse events ranges from 1.6% to 3.5%, generally lower than observed with earlier fluoroquinolones [44]. Most neurological effects resolve spontaneously upon drug discontinuation.

Adverse Event Category	Risk Factors	Monitoring Requirements	Recommended Actions
Cardiovascular	Age >65 years	Baseline ECG	Avoid in patients with
	Female gender	Electrolyte monitoring	QT prolongation
	Electrolyte disorders	Cardiac monitoring in	Monitor QT interval
	Concurrent QT-prolonging drugs	high-risk patients	Correct electrolyte imbalances
Hepatic	Pre-existing liver disease	Baseline LFTs	Regular LFT monitoring
_	Alcohol use	Monitor symptoms	Discontinue if severe
	Advanced age	Regular LFT monitoring	hepatic dysfunction occurs
Musculoskeletal	Age >60 years	Monitor for tendon pain	Discontinue if tendinitis
	Corticosteroid use	Physical examination	develops
	Previous tendon disorders	Patient education	Avoid strenuous exercise

Table 5. Risk Factors and Monitoring Requirements for Adverse Events

5. Antimicrobial Resistance

5.1. Mechanisms of Antimicrobial Resistance

Several mechanisms contribute to moxifloxacin resistance development [45]:

5.1.1. Target Site Modifications

Mutations in the quinolone resistance-determining regions (QRDRs) of DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE) genes represent primary resistance mechanisms [46]. These mutations reduce drug binding affinity to bacterial enzymes.

5.1.2. Efflux Systems

Active drug efflux through membrane-associated proteins decreases intracellular drug concentrations [47]. The NorA pump in Staphylococcus aureus and MexAB-OprM system in Pseudomonas aeruginosa exemplify such mechanisms [48].

5.1.3. Plasmid-Mediated Resistance

Horizontal transfer of resistance genes through plasmids, particularly qnr genes, provides low-level resistance and facilitates the selection of higher-level resistance mutations [49].

5.2. Monitoring Antimicrobial Resistance

Comprehensive surveillance programs have been established worldwide to monitor and track the susceptibility patterns of respiratory pathogens to moxifloxacin and other antimicrobials. These programs, including the PROTEKT study and Alexander Project, provide crucial data regarding resistance trends and emerging patterns [50]. The systematic collection and analysis of

susceptibility data across different geographical regions have become instrumental in guiding empirical therapy decisions and antimicrobial stewardship efforts.

5.3. Pathogen-Specific Resistance Patterns

5.3.1. Streptococcus pneumoniae

Current surveillance data reveals encouraging findings regarding S. pneumoniae susceptibility to moxifloxacin. Resistance rates have maintained remarkably low levels, typically below 2% in most geographical regions [51]. This stability in susceptibility patterns is particularly noteworthy given that S. pneumoniae represents one of the most significant respiratory pathogens globally. The maintenance of high susceptibility rates likely reflects the dual-targeting mechanism of moxifloxacin and its controlled usage in many healthcare settings.

5.3.2. Haemophilus influenzae

The susceptibility patterns observed with *H. influenzae* show notable stability across surveillance periods. This pathogen, crucial in both upper and lower respiratory tract infections, has shown minimal development of resistance to moxifloxacin [50]. The preservation of susceptibility in *H. influenzae* populations provides continued confidence in moxifloxacin's empirical use for conditions where this pathogen is commonly implicated.

Risk Level	Patient Characteristics	Healthcare Exposure	Previous Antibiotic Use
Low Risk	Young adults	No recent hospitalization	No antibiotics in past 3 months
LOW KISK	No comorbidities	No healthcare facility exposure	No history of resistance
M - 1 + - D'-1-	Elderly patients	Recent outpatient visits	Single antibiotic course
Moderate Risk	Stable comorbidities	Brief hospitalizations	Within past 3-6 months
	Multiple comorbidities	Frequent hospitalizations	Multiple antibiotic courses
High Risk	Immunocompromised	Long-term care residence	Recent broad-spectrum use
	Structural lung disease	Regular healthcare contact	Known colonization with resistant organisms

Table 6. Risk Stratification for Antimicrobial Resistance

5.4. Geographical Variations

5.4.1. Regional Differences in Resistance Patterns

Significant geographical variations in resistance rates have been documented through surveillance programs [51]. These variations often correlate with local prescribing practices and antimicrobial use patterns. Areas with historically high fluoroquinolone utilization tend to demonstrate elevated resistance rates, highlighting the impact of selection pressure on bacterial populations.

5.4.2. Prescribing Practices

Regions characterized by extensive fluoroquinolone use, particularly in settings where these agents are commonly prescribed for uncomplicated infections, show concerning trends in resistance development. This observation underscores the importance of judicious antimicrobial use and adherence to prescribing guidelines [50]. The surveillance data carries significant implications for clinical practice. Healthcare providers must remain aware of local resistance patterns when making empirical therapy decisions. The variation in resistance rates emphasizes the need for:

5.4.3. Regional Guidelines

The development and regular updating of local treatment guidelines based on surveillance data helps optimize antimicrobial use and preserve drug effectiveness [51]. These guidelines should reflect regional resistance patterns and be readily accessible to healthcare providers.

5.4.4. Prescribing Stewardship

Implementation of antimicrobial stewardship programs becomes crucial in maintaining the effectiveness of moxifloxacin. These programs should incorporate regular reviews of surveillance data and adjust prescribing recommendations accordingly [50, 51]. The goal remains to balance optimal patient care with resistance prevention strategies.

5.5. Prevention of Resistance

Optimizing moxifloxacin use through appropriate dosing, treatment duration, and careful patient selection helps minimize resistance development [52]. Implementation of antimicrobial stewardship programs and regular susceptibility monitoring contribute to maintaining drug effectiveness [53].

5.5.1. Patient Selection

The initial evaluation of patients for moxifloxacin therapy requires careful consideration of infection severity and the likelihood of specific pathogens [54]. This assessment should incorporate clinical presentation, radiological findings, and laboratory markers of infection severity.

Local antimicrobial resistance patterns play a crucial role in patient selection for moxifloxacin therapy. Healthcare providers must maintain awareness of current susceptibility data from their institution or region [54]. This knowledge becomes particularly relevant in areas with documented fluoroquinolone resistance or where specific pathogens demonstrate shifting susceptibility patterns.

Comprehensive assessment of patient comorbidities significantly influences the decision to initiate moxifloxacin therapy. Conditions such as cardiac disease, hepatic dysfunction, or neurological disorders may impact the risk-benefit ratio. The presence of multiple comorbidities often requires careful consideration of potential drug interactions and monitoring requirements [54].

Previous antibiotic exposure, particularly to fluoroquinolones, requires careful evaluation. Recent exposure may increase the risk of resistant organisms and influence treatment success. Additionally, assessment of risk factors for adverse effects, including age, concurrent medications, and specific organ dysfunction, helps optimize patient selection [54].

5.5.2. Dosing

The established dosing regimen of 400 mg once daily has demonstrated consistent efficacy across various respiratory infections [55]. This straightforward dosing schedule promotes patient adherence while maintaining therapeutic drug levels. The once-daily administration aligns with the drug's pharmacokinetic properties and provides sustained antimicrobial activity.

Community-Acquired Pneumonia: For CAP, treatment duration typically ranges from 7 to 14 days, with the specific duration individualized based on disease severity and clinical response [55]. More severe cases or those with complicated features may require extended therapy, while uncomplicated infections might respond adequately to shorter courses.

Acute Exacerbation of Chronic Bronchitis: AECB treatment generally requires 5-7 days of therapy [56]. This shorter duration has demonstrated effectiveness while potentially reducing the risk of adverse effects and resistance development. Clinical studies have shown comparable outcomes between short-course and traditional longer therapy in appropriate patients.

Acute Bacterial Sinusitis: Treatment duration for acute bacterial sinusitis typically spans 7-10 days [55]. This duration balances the need for adequate antimicrobial coverage with the principles of antimicrobial stewardship.

Individualization of Treatment Duration: The final determination of treatment duration requires ongoing clinical assessment [56]. Factors influencing duration adjustments include:

- Severity of initial presentation
- Rate of clinical improvement
- Presence of complications
- Patient-specific risk factors
- Previous treatment history.

6. Conclusion

Moxifloxacin plays a vital role for the management of respiratory tract infections, particularly in patients where broad-spectrum coverage or activity against resistant pathogens is required. Its pharmacokinetic profile, featuring high bioavailability and excellent tissue penetration, combined with its broad antimicrobial spectrum, provides effective treatment options for various respiratory infections. The once-daily dosing regimen and availability of both oral and intravenous formulations enhance therapeutic flexibility and patient compliance. Clinical evidence supports moxifloxacin's efficacy in community-acquired pneumonia, acute exacerbations of chronic bronchitis, and acute bacterial sinusitis, with outcomes comparable or superior to conventional therapies. The drug's effectiveness against resistant strains, including drug-resistant *Streptococcus pneumoniae*, positions it as a valuable alternative when first-

line agents fail or are contraindicated. However, the use of moxifloxacin requires careful consideration of potential adverse effects, particularly cardiac, musculoskeletal, and hepatic complications. Patient selection, risk assessment, and appropriate monitoring remain crucial components of successful therapy. The emergence of bacterial resistance mechanisms necessitates continued surveillance and judicious use to preserve the drug's long-term effectiveness.

References

- [1] Woodhead M, Blasi F, Ewig S, Garau J, Huchon G, Ieven M, et al. Guidelines for the management of adult lower respiratory tract infections Full version. Clin Microbiol Infect. 2011;17(Suppl 6):E1-59.
- [2] File TM Jr. The epidemiology of respiratory tract infections. Semin Respir Infect. 2000;15(3):184-94.
- [3] Zhanel GG, Walkty A, Vercaigne L, Karlowsky JA, Embil J, Gin AS, et al. The new fluoroquinolones: A critical review. Can J Infect Dis. 1999;10(3):207-38.
- [4] Drlica K, Malik M. Fluoroquinolones: action and resistance. Curr Top Med Chem. 2003;3(3):249-82.
- [5] Ball P, Stahlmann R, Kubin R, Choudhri S, Owens R. Safety profile of oral and intravenous moxifloxacin: cumulative data from clinical trials and postmarketing studies. Clin Ther. 2004;26(7):940-50.
- [6] Miravitlles M. Moxifloxacin in respiratory tract infections. Expert Opin Pharmacother. 2005;6(2):283-93.
- [7] Hooper DC. Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin Infect Dis. 2001;32(Suppl 1):S9-15.
- [8] Stass H, Kubitza D. Pharmacokinetics and elimination of moxifloxacin after oral and intravenous administration in man. J Antimicrob Chemother. 1999;43(Suppl B):83-90.
- [9] Balfour JA, Lamb HM. Moxifloxacin: a review of its clinical potential in the management of community-acquired respiratory tract infections. Drugs. 2000;59(1):115-39.
- [10] Peterson LR. Quinolone molecular structure-activity relationships: what we have learned about improving antimicrobial activity. Clin Infect Dis. 2001;33(Suppl 3):S180-6.
- [11] Domagala JM. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother. 1994;33(4):685-706.
- [12] Blondeau JM. A review of the comparative in-vitro activities of 12 antimicrobial agents, with a focus on five new respiratory quinolones. J Antimicrob Chemother. 1999;43(Suppl B):1-11.
- [13] Drlica K, Zhao X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev. 1997;61(3):377-92.
- [14] Hooper DC. Mechanisms of fluoroquinolone resistance. Drug Resist Updat. 1999;2(1):38-55.
- [15] Stass H, Dalhoff A, Kubitza D, Schühly U. Pharmacokinetics, safety, and tolerability of ascending single doses of moxifloxacin, a new 8-methoxy quinolone, administered to healthy subjects. Antimicrob Agents Chemother. 1998;42(8):2060-5
- [16] Sullivan JT, Woodruff M, Lettieri J, Agarwal V, Krol GJ, Leese PT, et al. Pharmacokinetics of a once-daily oral dose of moxifloxacin (Bay 12-8039), a new enantiomerically pure 8-methoxy quinolone. Antimicrob Agents Chemother. 1999;43(11):2793-7.
- [17] Müller M, Stass H, Brunner M, Möller JG, Lackner E, Eichler HG. Penetration of moxifloxacin into peripheral compartments in humans. Antimicrob Agents Chemother. 1999;43(10):2345-9.
- [18] Sorgel F, Kinzig M. The chemistry, pharmacokinetics and tissue distribution of moxifloxacin. J Antimicrob Chemother. 2000;45(Suppl 1):11-7.
- [19] Capitano B, Mattoes HM, Shore E, O'Brien A, Braman S, Sutherland C, et al. Steady-state intrapulmonary concentrations of moxifloxacin, levofloxacin, and azithromycin in older adults. Chest. 2004;125(3):965-73.
- [20] Wise R, Honeybourne D. Pharmacokinetics and pharmacodynamics of fluoroquinolones in the respiratory tract. Eur Respir J. 1999;14(1):221-9.
- [21] Brunner M, Langer O, Dobrozemsky G, Müller U, Zeitlinger M, Mitterhauser M, et al. Inflammation and tissue distribution of fluoroquinolones in healthy volunteers. Eur J Clin Pharmacol. 2004;60(8):553-7.
- [22] File TM Jr, Garau J, Blasi F, Chidiac C, Klugman K, Lode H, et al. Guidelines for empiric antimicrobial prescribing in community-acquired pneumonia. Chest. 2004;125(5):1888-901.
- [23] Finch R, Schürmann D, Collins O, Kubin R, McGivern J, Bobbaers H, et al. Randomized controlled trial of sequential intravenous (i.v.) and oral moxifloxacin compared with sequential i.v. and oral co-amoxiclav with or without clarithromycin

- in patients with community-acquired pneumonia requiring initial parenteral treatment. Antimicrob Agents Chemother. 2002;46(6):1746-54.
- [24] Zhanel GG, Ennis K, Vercaigne L, Walkty A, Gin AS, Embil J, et al. A critical review of the fluoroquinolones: focus on respiratory infections. Drugs. 2002;62(1):13-59.
- [25] Torres A, Garau J, Arvis P, Carlet J, Choudhri S, Kureishi A, et al. Moxifloxacin monotherapy is effective in hospitalized patients with community-acquired pneumonia: the MOTIV study--a randomized clinical trial. Clin Infect Dis. 2008;46(10):1499-509.
- [26] Welte T, Petermann W, Schürmann D, Bauer TT, Reimnitz P. Treatment with sequential intravenous or oral moxifloxacin was associated with faster clinical improvement than was standard therapy for hospitalized patients with community-acquired pneumonia who received initial parenteral therapy. Clin Infect Dis. 2005;41(12):1697-705.
- [27] Wilson R, Allegra L, Huchon G, Izquierdo JL, Jones P, Schaberg T, et al. Short-term and long-term outcomes of moxifloxacin compared to standard antibiotic treatment in acute exacerbations of chronic bronchitis. Chest. 2004;125(3):953-64.
- [28] Miravitlles M, Anzueto A. Moxifloxacin: a respiratory fluoroquinolone. Expert Opin Pharmacother. 2008;9(10):1755-72.
- [29] Sethi S, Murphy TF. Acute exacerbations of chronic bronchitis: new developments concerning microbiology and pathophysiology--impact on approaches to risk stratification and therapy. Infect Dis Clin North Am. 2004;18(4):861-82.
- [30] Wilson R, Schentag JJ, Ball P, Mandell L. A comparison of gemifloxacin and clarithromycin in acute exacerbations of chronic bronchitis and long-term clinical outcomes. Clin Ther. 2002;24(4):639-52.
- [31] Chodosh S, DeAbate CA, Haverstock D, Aneiro L, Church D. Short-course moxifloxacin therapy for treatment of acute bacterial exacerbations of chronic bronchitis. Respir Med. 2000;94(1):18-27.
- [32] Klossek JM, Federspil P. Update on treatment guidelines for acute bacterial sinusitis. Int J Clin Pract. 2005;59(2):230-8.
- [33] Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, et al. European position paper on rhinosinusitis and nasal polyps 2012. Rhinol Suppl. 2012;23:3 p preceding table of contents, 1-298.
- [34] Ferguson BJ, Guzzetta RV, Spector SL, Hadley JA. Efficacy and safety of oral telithromycin once daily for 5 days versus moxifloxacin once daily for 10 days in the treatment of acute bacterial rhinosinusitis. Otolaryngol Head Neck Surg. 2004;131(3):207-14.
- [35] Haverkamp W, Kruesmann F, Fritsch A, van Veenhuyzen D, Arvis P. Update on the cardiac safety of moxifloxacin. Curr Drug Saf. 2012;7(2):149-63.
- [36] Anderson ME, Mazur A, Yang T, Roden DM. Potassium current antagonist properties and proarrhythmic consequences of quinolone antibiotics. J Pharmacol Exp Ther. 2001;296(3):806-10.
- [37] Van der Linden PD, Sturkenboom MC, Herings RM, Leufkens HM, Rowlands S, Stricker BH. Increased risk of achilles tendon rupture with quinolone antibacterial use, especially in elderly patients taking oral corticosteroids. Arch Intern Med. 2003;163(15):1801-7.
- [38] Leone R, Venegoni M, Motola D, Moretti U, Piazzetta V, Cocci A, et al. Adverse drug reactions related to the use of fluoroquinolone antimicrobials: an analysis of spontaneous reports and fluoroquinolone consumption data from three italian regions. Drug Saf. 2003;26(2):109-20.
- [39] Khaliq Y, Zhanel GG. Fluoroquinolone-associated tendinopathy: a critical review of the literature. Clin Infect Dis. 2003;36(11):1404-10.
- [40] Andriole VT. The quinolones: past, present, and future. Clin Infect Dis. 2005;41(Suppl 2):S113-9.
- [41] Paterson JM, Mamdani MM, Manno M, Juurlink DN. Fluoroquinolone therapy and idiosyncratic acute liver injury: a population-based study. CMAJ. 2012;184(14):1565-70.
- [42] Owens RC Jr, Ambrose PG. Antimicrobial safety: focus on fluoroquinolones. Clin Infect Dis. 2005;41(Suppl 2):S144-57.
- [43] Stahlmann R, Lode H. Safety considerations of fluoroquinolones in the elderly: an update. Drugs Aging. 2010;27(3):193-209.
- [44] Carbon C. Comparison of side effects of levofloxacin versus other fluoroquinolones. Chemotherapy. 2001;47(Suppl 3):9-14.
- [45] Hooper DC. Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis. 2001;7(2):337-41.
- [46] Ruiz J. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother. 2003;51(5):1109-17.

- [47] Poole K. Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob Agents Chemother. 2000;44(9):2233-41.
- [48] Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs. 2004;64(2):159-204.
- [49] Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006;6(10):629-40.
- [50] Jacobs MR, Felmingham D, Appelbaum PC, Grüneberg RN. The Alexander Project 1998-2000: susceptibility of pathogens isolated from community-acquired respiratory tract infection to commonly used antimicrobial agents. J Antimicrob Chemother. 2003;52(2):229-46.
- [51] Canton R, Morosini M, Enright MC, Morrissey I. Worldwide incidence, molecular epidemiology and mutations implicated in fluoroquinolone-resistant *Streptococcus pneumoniae*: data from the global PROTEKT surveillance programme. J Antimicrob Chemother. 2003;52(6):944-52.
- [52] Lode H, Allewelt M. Role of newer fluoroquinolones in lower respiratory tract infections. J Antimicrob Chemother. 2002;50(2):151-4.
- [53] Dellit TH, Owens RC, McGowan JE Jr, Gerding DN, Weinstein RA, Burke JP, et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis. 2007;44(2):159-77.
- [54] File TM Jr, Niederman MS. Antimicrobial therapy of community-acquired pneumonia. Infect Dis Clin North Am. 2004;18(4):993-1016.
- [55] Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44(Suppl 2):S27-72.
- [56] Grossman RF, Ambrusz ME, Fisher AC, Khashab MM, Kahn JB. Levofloxacin 750 mg QD for five days versus amoxicillin/clavulanate 875 mg/125 mg BID for ten days for treatment of acute bacterial exacerbation of chronic bronchitis: a post hoc analysis of data from severely ill patients. Clin Ther. 2006;28(8):1175-80.