REVIEW ARTICLE

Principles and Applications of Molecular Docking in Drug Discovery and Development

JODIR Journal of Pharma Insights and Research

Anusha B*1, Govinda Rao Kamala²

UG Scholar, Department of Pharmaceutical Chemistry, Koringa College of Pharmacy, Korangi, Kakinada, Andhra Pradesh, India

Publication history: Received on 19th May 2025; Revised on 15th June 2025; Accepted on 24th June 2025

Article DOI: 10.69613/29zcv966

Abstract: Molecular docking is a valuable computational technique in modern drug discovery and molecular biology, serving as a cornerstone for predicting interactions between small molecules and biological macromolecules. Recent advancements in computational methodologies have transformed molecular docking from a simple lock-and-key concept to sophisticated algorithms incorporating protein flexibility and induced-fit mechanisms. The fundamental principles of molecular docking encompass multiple theoretical frameworks, including conformational selection and ensemble approaches, all governed by thermodynamic principles seeking lowest Gibbs free energy states. Current docking protocols employ varied sampling algorithms and scoring functions, ranging from force-field based to knowledge-based statistical approaches. The evolution of docking software has led to diverse tools, each with specific strengths in handling different types of molecular interactions. Applications span across pharmaceutical research, from hit identification and lead optimization to understanding protein-protein interactions and enzymatic mechanisms. Integration with artificial intelligence and machine learning has further enhanced docking accuracy and efficiency. The methodological sophistication in molecular docking continues to advance, offering improved precision in predicting binding modes and affinities, while overcoming challenges in protein flexibility and scoring function accuracy. These developments makes molecular docking as an indispensable tool in drug design, structural biology, and environmental science applications.

Keywords: Molecular docking; Drug discovery; Scoring functions; Protein-ligand interactions; Structure-based drug design

1. Introduction

Molecular docking has emerged as an essential computational methodology in drug discovery and development, representing a significant advancement in understanding molecular interactions at the atomic level [1]. The technique enables prediction of binding modes and affinities between small molecules (ligands) and macromolecular targets, primarily proteins or nucleic acids, facilitating the characterization of fundamental biochemical processes [2]. The foundation of molecular docking relies on high-resolution three-dimensional structural data of target proteins, obtained through experimental methods such as X-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, or Cryo-Electron Microscopy (Cryo-EM) [3]. These structural insights provide the framework for computational analysis of molecular interactions, enabling researchers to simulate and predict binding events with unprecedented accuracy.

The evolution of computational tools has revolutionized the drug discovery process, introducing more efficient and cost-effective approaches compared to traditional experimental methods [4]. Virtual screening (VS), a key application of molecular docking, has significantly reduced the time and resources required for initial hit identification compared to conventional high-throughput screening (HTS) methods [5]. VS methodologies can be broadly categorized into ligand-based and structure-based approaches, with molecular docking being the predominant structure-based technique since its inception in the 1980s [6]. The interaction between molecules in docking simulations involves various non-covalent forces, including hydrogen bonding, ionic interactions, hydrophobic effects, and van der Waals forces [7]. The molecular docking process encompasses several critical steps: preparation of three-dimensional protein structures, ligand preparation, binding energy estimation, and comprehensive analysis of results [8]. In structure-based drug discovery, scoring functions play a vital role in evaluating molecular interactions [9]. These functions serve dual purposes: identifying correct binding orientations from multiple possibilities and estimating binding affinities between ligands and targets [10]. Modern scoring functions can efficiently evaluate thousands of potential ligand poses, facilitating the identification of promising drug candidates and providing insights into binding mechanisms [11].

² Professor and Vice Principal, Department of Pharmaceutical Chemistry, Koringa College of Pharmacy, Korangi, Kakinada, Andhra Pradesh, India

^{*} Corresponding author: Anusha B and Govinda Rao Kamala

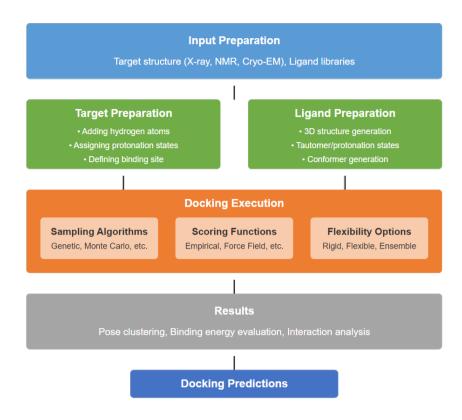


Figure 1. Process of Molecular Docking

Recent advancements in computational power and algorithmic development have enhanced the capabilities of molecular docking. The integration of artificial intelligence and machine learning approaches has further improved prediction accuracy and computational efficiency [12]. Additionally, the development of specialized docking tools has expanded the technique's applications beyond drug discovery to fields such as bioremediation and protein-protein interaction studies [13]. The continuous refinement of docking methodologies, coupled with increasing computational resources, has established molecular docking as a fundamental tool in modern drug discovery pipelines [14].

Time	Major Developments	Technical Advances	Impact on Field	Limitations	
Period					
1980s	Rigid body docking	Shape complementarity	Initial proof of concept	Basic geometric matching	
1990s	Flexible ligand methods	Genetic algorithms	Enhanced accuracy	Ligand flexibility	
2000s	Multiple scoring functions	Consensus scoring	Improved predictions	Scoring reliability	
2010s	Protein flexibility	Ensemble methods	More realistic models	Conformational changes	
2020s	AI/ML integration	Deep learning approaches	Enhanced speed and accuracy	Complex predictions	

Table 1. Evolution of Docking Methods and Their Impact

2. Principles of Molecular Docking

Molecular docking operates on fundamental principles of molecular recognition and thermodynamics, governing the formation of stable complexes between molecules in biological systems [15]. The theoretical framework has evolved from simple rigid body models to sophisticated approaches incorporating molecular flexibility and dynamic interactions [16]. These principles provide the foundation for predicting binding modes and affinities between ligands and their molecular targets.

2.1. Lock-and-Key Theory

The Lock-and-Key model, proposed by Emil Fischer in 1894, represents the earliest conceptual framework for molecular recognition [17]. This model postulates that molecular interactions occur through precise geometric complementarity between ligand

and receptor, analogous to a key fitting into a specific lock. While this theory provided initial insights into molecular recognition, its limitations became apparent as understanding of protein dynamics advanced [18].

2.2. Induced Fit Theory

Koshland's Induced Fit Theory, introduced in 1958, marked a significant advancement in understanding molecular interactions [19]. This model recognizes that proteins undergo conformational changes upon ligand binding, leading to optimal complex formation. The theory accounts for:

2.2.1. Conformational Flexibility

Proteins exhibit dynamic behavior, with their binding sites adapting to accommodate ligands through structural modifications [20]. This flexibility is crucial for biological function and impacts the accuracy of docking predictions.

2.2.2. Binding Site Adaptation

The model explains how initial ligand contact triggers conformational changes in the protein's binding site, optimizing interaction surfaces and enhancing binding affinity [21].

2.3. Conformational Selection Theory

Building upon previous models, Conformational Selection Theory provides a more sophisticated understanding of protein-ligand interactions [22]. This model proposes that proteins naturally exist in multiple conformational states, with ligands selectively binding to pre-existing conformations [23]. The theory encompasses:

2.3.1. Energy

Proteins occupy various energy states corresponding to different conformations, with ligands selecting energetically favorable states for binding [24].

2.3.2. Population Shift

Ligand binding shifts the equilibrium between protein conformational states, favoring specific conformations that optimize interaction interfaces [25].

Parameter Significance **Optimization Methods Impact Quality Control** Search Space Defines binding region Grid box selection Accuracy vs. speed Visual inspection Flexibility Conformational sampling Rotatable bonds, Side chains Pose prediction Energy analysis Water molecules Solvation effects Explicit/implicit models Binding energy H-bond networks Charge interactions Binding mode pKa calculations Protonation states pH-based assignment Force field parameters Energy calculations Empirical optimization Energy evaluation Validation studies

Table 2. Critical Parameters in Molecular Docking

2.4. Thermodynamic Principles

The thermodynamic basis of molecular docking is fundamental to understanding binding energetics and stability [26].

2.4.1. Gibbs Free Energy

The formation of protein-ligand complexes is governed by changes in Gibbs free energy (ΔG), comprising both enthalpic (ΔH) and entropic (ΔS) contributions [27]. The relationship is expressed as:

 $\Delta G = \Delta H - T\Delta S$

where:

 ΔG represents the binding free energy ΔH accounts for non-covalent interactions $T\Delta S$ represents entropy changes T is the absolute temperature

2.4.2. Binding Affinity

The strength of protein-ligand interactions is quantified through binding affinity, directly related to the free energy change [28]. Lower free energy values indicate stronger binding interactions, with the relationship:

 $Ka = e^{(-\Delta G/RT)}$

where:
Ka is the association constant
R is the gas constant
T is the absolute temperature
Modern Theoretical Approaches

2.5. Ensemble Docking

Contemporary docking approaches incorporate ensemble methods, considering multiple protein conformations simultaneously [29]. This methodology better represents the dynamic nature of biological systems and improves docking accuracy for flexible proteins [30].

2.6. Machine Learning

Recent docking methods use machine learning algorithms to enhance prediction accuracy and computational efficiency [31]. These approaches utilize large datasets of known protein-ligand complexes to improve binding mode and affinity predictions

3. Docking Methods

3.1. Sampling Algorithms

The success of molecular docking largely depends on efficient sampling algorithms that explore possible binding modes between ligands and receptors [32]. These algorithms must balance computational efficiency with thorough conformational space exploration.

3.2. Systematic Search Methods

Systematic search algorithms methodically explore all degrees of freedom in ligand-receptor interactions [33]. These methods include:

3.2.1. Exhaustive Search

This approach systematically rotates and translates the ligand through all possible orientations within the binding site, evaluating each conformation against predetermined criteria [34]. While comprehensive, computational costs increase exponentially with molecular complexity.

3.2.2. Fragmentation Methods

Complex ligands are divided into rigid fragments, which are docked independently and later reconnected. This approach, implemented in programs like DOCK and FlexX, reduces computational complexity while maintaining accuracy [35].

3.3. Stochastic Search Methods

These algorithms employ random sampling techniques to explore conformational space efficiently [36].

3.3.1. Monte Carlo Methods

Monte Carlo algorithms generate random ligand conformations and evaluate them using energy-based criteria. New conformations are accepted or rejected based on the Metropolis criterion, allowing escape from local energy minima [37].

3.3.2. Genetic Algorithms

Inspired by evolutionary principles, genetic algorithms treat ligand conformations as "chromosomes," applying operations like mutation and crossover to generate new binding poses. Programs like AutoDock and GOLD successfully implement this approach [38].

4. Scoring Functions

Scoring functions serve as essential components in molecular docking, providing quantitative measures to evaluate binding pose quality and estimate binding affinities between ligands and receptors [39]. These functions can be categorized into three main types, each with distinct characteristics and applications.

4.1. Force Field-Based Functions

Force field-based scoring functions employ classical molecular mechanics principles to calculate binding energies [40]. These functions incorporate van der Waals interactions, which account for attractive and repulsive forces between atoms at close distances. Electrostatic forces play a crucial role in determining charge-based interactions between molecules. The functions also consider bond stretching and angle bending, which reflect the energetic costs of deforming molecular geometry. Torsional terms account for barriers to rotation around chemical bonds, while solvation effects represent the energetic consequences of displacing water molecules during binding.

4.2. Empirical Scoring Functions

Empirical scoring functions utilize a combination of weighted energy terms derived from experimental data [41]. These functions evaluate hydrogen bonding networks between the ligand and receptor, considering both geometry and strength of these interactions. Hydrophobic interactions, crucial for ligand binding in protein cavities, are assessed through contact surface areas. The functions account for rotational entropy losses upon binding and consider desolvation effects, which represent the energetic cost of removing water molecules from binding interfaces.

4.3. Knowledge-Based Functions

Knowledge-based scoring functions derive their potentials from statistical analysis of known protein-ligand complex structures [42]. Their strength lies in implicitly accounting for complex physical effects that might be difficult to model explicitly. These functions demonstrate remarkable computational efficiency compared to other approaches and maintain consistent performance across diverse molecular systems due to their empirical foundation in structural databases

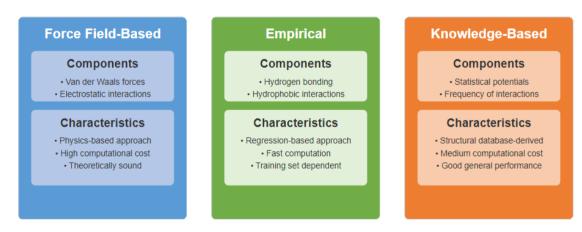


Figure 2. Types of Scoring Functions

Table 3. Common Scoring Function Types and Their Characteristics

Scoring	Components Evaluated	Advantages	Limitations	Computational
Function Type				Cost
Force Field-based	Force Field-based Van der Waals, Electrostatics,		Time-consuming, May miss	High
	Bond terms	Theoretically sound	solvation effects	
Empirical	H-bonds, Hydrophobic	Fast, Easy to interpret	Training set dependent	Low
	effects, Rotational entropy			
Knowledge-	Statistical potentials from	Balance of speed and	Database dependent	Medium
based known structures		accuracy		
Consensus	Combination of multiple	More robust	Computational overhead	High
	functions	predictions		

5. Docking Protocol

5.1. Rigid Body Docking

Rigid body docking represents the most basic approach to molecular docking, treating both interacting partners as inflexible entities [43]. Although computationally efficient, this simplified approach often fails to capture the dynamic nature of molecular recognition events, limiting its practical applications in drug discovery.

5.2. Flexible Ligand Docking

Flexible ligand docking protocols maintain receptor rigidity while allowing ligand conformational changes [44]. These methods systematically explore ligand conformational space through torsion angle rotations and random conformational sampling. Many protocols utilize pre-generated libraries of ligand conformers to enhance computational efficiency while maintaining thorough conformational coverage.

5.3. Flexible Receptor Docking

Advanced flexible receptor docking protocols incorporate protein flexibility to better simulate biological reality [45]. These methods allow side-chain movements within binding sites and can accommodate protein backbone flexibility. Ensemble docking approaches utilize multiple receptor conformations simultaneously, providing a more complete representation of protein dynamics during ligand binding.

5.4. Pose Clustering

Pose clustering analysis identifies predominant binding modes by grouping similar ligand orientations [46]. This process considers root-mean-square deviation between poses, evaluates energy scores across clustered conformations, and analyzes interaction patterns between the ligand and receptor.

5.5. Refinement

Final docking poses undergo refinement procedures to optimize molecular interactions [47]. Energy minimization techniques adjust atomic positions to achieve lowest-energy conformations. Short molecular dynamics simulations help evaluate the stability of predicted binding modes, while local conformational sampling ensures thorough exploration of the immediate conformational space around favorable poses.

6. Molecular Docking Software and Tools

The development of molecular docking software has progressed significantly since its inception, driven by advances in computational power and algorithmic sophistication [48]. Modern docking tools incorporate various theoretical approaches and practical considerations, offering researchers a diverse array of options for different applications.

6.1. Major Docking Programs

6.1.1. AutoDock

AutoDock represents one of the most widely used open-source docking programs, developed at The Scripps Research Institute [49]. The software implements genetic algorithms and Lamarckian genetic algorithms for conformational searching. AutoDock's scoring function combines molecular mechanics force fields with empirically weighted terms, providing reliable binding energy predictions across diverse molecular systems.

6.1.2. DOCK

DOCK, developed at the University of California, San Francisco, pioneered shape-fitting algorithms in molecular docking [50]. The program utilizes sphere sets to represent molecular surface complementarity and incorporates various scoring functions including ChemScore and GB/SA solvation scoring. Its modular architecture allows integration of new algorithms and scoring methods, making it particularly valuable for academic research.

6.1.3. FlexX

FlexX employs an incremental construction algorithm for ligand docking, breaking ligands into fragments and rebuilding them within the binding site [51]. The program incorporates multiple scoring functions, including FlexX-Score, PLP, and DrugScore, offering versatility in binding mode prediction. Its speed and accuracy make it particularly suitable for virtual screening applications.

6.1.4. GOLD

GOLD (Genetic Optimization for Ligand Docking) utilizes sophisticated genetic algorithms for conformational searching [52]. The software offers multiple scoring functions and provides extensive options for customizing docking protocols. GOLD excels in handling protein flexibility and generates reliable predictions for diverse protein-ligand complexes.

6.1.5. Glide

Glide implements a hierarchical series of filters to search for possible locations of ligands in the active site region of receptors [53]. The program employs Monte Carlo sampling methods and includes specialized scoring functions optimized for different applications. Glide's systematic search algorithms provide particularly accurate results for pharmaceutical applications.

Table 4. Comparison of Major Molecular Docking Software Packages

Software	Algorithm Type	Scoring	Flexibility	Features	License
		Functions			Type
AutoDock	Genetic Algorithm,	Empirical Free	Flexible ligand, Limited	Grid-based method,	Open source
	Lamarckian GA	Energy	protein flexibility	Popular in academia	
GOLD	Genetic Algorithm	GoldScore,	Flexible ligand, Protein	High accuracy, Multiple	Commercial
		ChemScore, ASP	side chains	scoring options	
Glide	Systematic search	GlideScore,	Flexible ligand, Rigid	Fast screening,	Commercial
		MMGBSA	protein	Accurate poses	
FlexX	Incremental	FlexX Score,	Flexible ligand, Limited	Fragment-based	Commercial
	construction	BOEScore	protein flexibility	approach	
DOCK	Geometric matching	Grid-based	Flexible ligand,	Academic standard,	Academic
		scoring, AMBER	Ensemble docking	Modular design	

6.2. Additional Features

6.2.1. Scoring

Different software packages implement distinct approaches to scoring functions [54]. Modern programs often incorporate multiple scoring options, allowing users to select appropriate functions based on specific requirements. Some packages include consensus scoring capabilities, combining results from multiple functions to improve prediction accuracy.

6.2.2. Search Algorithms

Search algorithm implementation varies significantly among docking programs [55]. While some software packages focus on systematic search methods, others emphasize stochastic approaches. Advanced programs often combine multiple search strategies to balance computational efficiency with thorough conformational sampling.

6.2.3. User Interface and Accessibility

Software packages differ in their user interface design and accessibility [56]. Some programs offer graphical user interfaces for improved usability, while others maintain command-line interfaces for enhanced control and automation capabilities. Commercial packages typically provide comprehensive documentation and technical support, whereas academic software often relies on community-driven development and support.

6.2.4. Computational Requirements

Docking software varies significantly in computational resource requirements [57]. Some programs optimize for speed on standard desktop computers, while others leverage high-performance computing capabilities for more extensive calculations. The choice of software often depends on available computational resources and specific application requirements.

6.2.5. Accuracy and Reliability

Software performance in terms of prediction accuracy and reliability varies across different types of molecular systems [58]. Comparative studies indicate that no single program consistently outperforms others across all applications, emphasizing the importance of selecting appropriate tools for specific research objectives.

7. Applications

7.1. Drug Discovery and Development

7.1.1. Virtual Screening

Virtual screening represents a primary application of molecular docking in pharmaceutical research [59]. This approach enables rapid evaluation of large compound libraries against therapeutic targets, significantly reducing the time and resources required for drug discovery. The process involves screening millions of compounds in silico, identifying promising candidates for experimental validation.

7.1.2. Lead Optimization

Molecular docking plays a crucial role in lead optimization, guiding the modification of hit compounds to improve their drug-like properties [60]. Structure-based optimization utilizes docking simulations to predict how chemical modifications might affect binding affinity and selectivity. This iterative process helps medicinal chemists make informed decisions about compound modifications, accelerating the development of drug candidates.

7.1.3. Drug Repurposing

The application of molecular docking in drug repurposing has gained significant attention, particularly following recent global health challenges [61]. This approach involves screening approved drugs against novel therapeutic targets, potentially identifying new applications for existing medications. Docking-based repurposing offers advantages in terms of reduced development time and known safety profiles of candidate compounds.

Field **Primary Applications** Advantages Challenges Examples Drug Discovery identification, Virtual Cost-effective, Large-scale Accuracy HIV protease screening screening limitations inhibitors Natural Products Mechanism elucidation, Target Understanding traditional Artemisinin studies Complex identification medicines structures Materials Science Host-guest Rational design approach Force field Catalyst design interactions, Surface binding limitations Biotechnology Enzyme engineering, Protein Structure-based design Protein flexibility Industrial enzymes interactions Environmental Pollutant degradation, Toxicity Rapid assessment Limited validation Biodegradation Science prediction studies

Table 5. Applications of Molecular Docking

7.2. Protein-Protein Interactions

7.2.1. Interface Analysis

Molecular docking techniques facilitate the analysis of protein-protein interaction interfaces [62]. These studies provide insights into the structural determinants of protein complex formation and stability. Understanding these interactions is crucial for developing therapeutic strategies targeting protein-protein interfaces.

7.2.2. Complex Structure Prediction

Docking methods contribute to predicting the structure of protein complexes when experimental structures are unavailable [63]. This application has become increasingly important in structural biology, complementing experimental techniques and providing initial models for further refinement.

7.3. Natural Product Research

7.3.1. Traditional Medicine

Molecular docking supports the scientific investigation of traditional medicines by predicting interactions between natural compounds and biological targets [64]. This approach helps identify active components in traditional remedies and understand their mechanisms of action at the molecular level.

7.3.2. Bioactive Compounds

The application of docking in natural product research facilitates the identification of novel bioactive compounds from natural sources [65]. This process involves screening databases of natural products against therapeutic targets, guiding the isolation and characterization of promising compounds.

7.4. Materials Science

7.4.1. Host-Guest Chemistry

Molecular docking techniques have expanded into materials science, particularly in studying host-guest interactions [66]. These applications help design and optimize molecular capsules, sensors, and selective binding materials.

7.4.2. Surface Chemistry

The application of docking methods in surface chemistry aids in understanding molecular adsorption and surface modification processes [67]. These studies contribute to the development of functional materials and surface treatments.

7.5. Environmental Applications

7.5.1. Biodegradation Studies

Molecular docking supports research in environmental biotechnology by predicting interactions between enzymes and environmental pollutants [68]. These studies help understand biodegradation pathways and develop strategies for environmental remediation.

7.5.2. Toxicology

Docking methods contribute to toxicology studies by predicting interactions between environmental compounds and biological targets [69, 70]. This application aids in assessing potential environmental and health risks associated with chemical exposure.

Applications of Molecular Docking **Drug Discovery Protein Research Other Applications** Virtual Screening • Protein-Protein Interactions Natural Product Research Lead Optimization • Complex Structure Prediction Materials Science Environmental Applications Drug Repurposing Binding Site Analysis · Structure-Based Design Enzyme Mechanisms Toxicology Studies **Common Docking Software AutoDock** GOLD Glide **FlexX** DOCK Genetic Algorithm Genetic Algorithm Systematic Search Incremental Build Shape Matching

Figure 3. Applications and Software used for Molecular Docking

8. Conclusion

Molecular docking is an indispensable tool in modern drug discovery and structural biology research. The evolution of docking methodologies, from simple rigid-body algorithms to sophisticated flexible docking approaches incorporating artificial intelligence, reflects the field's remarkable progress over the past decades. The success of molecular docking in drug discovery is evidenced by numerous approved medications that benefited from structure-based design approaches during their development. The practical value of molecular docking in identifying and optimizing drug candidates, while simultaneously highlighting its cost-effectiveness compared to traditional experimental methods shows its versatility. The increasing availability of structural data, combined with advances in computational power and algorithmic sophistication, suggests an even more prominent role for docking methods in future scientific discovery. The use of docking with other computational and experimental techniques promises to enhance its predictive power and expand its utility across scientific disciplines.

References

- [1] Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery. 2004;3(11):935-49.
- [2] Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design. 2011;7(2):146-57.
- [3] Shi Y. A glimpse of structural biology through X-ray crystallography. Cell. 2014;159(5):995-1014.
- [4] Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015;20(7):13384-421.

- [5] Lionta E, Spyrou G, Vassilatis DK, Cournia Z. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Current Topics in Medicinal Chemistry. 2014;14(16):1923-38.
- [6] Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology. 1982;161(2):269-88.
- [7] Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ. Insights into protein-ligand interactions: mechanisms, models, and methods. International Journal of Molecular Sciences. 2016;17(2):144.
- [8] Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophysical Reviews. 2017;9(2):91-102.
- [9] Liu J, Wang R. Classification of current scoring functions. Journal of Chemical Information and Modeling. 2015;55(3):475-82.
- [10] Wang Z, Sun H, Yao X, Li D, Xu L, Li Y, Tian S, Hou T. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Physical Chemistry Chemical Physics. 2016;18(18):12964-75.
- [11] Li J, Fu A, Zhang L. An Overview of Scoring Functions Used for Protein-Ligand Interactions in Molecular Docking. Interdisciplinary Sciences: Computational Life Sciences. 2019;11(2):320-8.
- [12] Ekins S, Puhl AC, Zorn KM, Lane TR, Russo DP, Klein JJ, Hickey AJ, Clark AM. Exploiting machine learning for end-to-end drug discovery and development. Nature Materials. 2019;18(5):435-41.
- [13] Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Research. 2005;33(7):2302-9.
- [14] Yuriev E, Holien J, Ramsland PA. Improvements, trends, and new ideas in molecular docking: 2012-2013 in review. Journal of Molecular Recognition. 2015;28(10):581-604.
- [15] Mobley DL, Gilson MK. Predicting binding free energies: frontiers and benchmarks. Annual Review of Biophysics. 2017;46:531-58.
- [16] Salmaso V, Moro S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Frontiers in Pharmacology. 2018;9:923.
- [17] Fischer E. Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der deutschen chemischen Gesellschaft. 1894;27(3):2985-93.
- [18] Koshland DE. Application of a Theory of Enzyme Specificity to Protein Synthesis. Proceedings of the National Academy of Sciences. 1958;44(2):98-104.
- [19] Csermely P, Palotai R, Nussinov R. Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends in Biochemical Sciences. 2010;35(10):539-46.
- [20] Boehr DD, Nussinov R, Wright PE. The role of dynamic conformational ensembles in biomolecular recognition. Nature Chemical Biology. 2009;5(11):789-96.
- [21] Vogt AD, Di Cera E. Conformational selection or induced fit? A critical appraisal of the kinetic mechanism. Biochemistry. 2012;51(30):5894-902.
- [22] Hammes GG, Chang YC, Oas TG. Conformational selection or induced fit: a flux description of reaction mechanism. Proceedings of the National Academy of Sciences. 2009;106(33):13737-41.
- [23] Ma B, Kumar S, Tsai CJ, Nussinov R. Folding funnels and binding mechanisms. Protein Engineering, Design and Selection. 1999;12(9):713-20.
- [24] Wales DJ, Energy Landscapes: Applications to Clusters, Biomolecules and Glasses. Cambridge University Press; 2003.
- [25] Changeux JP, Edelstein S. Conformational selection or induced fit? 50 years of debate resolved. F1000 Biology Reports. 2011;3:19.
- [26] Gilson MK, Zhou HX. Calculation of protein-ligand binding affinities. Annual Review of Biophysics and Biomolecular Structure. 2007;36:21-42.
- [27] Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ. Insights into protein–ligand interactions: mechanisms, models, and methods. International Journal of Molecular Sciences. 2016;17(2):144.
- [28] Chodera JD, Mobley DL. Entropy-enthalpy compensation: role and ramifications in biomolecular ligand recognition and design. Annual Review of Biophysics. 2013;42:121-42.
- [29] Amaro RE, Baudry J, Chodera J, Demir Ö, McCammon JA, Miao Y, Smith JC. Ensemble docking in drug discovery. Biophysical Journal. 2018;114(10):2271-8.

- [30] Chuang GY, Kozakov D, Brenke R, Comeau SR, Vajda S. DARS (Decoys As the Reference State) potentials for protein-protein docking. Biophysical Journal. 2008;95(9):4217-27.
- [31] Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583-9.
- [32] Huang SY, Zou X. Advances and challenges in protein-ligand docking. International Journal of Molecular Sciences. 2010;11(8):3016-34.
- [33] Sousa SF, Fernandes PA, Ramos MJ. Protein-ligand docking: current status and future challenges. Proteins: Structure, Function, and Bioinformatics. 2006;65(1):15-26.
- [34] Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. Annual Review of Biophysics and Biomolecular Structure. 2003;32(1):335-73.
- [35] Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology. 1996;261(3):470-89.
- [36] Muegge I, Martin YC. A general and fast scoring function for protein-ligand interactions: a simplified potential approach. Journal of Medicinal Chemistry. 1999;42(5):791-804.
- [37] Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry. 1998;19(14):1639-62.
- [38] Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology. 1997;267(3):727-48.
- [39] Wang R, Lu Y, Wang S. Comparative evaluation of 11 scoring functions for molecular docking. Journal of Medicinal Chemistry. 2003;46(12):2287-303.
- [40] Huang N, Kalyanaraman C, Irwin JJ, Jacobson MP. Physics-based scoring of protein-ligand complexes: enrichment of known inhibitors in large-scale virtual screening. Journal of Chemical Information and Modeling. 2006;46(1):243-53
- [41] Wang R, Lai L, Wang S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. Journal of Computer-Aided Molecular Design. 2002;16(1):11-26.
- [42] Zhou H, Skolnick J. GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction. Biophysical Journal. 2011;101(8):2043-52.
- [43] Halperin I, Ma B, Wolfson H, Nussinov R. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins: Structure, Function, and Bioinformatics. 2002;47(4):409-43.
- [44] Teodoro ML, Phillips GN Jr, Kavraki LE. Understanding protein flexibility through dimensionality reduction. Journal of Computational Biology. 2003;10(3-4):617-34.
- [45] Cozzini P, Kellogg GE, Spyrakis F, Abraham DJ, Costantino G, Emerson A, et al. Target flexibility: an emerging consideration in drug discovery and design. Journal of Medicinal Chemistry. 2008;51(20):6237-55.
- [46] Torda AE, van Gunsteren WF. Algorithms for clustering molecular dynamics configurations. Journal of Computational Chemistry. 1994;15(12):1331-40.
- [47] Huang SY, Zou X. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Proteins: Structure, Function, and Bioinformatics. 2007;66(2):399-421.
- [48] Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-ligand docking using GOLD. Proteins: Structure, Function, and Bioinformatics. 2003;52(4):609-23.
- [49] Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry. 2009;30(16):2785-91.
- [50] Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, et al. DOCK 6: Impact of new features and current docking performance. Journal of Computational Chemistry. 2015;36(15):1132-56.
- [51] Kramer B, Rarey M, Lengauer T. Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins: Structure, Function, and Bioinformatics. 1999;37(2):228-41.
- [52] Jones G, Willett P, Glen RC. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of Molecular Biology. 1995;245(1):43-53.
- [53] Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry. 2004;47(7):1739-49.

- [54] Wang Z, Sun H, Yao X, Li D, Xu L, Li Y, et al. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Physical Chemistry Chemical Physics. 2016;18(18):12964-75.
- [55] Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. 2010;31(2):455-61.
- [56] Huang SY, Grinter SZ, Zou X. Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Physical Chemistry Chemical Physics. 2010;12(40):12899-908.
- [57] Yuriev E, Agostino M, Ramsland PA. Challenges and advances in computational docking: 2009 in review. Journal of Molecular Recognition. 2011;24(2):149-64.
- [58] Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, et al. A critical assessment of docking programs and scoring functions. Journal of Medicinal Chemistry. 2006;49(20):5912-31.
- [59] Shoichet BK. Virtual screening of chemical libraries. Nature. 2004;432(7019):862-5.
- [60] Jorgensen WL. The many roles of computation in drug discovery. Science. 2004;303(5665):1813-8
- [61] Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nature Reviews Drug Discovery. 2019;18(1):41-58.
- [62] Vakser IA. Protein-protein docking: From interaction to interactome. Biophysical Journal. 2014;107(8):1785-93.
- [63] Zhang C, Tang B, Wang Q, Lai L. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening. Proteins: Structure, Function, and Bioinformatics. 2014;82(10):2472-82.
- [64] Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products. 2020;83(3):770-803.
- [65] Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery. 2015;14(2):111-29.
- [66] Dsouza RN, Pischel U, Nau WM. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chemical Reviews. 2011;111(12):7941-80.
- [67] Heinz H, Ramezani-Dakhel H. Simulations of inorganic-bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities. Chemical Society Reviews. 2016;45(2):412-48.
- [68] Karigar CS, Rao SS. Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Research. 2011;2011:805187.
- [69] Allen TE, Goodman JM, Gutsell S, Russell PJ. Defining molecular initiating events in the adverse outcome pathway framework for risk assessment. Chemical Research in Toxicology. 2014;27(12):2100-12.
- [70] Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al. Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery. 2019;18(6):463-77