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Abstract: Recent developments in artificial intelligence have transformed the fragment-based drug design (FBDD), changing 
traditional approaches to drug discovery. Machine learning and deep learning algorithms now enable rapid exploration of vast 
chemical spaces, precise prediction of fragment properties, and optimization of binding interactions. The use of AI-driven 
methods with FBDD has enhanced virtual library screening efficiency, improved hit identification accuracy, and accelerated the 
fragment-to-lead optimization process. Deep generative models and physics-informed neural networks have shown remarkable 
capabilities in designing vast fragment libraries and predicting their physicochemical properties. Graph neural networks and 
reinforcement learning algorithms have proven particularly effective in binding affinity prediction and fragment elaboration 
methods. The combination of AI technologies with experimental methods, including X-ray crystallography, NMR spectroscopy, 
and surface plasmon resonance, has established new paradigms in structure-based drug design. Success stories in developing 
kinase inhibitors and targeting protein-protein interactions highlight the practical impact of AI-guided FBDD. These AI-enabled 
virtual library screening helps in reducing drug discovery timelines and improve success rates in lead optimization. 
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1. Introduction 

Fragment-based drug design (FBDD) discovered in the early 1990s as an innovative approach to drug discovery, marking a 
significant departure from traditional high-throughput screening methods [1]. The foundational concept, first proposed by Jencks 
in 1981, suggested that binding energy contributions from molecular fragments could be additive when properly linked [2]. This 
principle was later validated through pioneering work at Abbott Laboratories and Astex Pharmaceuticals, leading to the first 
fragment-derived drug, Vemurafenib, approved in 2011 [3]. The emergence of FBDD represented a paradigm shift in drug discovery 
philosophy, transitioning from the screening of complex molecules to the strategic identification and elaboration of simple chemical 
fragments with optimal binding efficiency. 

FBDD offers several distinct advantages compared to conventional high-throughput screening approaches. The method employs 
smaller molecular fragments (typically <300 Da), allowing more efficient exploration of chemical space with fewer compounds [4]. 
This size limitation enables a more thorough investigation of potential binding interactions while maintaining manageable library 
sizes. Fragment libraries, typically comprising 1,000-5,000 compounds, provide higher hit rates and better chemical tractability 
compared to traditional HTS libraries of 10^6 compounds [5]. The smaller size of fragment libraries facilitates more comprehensive 
screening and reduces the resources required for initial hit identification. Additionally, fragments generally exhibit better 
physicochemical properties and follow the rule of three, facilitating optimization into drug-like molecules [6]. The rule of three—
molecular weight <300 Da, cLogP ≤3, hydrogen bond donors ≤3, hydrogen bond acceptors ≤3, and rotatable bonds ≤3—
establishes guidelines for fragment selection that promote favorable pharmacokinetic properties in the final optimized compounds. 

The fundamental principles of FBDD revolve around the identification of low molecular weight compounds that bind weakly but 
efficiently to target proteins [7]. These fragments serve as starting points for subsequent optimization through growing, linking, or 
merging strategies. Fragment growing involves the systematic addition of functional groups to enhance binding affinity while 
maintaining key interaction points. Fragment linking connects multiple fragments that bind to adjacent pockets, potentially achieving 
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synergistic binding effects. Fragment merging combines structural elements from different fragments to create hybrid molecules 
with improved properties. However, several challenges persist in the implementation of these strategies. The detection of weak 
binding interactions, typically in the millimolar range, requires highly sensitive biophysical techniques and careful experimental 
design. Accurate positioning of fragments in binding sites necessitates high-resolution structural data and sophisticated 
computational modeling. Determining optimal fragment growing or linking strategies involves complex decision-making processes 
that balance multiple parameters simultaneously. Perhaps most challenging is the maintenance of ligand efficiency during 
optimization [8], as the addition of molecular complexity often diminishes the binding efficiency per atom that makes fragments 
attractive starting points. 

 

Figure 1. AI-Guided Fragment-Based Drug Design 

The successful implementation of FBDD requires sensitive biophysical techniques, including X-ray crystallography, NMR 
spectroscopy, and surface plasmon resonance, to detect and characterize fragment binding [9]. X-ray crystallography provides 
detailed structural information about fragment binding modes, enabling rational design decisions during optimization. NMR 
spectroscopy offers insights into binding dynamics and can detect even weak interactions through chemical shift perturbations. 
Surface plasmon resonance allows real-time monitoring of binding kinetics, providing complementary data on association and 
dissociation rates. These experimental methods generate large volumes of data, necessitating sophisticated computational 
approaches for effective analysis and interpretation. 

Table 1. Evolution of AI Methods in Fragment-Based Drug Design 

Time 
Period 

AI Technology Applications Major Advantages 

2010-
2015 

Simple Machine Learning 
(Random Forests, SVMs) 

Property prediction, Virtual 
screening 

Faster screening, Basic pattern 
recognition 

2015-
2018 

Deep Neural Networks Fragment library design, Binding 
prediction 

Improved accuracy, Better feature 
extraction 

2018-
2020 

Graph Neural Networks Structure-activity relationships, 
Binding site prediction 

Enhanced molecular representation, 
Better spatial understanding 

2020-
2024 

Transformer Models, Physics-
informed Neural Networks 

Multi-parameter optimization, 
Dynamic binding prediction 

Integration of physical constraints, 
Better generalization 
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Figure 2. Evolution of AI Methods in Fragment-Based Drug Design (2010-2024) 

2. AI in Fragment Library Design 

2.1. Deep Generative Models for Fragment Space Exploration 

Recent advances in deep learning have revolutionized fragment library design through the application of generative models [10]. 
Variational autoencoders (VAEs) and generative adversarial networks (GANs) enable the exploration of chemical space and 
generation of novel fragments with desired properties [11]. These models learn the underlying distribution of known fragment 
structures and can generate new, pharmaceutically relevant fragments while maintaining synthetic accessibility [12]. 

Table 2. AI Models and Their Applications in Different FBDD Stages 

FBDD Stage AI Model Type Features Success Metrics 
Fragment Library 
Design 

Generative Models (VAEs, 
GANs) 

Novel fragment generation, Property 
optimization 

Diversity score, Synthetic 
accessibility 

Virtual Screening CNNs, Graph Neural 
Networks 

Binding pose prediction, Affinity 
estimation 

ROC-AUC, Enrichment 
factors 

Hit Optimization Reinforcement Learning Growth vector prediction, Property 
maintenance 

Ligand efficiency, Drug-
likeness 

Experimental Data 
Analysis 

Deep Learning, CNN Structure determination, Data 
integration 

Resolution accuracy, 
Processing speed 

2.2. Physics-informed Neural Networks for Fragment Property Prediction 

Physics-informed neural networks (PINNs) incorporate fundamental physical laws and constraints into their architecture, enabling 
more accurate prediction of fragment properties [13]. These networks can simultaneously predict multiple physicochemical 
properties, including: 

• Binding free energies 
• Solubility parameters 
• Conformational preferences 
• Pharmacokinetic properties [14] 
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2.3. Diversity-oriented Computational Fragment Libraries 

AI algorithms have enhanced the design of diverse fragment libraries by optimizing molecular descriptors and structural features 
[15]. Advanced machine learning techniques facilitate the creation of libraries that maximize chemical space coverage while 
maintaining synthetic accessibility and drug-likeness [16]. These methods use various metrics and clustering algorithms to ensure 
optimal representation of different scaffold classes and functional groups [17]. 

Table 3. Characteristics of Fragment Libraries Designed by Different AI Approaches 

AI Approach Fragment Properties Library Characteristics Screening Efficiency 
Traditional Design MW < 300, cLogP < 3 General purpose, Rule of 3 

compliant 
Standard hit rates 

Deep Generative 
Models 

Customized physicochemical 
profiles 

Target-focused, Property-
optimized 

Enhanced hit 
identification 

Evolutionary 
Algorithms 

Scaffold-based diversity Maximum chemical space coverage Improved structural 
variety 

Physics-based Models Optimized 3D conformers Energy-minimized structures Better binding 
predictions 

Hybrid AI Systems Multi-parameter optimization Balanced diversity-specificity Higher success in 
screening 

 

Figure 3. AI in Fragment-Based Drug Design 

3. Virtual Screening of Fragment Libraries 

3.1. Machine Learning for Fragment Docking 

Contemporary machine learning algorithms have transformed fragment docking methodologies by incorporating sophisticated 
scoring functions and pose prediction mechanisms [18]. These advanced computational approaches have revolutionized traditional 
docking workflows by introducing neural network architectures specifically designed to process complex structural information. 
Deep learning models trained on extensive structural databases demonstrate superior accuracy in predicting binding poses compared 
to traditional force field-based methods [19]. These models excel in capturing non-linear relationships between molecular features 
and binding conformations, enabling more accurate predictions even for challenging protein targets with flexible binding sites or 
multiple potential interaction points. The integration of convolutional neural networks enables rapid processing of three-
dimensional structural data, significantly accelerating the screening process while maintaining high accuracy levels [20]. CNN-based 
approaches can efficiently analyze electron density maps and protein surface features to identify potential binding pockets and 
predict fragment orientations within these sites with unprecedented precision. This combination of speed and accuracy has 
transformed fragment screening campaigns, allowing researchers to evaluate substantially larger virtual libraries while maintaining 
confidence in the predicted binding modes. 
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3.2. Graph Neural Networks for Binding Affinity Prediction 

Graph neural networks (GNNs) represent a significant advancement in binding affinity prediction by treating molecular structures 
as graphs, where atoms are nodes and bonds are edges [21]. This representation provides a natural framework for capturing the 
topological and chemical features of both proteins and fragments, preserving critical spatial relationships and interaction patterns. 
GNNs process molecular structures through message-passing operations that allow information to flow between connected atoms, 
enabling the network to learn complex structural and electronic features that contribute to binding. These networks capture complex 
structural patterns and chemical interactions, leading to more accurate predictions of fragment-protein binding affinities [22]. The 
graph-based representation enables GNNs to recognize subtle structural motifs and pharmacophore patterns that might be missed 
by conventional descriptor-based approaches, resulting in more nuanced affinity predictions. Recent developments in attention 
mechanisms within GNNs have further improved the ability to identify key interaction patterns and structural features that 
contribute to binding strength [23]. Attention mechanisms allow the model to dynamically focus on the most relevant parts of the 
molecular structure during the prediction process, effectively highlighting atoms and bonds that make significant contributions to 
binding affinity. This capability has proven particularly valuable in fragment screening, where small structural changes can 
dramatically impact binding properties. 

3.3. Comparison of Classical and AI-Driven Virtual Screening  

Traditional virtual screening methods relied heavily on empirical scoring functions and simplified physical models, often leading to 
limited accuracy in fragment screening [24]. These conventional approaches typically employed additive energy terms to approximate 
binding energies, failing to capture complex cooperative effects and entropic contributions that significantly influence fragment 
binding. The simplified molecular representations used in classical methods frequently resulted in poor discrimination between 
active and inactive fragments, particularly for challenging targets with complex binding sites. Modern AI-driven approaches 
incorporate multiple layers of molecular representation and learning, resulting in significantly improved screening outcomes [25]. 
These sophisticated systems learn hierarchical features from molecular structures, recognizing complex patterns that extend beyond 
simple physicochemical descriptors. The multi-scale nature of AI models enables simultaneous consideration of local interaction 
patterns and global structural features, resulting in more holistic binding predictions. Neural network-based scoring functions have 
demonstrated superior performance in discriminating between active and inactive fragments, particularly in challenging cases 
involving multiple binding modes or complex protein-ligand interactions [26]. These advanced scoring functions excel in recognizing 
subtle binding features that determine fragment activity, effectively reducing false positive rates while maintaining high sensitivity 
in identifying true hits. The remarkable improvement in virtual screening performance has established AI-driven methods as 
essential components in modern fragment-based drug discovery campaigns. 

4. Fragment Hit Identification 

4.1. AI-Powered Analysis of Experimental Screening Data 

Advanced machine learning algorithms now enable rapid analysis of complex experimental screening data, facilitating the 
identification of promising fragment hits [27]. These sophisticated computational tools can process large volumes of experimental 
results, extracting meaningful patterns and identifying potential hits with unprecedented efficiency. The ability to rapidly analyze 
screening data has dramatically accelerated the hit identification process, allowing researchers to move quickly from initial screening 
to validation and optimization stages. Deep learning models process multiple data streams simultaneously, including crystallographic, 
spectroscopic, and biochemical data, to identify genuine binding events and eliminate false positives [28]. This multi-modal approach 
integrates complementary information sources, providing a more comprehensive assessment of fragment binding quality than would 
be possible through any single experimental technique. The ability to correlate structural information with functional data enables 
more confident determination of true binding events and helps prioritize fragments for further evaluation. Neural network 
architectures specifically designed for analyzing biophysical screening data have enhanced the ability to detect weak but specific 
fragment binding interactions [29]. These specialized networks can recognize subtle signal patterns indicative of specific binding, 
even in cases where the signal-to-noise ratio is challenging. This capability is particularly valuable in fragment screening, where 
binding affinities are typically in the millimolar range and may be difficult to distinguish from non-specific interactions using 
conventional analysis methods. 

4.2. Automated Interpretation of Biophysical Assays 

Modern AI systems excel in interpreting complex biophysical assay data, including thermal shift analysis, surface plasmon resonance, 
and nuclear magnetic resonance spectroscopy results [30]. These systems employ sophisticated pattern recognition algorithms to 
extract meaningful information from complex experimental outputs, identifying binding signatures that might be missed by 
conventional analysis approaches. The ability to accurately interpret diverse biophysical data types has significantly enhanced the 
reliability of fragment screening campaigns, enabling more confident identification of genuine hits. Machine learning algorithms 
process and analyze these diverse data types, identifying patterns and correlations that might escape human observation [31]. These 
algorithms excel in recognizing subtle data features that correlate with binding quality, enabling more nuanced assessment of 
fragment hits. The ability to identify complex patterns across multiple experiments allows for more comprehensive evaluation of 
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fragment properties, including binding affinity, kinetics, and selectivity. The automation of data interpretation has significantly 
reduced the time required for hit validation while improving the reliability of fragment screening campaigns [32]. 

4.3. Structural and Biochemical Data through Multimodal Models 

Multimodal deep learning models have revolutionized the integration of diverse experimental data types in fragment screening [33]. 
These sophisticated systems can simultaneously process and correlate information from multiple experimental sources, extracting 
complementary insights that enhance hit evaluation and validation. The ability to integrate diverse data types enables more 
comprehensive assessment of fragment properties, considering both structural binding characteristics and functional effects in a 
unified analytical framework. These sophisticated systems combine information from multiple sources, including X-ray 
crystallography, NMR spectroscopy, and biochemical assays, to provide comprehensive assessment of fragment binding [34]. The 
integration of structural information from crystallography and NMR with functional data from biochemical and cellular assays 
enables more holistic evaluation of fragment quality. This comprehensive approach allows researchers to assess not only binding 
affinity but also binding mode, specificity, and potential functional consequences simultaneously. The ability to simultaneously 
analyze structural and functional data has led to more informed decision-making in hit selection and validation processes [35] 

5. Fragment Growing and Linking  

5.1. Reinforcement Learning for Optimal Fragment Elaboration 

Reinforcement learning algorithms have emerged as powerful tools for guiding fragment optimization strategies [36]. These 
computational approaches utilize a reward-based learning framework, where successful molecular modifications are reinforced 
through positive feedback, guiding the system toward increasingly optimal solutions. The reinforcement learning paradigm is 
particularly well-suited to fragment optimization, where sequential decision-making is required to navigate the vast chemical space 
of possible modifications. These systems learn from successful fragment elaboration patterns in existing drug discovery projects, 
developing optimal policies for growing fragments while maintaining favorable physicochemical properties [37]. This data-driven 
approach enables more informed optimization strategies, avoiding common pitfalls and focusing on modifications with higher 
likelihood of success. Recent advances in deep reinforcement learning have enabled the exploration of vast chemical spaces while 
considering multiple optimization objectives simultaneously, including potency, selectivity, and synthetic accessibility [38]. These 
sophisticated models can balance competing design objectives, proposing modifications that improve target properties while 
maintaining drug-like characteristics. The ability to optimize across multiple parameters simultaneously has significantly enhanced 
the efficiency of fragment elaboration, reducing the number of design-synthesis-test cycles required to achieve desired compound 
profiles. 

 

Figure 4. AI Methods in Fragment Optimization 

5.2. Generative Models for Fragment-to-Lead Evolution 

Advanced generative models now facilitate the systematic evolution of fragment hits into lead compounds [39]. These computational 
tools can generate novel molecular structures by learning the underlying distribution of chemical features from training data, 
proposing new compounds that maintain essential binding interactions while introducing beneficial modifications. The generative 
approach enables efficient exploration of chemical space around fragment hits, suggesting diverse optimization pathways that might 
not be immediately apparent to human designers. These models employ sophisticated architectures that consider both local and 
global molecular features during the optimization process [40]. By simultaneously evaluating atomic-level interactions and overall 
molecular properties, generative models ensure that proposed modifications enhance binding affinity without compromising drug-
like characteristics. This multi-scale evaluation approach has proven particularly valuable in maintaining the exceptional ligand 
efficiency that makes fragments attractive starting points. Conditional generative adversarial networks have proven particularly 
effective in suggesting chemical modifications that maintain key binding interactions while improving drug-like properties [41]. 
These networks generate candidate molecules conditioned on specific design objectives, such as maintaining hydrogen bonding 
patterns while improving solubility or metabolic stability. The adversarial training framework, where generator and discriminator 
networks compete to produce increasingly realistic and effective molecules, drives continuous improvement in the quality of 
proposed modifications. The integration of reaction prediction models ensures that suggested modifications remain synthetically 
tractable [42]. 
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5.3. Automated Synthetic Accessibility Assessment 

Machine learning approaches have revolutionized the evaluation of synthetic feasibility during fragment optimization [43]. These 
computational tools assess the synthetic accessibility of proposed compounds by learning from extensive databases of known 
chemical reactions and synthesis pathways. The ability to rapidly evaluate synthetic feasibility enables more efficient prioritization 
of optimization directions, focusing experimental efforts on modifications that can be readily implemented in the laboratory. Neural 
networks trained on extensive databases of chemical reactions can accurately predict the synthetic accessibility of proposed fragment 
modifications [44]. These models recognize structural patterns associated with challenging synthesis steps, identifying potential 
synthetic bottlenecks before significant resources are invested in optimization paths. The incorporation of reaction knowledge into 
optimization workflows ensures that computational design remains grounded in practical synthetic reality. These systems consider 
factors such as starting material availability, reaction conditions, and potential side reactions to guide the selection of optimal growth 
vectors [45]. 

6. Hit Optimization Case Studies 

6.1. Success Stories in Kinase Inhibitor Development 

The application of AI-guided FBDD has yielded remarkable success in developing novel kinase inhibitors [46]. The challenging 
nature of kinase targets, with highly conserved ATP-binding sites but requirements for selectivity, makes them particularly suitable 
for fragment-based approaches enhanced by artificial intelligence. AI algorithms have demonstrated exceptional capability in 
identifying subtle structural features that confer selectivity while maintaining potency, addressing one of the central challenges in 
kinase inhibitor development. Notable achievements include the development of selective JAK inhibitors through fragment-based 
approaches, where AI algorithms identified optimal growing strategies to achieve target selectivity [47]. These studies utilized 
machine learning models to analyze binding patterns across multiple JAK family members, identifying fragment elaboration paths 
that exploit subtle differences in binding site architecture. The resulting compounds demonstrated unprecedented selectivity profiles 
while maintaining potent inhibition of the target kinase, illustrating the power of AI-guided optimization. Machine learning models 
have proven particularly valuable in optimizing fragment hits against challenging kinase targets, leading to compounds with 
improved potency and selectivity profiles [48]. 

6.2. Application to Challenging Protein-Protein Interactions 

AI-driven FBDD has demonstrated significant progress in addressing protein-protein interactions (PPIs), traditionally considered 
challenging targets [49]. The complex, shallow, and often flexible binding interfaces characteristic of PPIs had historically limited 
the success of small molecule drug discovery against these targets. However, the combination of fragment-based approaches with 
advanced computational methods has opened new possibilities for therapeutic intervention. The ability of AI systems to identify 
subtle binding features and predict the effects of molecular modifications has proven particularly valuable in navigating the 
challenging chemical space of PPI inhibitors. Advanced computational methods have enabled the identification of druggable pockets 
within PPI interfaces and guided the evolution of fragments into potent inhibitors [50]. Machine learning models trained on 
structural databases have successfully identified cryptic binding sites not apparent in static crystal structures, providing novel starting 
points for fragment campaigns. The ability to predict pocket formation and analyze transient binding opportunities has significantly 
expanded the range of addressable PPI targets. Success stories include the development of novel BCL-2 family inhibitors and p53-
MDM2 interaction modulators [51]. These therapeutic breakthroughs demonstrate the practical impact of AI-guided FBDD in 
addressing previously intractable targets with significant clinical relevance. The ability to systematically optimize fragments against 
challenging PPI targets has established a new paradigm in drug discovery, opening therapeutic possibilities that were previously 
considered beyond the reach of small molecule approaches. 

6.3. AI-Guided Optimization of Fragments for Novel Viral Targets 

Recent applications of AI-guided FBDD in antiviral drug discovery have produced promising results [52]. The urgent need for novel 
antiviral therapeutics, particularly in response to emerging viral threats, has driven rapid innovation in computational drug discovery 
methods. AI-guided fragment approaches have demonstrated particular value in this context, enabling rapid identification and 
optimization of inhibitors against novel viral targets with limited precedent in the scientific literature. The ability to quickly establish 
structure-activity relationships and guide optimization with minimal experimental data has proven especially valuable in addressing 
emerging viral threats. Fragment-based approaches have been particularly successful in developing inhibitors targeting viral 
proteases and polymerases [53]. These essential viral enzymes typically feature well-defined binding pockets amenable to fragment 
screening, providing attractive starting points for inhibitor development. The application of AI methods has accelerated the 
optimization of these fragment hits, rapidly improving potency and selectivity while maintaining favorable pharmacokinetic 
properties. The integration of machine learning algorithms has accelerated the optimization of fragments against emerging viral 
threats, leading to rapid development of potential therapeutic candidates [54]. 
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Table 4. Case Studies of AI-FBDD Implementation (2020-2024) 

Target Class AI Approach Used Development Stage Key Achievements 
Kinase Inhibitors Graph Neural Networks Clinical Phase I 10x selectivity improvement 
PPI Inhibitors Physics-informed Neural Networks Preclinical Novel binding pocket identification 
Viral Proteases Reinforcement Learning Lead Optimization 100-fold potency increase 
GPCRs Multi-modal Deep Learning Hit to Lead First-in-class candidates 
Nuclear Receptors Transformer Models Clinical Phase II Reduced off-target effects 

7. Integration with Experimental Methods 

7.1. AI-Driven Planning of Crystallography Campaigns 

Artificial intelligence has transformed the planning and execution of crystallographic studies in FBDD [55]. Machine learning 
algorithms now guide crystal soaking strategies, optimizing conditions for fragment screening and structure determination [56]. 
Advanced image analysis systems facilitate rapid processing of diffraction data and automated identification of bound fragments 
[57]. 

7.2. Machine Learning for NMR and SPR Data Interpretation 

The interpretation of complex biophysical data has been revolutionized by machine learning approaches. Neural networks trained 
on extensive NMR and SPR datasets can rapidly analyze binding data, identifying subtle patterns indicative of specific interactions. 
These systems enable real-time data processing and decision-making during screening campaigns, significantly accelerating the hit 
identification process [58]. 

7.3. Closed-Loop Optimization with Automated Chemistry Platforms 

The integration of AI with automated chemistry platforms has established new paradigms in fragment optimization [59]. Machine 
learning algorithms guide experimental design and interpret results in real-time, enabling rapid iteration of the design-make-test 
cycle. These closed-loop systems have demonstrated significant improvements in optimization efficiency and success rates [60]. 

Table 5: Combination of AI Methods with Experimental Techniques in FBDD 

Experimental 
Method 

AI Application Data Processing Capability Validation Metrics 

X-ray Crystallography Deep CNN for electron density 
interpretation 

Real-time structure 
determination 

R-factor, Resolution 

NMR Spectroscopy ML for spectrum analysis Automated peak assignment Chemical shift prediction 
accuracy 

SPR Analysis Neural networks for binding kinetics High-throughput data 
processing 

Response curve fitting 

Mass Spectrometry Pattern recognition algorithms Rapid fragment identification Mass accuracy, Coverage 
Thermal Shift Assays ML for stability prediction Multivariate data analysis ΔTm prediction accuracy 
ITC Measurements Automated data processing Thermodynamic parameter 

extraction 
Binding constant accuracy 

8. Conclusion 

The use of artificial intelligence with fragment-based drug design is a transformative trend in modern drug discovery. Machine 
learning algorithms and deep neural networks have significantly improved every aspect of the FBDD workflow, from initial library 
design to final hit optimization. The ability to process and integrate various data types has accelerated decision-making processes 
and improved success rates in fragment-based campaigns. Advanced computational methods have further expanded the scope of 
FBDD to previously challenging targets, including protein-protein interactions and novel viral proteins. The most important 
advantage includes the development of physics-informed neural networks for accurate property prediction, the application of graph 
neural networks for binding affinity estimation, and the implementation of reinforcement learning algorithms for fragment 
optimization. The use of AI-driven methods with automated experimental workflow has established more efficient and reliable drug 
discovery processes. Apart from these advances, opportunities remain for further enhancement of AI applications in FBDD. 
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