REVIEW ARTICLE

Biochemical Properties, Mechanisms of Action, and Applications of Papain in Dengue Treatment

JODIR Journal of Pharma Insights and Research

Vijaya Durga M*1, Govinda Rao Kamala², Avinash P1

Publication history: Received on 10th May 2025; Revised on 7th June 2025; Accepted on 16th June 2025

Article DOI: 10.69613/mkfpnf08

Abstract: Carica papaya contains several bioactive compounds, with papain being a crucial cysteine protease enzyme found predominantly in its latex. Recent studies indicate that *C. papaya* leaf extract demonstrates potential therapeutic effects in dengue treatment, particularly in increasing platelet counts. Clinical trials across Asian countries report significant platelet count improvements in dengue patients treated with *C. papaya* leaf extract. Papain, a 24.5 kDa protein with three disulfide bridges and an essential sulfhydryl group, exhibits optimal activity at temperatures between 50-59°C and pH 4.5-6.7. The enzyme's mechanism involves the Cys-25 region attacking peptide chain carbonyl carbons, with His-159 and Asn-175 playing crucial supporting roles. Metal ions like Mg²⁺ significantly enhance papain activity, while specific inhibitors can modulate its function. The enzyme maintains stability under various conditions, including exposure to certain denaturing agents. Structural analyses reveal two distinct domains with an active site located in the interfacial cleft. The enzyme's hydrophobic core, formed by amino acids like alanine, leucine, and isoleucine, contributes to its stability and functionality. While preliminary evidence supports *C. papaya*'s role in dengue treatment, additional large-scale clinical trials are essential to establish its therapeutic efficacy and safety profile definitively.

Keywords: Papain; C. papaya; Dengue Treatment; Cysteine Protease; Platelet Count

1. Introduction

Dengue fever poses a significant global health challenge, affecting approximately 50-200 million individuals annually across 128 countries [1]. The disease, transmitted by mosquito vectors, manifests through symptoms including high-grade fever, severe body aches, and potential hemorrhagic complications [2]. Current statistics indicate that about 50% of the global population resides in dengue-endemic regions, with annual reports of 500,000 severe dengue cases and 20,000 related fatalities [3]. The pathophysiology of dengue involves complex mechanisms affecting platelet function and count. In severe cases, particularly dengue hemorrhagic fever, patients experience significant platelet destruction through complement system activation or bone marrow depression [4]. Clinical observations demonstrate that platelets surviving destruction often exhibit reduced functionality, contributing to bleeding complications [5, 6]. Multiple studies establish a direct correlation between platelet count and disease prognosis [7, 8]. Traditional medicine practitioners have long utilized *Carica papaya* leaves in treating various ailments, including dengue fever. Recent scientific investigations focus on the therapeutic potential of *C. papaya* leaf extract, particularly its effect on platelet counts [9]. The plant contains multiple bioactive compounds, including flavonoids, alkaloids, and proteolytic enzymes, with potential antioxidant and immunomodulatory properties [10, 11].

Figure 1. Leaves of C.papaya

UG Scholar, Department of Pharmaceutical Chemistry, Koringa College of Pharmacy, Korangi, Kakinada, Andbra Pradesh, India

² Professor and Vice Principal, Department of Pharmaceutical Chemistry, Koringa College of Pharmacy, Korangi, Kakinada, Andhra Pradesh, India

^{*} Corresponding author: Vijaya Durga M

Papain, a crucial enzyme found in *C. papaya*, belongs to the cysteine protease family and demonstrates significant biological activity [12]. The enzyme exists initially as propapain, a 39 kDa glycosylated precursor, before processing into the active 24.5 kDa form [13]. Its structure, featuring three disulfide bridges and specific active sites, enables various therapeutic applications [14]. The increasing global incidence of dengue, coupled with limited treatment options, necessitates exploration of alternative therapeutic approaches [15]. While conventional treatments primarily focus on symptom management, emerging evidence suggests potential benefits of *C. papaya* leaf extract in dengue management, particularly through its effects on platelet counts [16]. The pathophysiology of dengue infection centers on vascular leakage and platelet dysfunction [17]. The dengue virus triggers an immunological cascade, leading to increased vascular permeability and subsequent plasma leakage [18]. The virus affects platelet production and survival through multiple mechanisms, including direct bone marrow suppression and immune-mediated platelet destruction [19].

Clinical observations demonstrate that *C. papaya* leaf extract administration correlates with platelet count improvement in dengue patients. The extract's efficacy appears linked to its complex phytochemical composition, particularly its flavonoid and alkaloid content [20]. Laboratory studies indicate that these compounds may help stabilize erythrocyte membranes and modulate immune responses [21].

2. Biochemical Properties of Papain

2.1. Structural Characteristics

The papain molecule exhibits a sophisticated structure comprising two distinct domains: an α -helix rich domain and an antiparallel β -sheet domain [22]. The active site resides in a cleft between these domains, featuring the catalytic triad of Cys-25, His-159, and Asn-175 [23].

2.2. Environmental Influences on Activity

2.2.1. Temperature

Optimal papain activity occurs between 50-59°C, with specific activity patterns varying across different enzyme pools. Temperature influences both substrate binding affinity and catalytic rate [24].

2.2.2. pH

The enzyme demonstrates maximum activity within pH 4.5-6.7, with distinct optima observed for different enzyme preparations. This pH range maintains optimal protein conformation and active site chemistry [25].

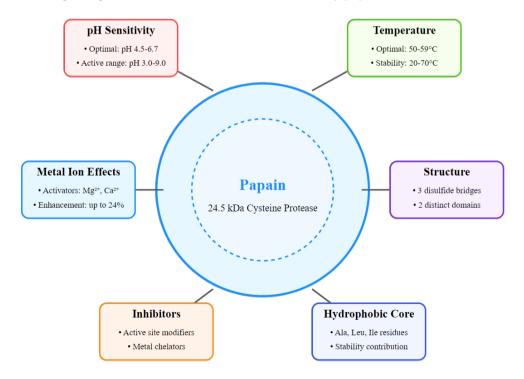


Figure 2. Biochemical Properties and Stability Factors Affecting Papain

2.3. Molecular Interactions

2.3.1. Hydrophobic Forces

The enzyme's stability derives significantly from hydrophobic interactions involving amino acids such as alanine, leucine, and isoleucine. These interactions maintain tertiary structure integrity and influence substrate binding [26].

2.3.2. Metal Ion Effects

Divalent cations, particularly Mg^{2+} , enhance papain activity. Studies demonstrate up to 24% activity increase with Mg^{2+} at 1.0×10^{-3} M concentration [27]. This activation likely involves conformational changes that optimize active site geometry.

Parameter	Characteristics	Optimal Range
Molecular Weight	23,406 Da	-
Isoelectric Point	8.75	-
Temperature Stability	Active range	20-70°C
Optimal Temperature	Maximum activity	50-59°C
pH Stability	Active range	3.0-9.0
Optimal pH	Maximum activity	4.5-6.7
Metal Ion Requirements	Mg ²⁺ , Ca ²⁺	$1.0 \times 10^{-3} \text{ M}$
Storage Stability	At 4°C	Up to 6 months

Table 1. Physicochemical Properties and Optimal Conditions for Papain Activity

3. Catalytic Mechanism

3.1. Active Site

The catalytic mechanism of papain centers on the Cys-25 residue, which performs a nucleophilic attack on peptide bond carbonyl carbons. His-159 serves as a crucial facilitator through proton transfer mechanisms, while Asn-175 maintains optimal imidazole ring orientation [28]. This intricate coordination enables highly efficient peptide bond hydrolysis. The spatial arrangement of these residues creates a unique microenvironment that enhances catalytic efficiency.

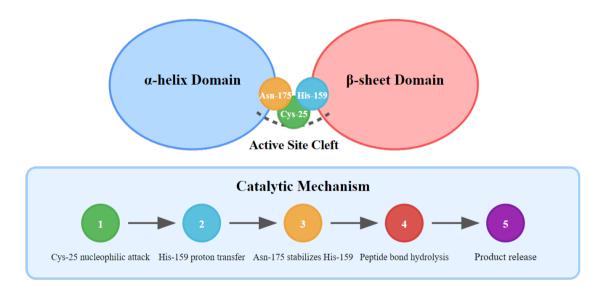


Figure 3. Papain Catalytic Mechanism and Active Site Interactions

3.2. Activation and Inhibition

3.2.1. Activation Pathways

Several compounds demonstrate the ability to enhance papain activity. Thiol compounds, including cysteine and reduced glutathione, significantly increase enzymatic activity through stabilization of the active site cysteine residue [29]. Metal ions, particularly Mg²⁺ and Ca²⁺, enhance activity through conformational modifications that optimize the catalytic site. Sulfur-containing

compounds such as sulfide and thiosulfonate also serve as effective activators, likely through similar mechanisms involving the enzyme's active site stabilization [30].

3.2.2. Inhibition Mechanisms

Papain activity modulation occurs through various inhibitory mechanisms. Active site modification represents a primary mode of inhibition, where specific compounds interact directly with catalytic residues. Conformational changes induced by certain inhibitors can alter the enzyme's active site accessibility or overall structure. Metal ion chelation presents another significant inhibitory mechanism, particularly when essential metal cofactors are removed from the enzyme's environment [31].

4. Therapeutic Applications

Clinical investigations reveal significant therapeutic potential for *C. papaya* leaf extract in dengue treatment. The extract demonstrates remarkable efficacy in improving platelet counts through multiple mechanisms. Enhanced thrombopoiesis appears to play a central role, accompanied by reduced platelet destruction rates. Additionally, the extract appears to improve platelet functionality, contributing to better clinical outcomes [32]. Clinical administration of *C. papaya* extract necessitates careful monitoring of patient responses. Some individuals may experience allergic reactions, ranging from mild to severe manifestations. Gastrointestinal effects have been reported in certain cases, requiring appropriate medical attention. The potential for drug interactions warrants careful consideration, particularly in patients receiving multiple medications [33].

5. Constituents of C. papaya

5.1. Enzymatic Components

C. papaya contains a diverse array of bioactive enzymes beyond papain. Chymopapain represents another significant proteolytic enzyme with therapeutic potential. Glycosyl hydrolases present in the plant facilitate carbohydrate metabolism, while various lipases contribute to lipid processing capabilities [34].

5.2. Non-enzymatic Components

The plant's biochemical profile includes numerous beneficial compounds. Flavonoids, such as quercetin and myricetin, contribute significant antioxidant properties. Various alkaloids present in *C. papaya* demonstrate potential therapeutic effects through different biochemical pathways [35].

The distribution of bioactive compounds varies significantly across different parts of *C. papaya*. The leaves contain high concentrations of alkaloids, particularly carpaine and pseudocarpine, along with essential vitamins and minerals [36]. The latex, predominantly found in unripe fruits and stems, harbors the highest concentration of proteolytic enzymes, including papain and chymopapain [37]. The fruits accumulate carotenoids, monoterpenoids, and various carbohydrates during ripening stages [38].

Compound Class	Major Components	Biological Activity
Alkaloids	Carpaine, Pseudocarpaine, Dehydrocarpaine	Platelet modulation
Flavonoids	Quercetin, Myricetin, Kaempferol	Antioxidant effects
Phenolic Compounds	Caffeic acid, Chlorogenic acid	Anti-inflammatory
Proteolytic Enzymes	Papain, Chymopapain	Protein hydrolysis
Essential Minerals	Potassium, Calcium, Magnesium	Cellular function

Table 2. Bioactive Compounds in C. papaya Leaf Extract

6. Stability and Environmental Factors

Experimental analyses demonstrate variable enzyme stability across temperature ranges. The optimal temperature range of 50-59°C maintains maximum catalytic efficiency, with activity declining sharply beyond 70°C. Different enzymatic pools exhibit distinct temperature optima, suggesting structural variations among enzyme populations [39].

The enzyme maintains stability within specific pH ranges, with optimal activity observed between pH 4.5-6.7. Detailed analyses reveal distinct pH optima for different enzymatic pools: Pool A (5.5), Pool B (6.7), Pool C and D (4.5), and Pool E (5.5). These variations reflect the complex nature of papain's active site chemistry and overall structural stability [40].

Table 3. Quality Control Parameters for C. papaya Leaf Extract Production

Production Stage	Control Parameters	Critical Considerations	
	Leaf Maturity	Mature, disease-free leaves	
Raw Material Selection	Harvesting Conditions	Environmental factors	
	Source Authentication	Geographic origin verification	
	Storage Conditions	Temperature and humidity control	
	Cleaning Protocol	Contaminant removal methods	
Processing	Size Reduction	Particle size standardization	
	Extraction Method	Solvent selection and ratio	
	Processing Time	Duration optimization	
Quality Testing	Physical Properties	Color, odor, consistency	
	Chemical Analysis	Active compound identification	
	Biological Testing	Potency assessment	
	Stability Studies	Shelf-life determination	
Storage and Packaging	Container Type	Material compatibility	
	Storage Conditions	Temperature and light control	
	Labeling	Product information and tracking	
	Distribution	Transport conditions	

7. Clinical Applications in Dengue Management

Clinical observations demonstrate significant platelet count improvements following *C. papaya* leaf extract administration. Patients typically show increased platelet counts within 24-48 hours of treatment initiation. The magnitude of response varies among individuals, potentially influenced by factors such as initial platelet counts and disease severity [41]. Standardized treatment protocols emerge from clinical experiences, suggesting optimal dosing schedules and administration methods. The timing of intervention appears crucial, with earlier administration correlating with better outcomes. Monitoring parameters include regular platelet counts, liver function tests, and clinical symptom assessment [42]. Geographic and demographic variations influence treatment outcomes. Studies across Asian populations demonstrate consistent positive responses, though the magnitude of effect varies. Age-related differences in response patterns necessitate age-specific dosing considerations [43].

Table 4. Clinical Assessment Parameters for Dengue Management with C. papaya Therapy

Assessment Category	Monitoring Parameters	Clinical Significance
Hematological Assessment	Complete Blood Count	Disease progression monitoring
	Platelet Morphology	Platelet functionality
	Coagulation Profile	Bleeding risk evaluation
	Hematocrit Levels	Plasma leakage indication
Clinical Monitoring	Vital Signs	Patient stability
	Bleeding Manifestations	Hemorrhagic complications
	Organ Function	System involvement
	Hydration Status	Fluid management
Treatment Response	Symptom Resolution	Clinical improvement
	Platelet Recovery Rate	Treatment effectiveness
	Side Effect Profile	Safety monitoring
	Recovery Timeline	Treatment duration
Follow-up Care	Post-Treatment Monitoring	Long-term outcomes
	Complication Assessment	Secondary effects
	Patient Education	Prevention strategies
	Documentation	Case reporting

8. Conclusion

The therapeutic potential of *C. papaya* in dengue management represents a significant advancement in traditional medicine validation. Current evidence supports its efficacy in improving platelet counts and managing disease symptoms. Future research directions should focus on mechanism elucidation and standardization of preparation methods. The successful integration of traditional knowledge with modern scientific investigation provides a model for similar research in other therapeutic areas. Continuing studies may reveal additional applications and optimize current treatment protocols, potentially leading to more effective dengue management strategies.

References

- [1] Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504-7.
- [2] World Health Organization. Dengue guidelines for diagnosis, treatment, prevention and control: new edition. Geneva: World Health Organization; 2009.
- [3] Guzman MG, Harris E. Dengue. Lancet. 2015;385(9966):453-65.
- [4] Noisakran S, Perng GC. Alternate hypothesis on the pathogenesis of dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS) in dengue virus infection. Exp Biol Med. 2008;233(4):401-8.
- [5] de Azeredo EL, Monteiro RQ, de-Oliveira Pinto LM. Thrombocytopenia in dengue: interrelationship between virus and the imbalance between coagulation and fibrinolysis and inflammatory mediators. Mediators Inflamm. 2015;2015;313842.
- [6] Hottz ED, Tolley ND, Zimmerman GA, Weyrich AS, Bozza FA. Platelets in dengue infection. Drug Discov Today Dis Mech. 2011;8(1-2):e33-e38.
- [7] Mourão MP, Lacerda MV, Macedo VO, Santos JB. Thrombocytopenia in patients with dengue virus infection in the Brazilian Amazon. Platelets. 2007;18(8):605-12.
- [8] Lee TH, Wong JG, Leo YS, Thein TL, Ng EL, Lee LK, et al. Potential harm of prophylactic platelet transfusion in adult dengue patients. PLoS Negl Trop Dis. 2016;10(3):e0004576.
- [9] Ahmad N, Fazal H, Ayaz M, Abbasi BH, Mohammad I, Fazal L. Dengue fever treatment with *C. papaya* leaves extracts. Asian Pac J Trop Biomed. 2011;1(4):330-3.
- [10] Siddique O, Sundus A, Ibrahim MF. Effects of papaya leaves on thrombocyte counts in dengue--a case report. J Pak Med Assoc. 2014;64(3):364-6.
- [11] Zunjar V, Mammen D, Trivedi BM, Daniel M. Pharmacognostic, physicochemical and phytochemical studies on *C. papaya* Linn. leaves. Pharmacognosy J. 2011;3(20):5-8.
- [12] Amri E, Mamboya F. Papain, a plant enzyme of biological importance: a review. Am J Biochem Biotechnol. 2012;8(2):99-104.
- [13] Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46(D1):D624-D632.
- [14] Pandey S, Cabot PJ, Shaw PN, Hewavitharana AK. Anti-inflammatory and immunomodulatory properties of *C. papaya*. J Immunotoxicol. 2016;13(4):590-602.
- [15] Rajapakse S, Rodrigo C, Rajapakse A. Treatment of dengue fever. Infect Drug Resist. 2012;5:103-12
- [16] Subenthiran S, Choon TC, Cheong KC, Thayan R, Teck MB, Muniandy PK, et al. *C. papaya* leaves juice significantly accelerates the rate of increase in platelet count among patients with dengue fever and dengue haemorrhagic fever. Evid Based Complement Alternat Med. 2013;2013:616737.
- [17] Martina BE, Koraka P, Osterhaus AD. Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev. 2009;22(4):564-81.
- [18] St John AL, Abraham SN, Gubler DJ. Barriers to preclinical investigations of anti-dengue immunity and dengue pathogenesis. Nat Rev Microbiol. 2013;11(6):420-6.
- [19] Wang S, He R, Patarapotikul J, Innis BL, Anderson R. Antibody-enhanced binding of dengue-2 virus to human platelets. Virology. 1995;213(1):254-7.
- [20] Ranasinghe P, Ranasinghe P, Abeysekera WP, Premakumara GA, Perera YS, Gurugama P, et al. In vitro erythrocyte membrane stabilization properties of *C. papaya* L. leaf extracts. Pharmacognosy Res. 2012;4(4):196-202.
- [21] Dharmarathna SL, Wickramasinghe S, Waduge RN, Rajapakse RP, Kularatne SA. Does *C. papaya* leaf-extract increase the platelet count? An experimental study in a murine model. Asian Pac J Trop Biomed. 2013;3(9):720-4.
- [22] Grzonka Z, Jankowska E, Kasprzykowski F, Kasprzykowska R, Lankiewicz L, Wiczk W, et al. Structural studies of cysteine proteases and their inhibitors. Acta Biochim Pol. 2001;48(1):1-20.
- [23] Otto HH, Schirmeister T. Cysteine proteases and their inhibitors. Chem Rev. 1997;97(1):133-72.

- [24] Kamphuis IG, Kalk KH, Swarte MB, Drenth J. Structure of papain refined at 1.65 Å resolution. J Mol Biol. 1984;179(2):233-56.
- [25] Menard R, Storer AC. Oxyanion hole interactions in serine and cysteine proteases. Biol Chem. 2004;385(11):1083-6.
- [26] Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta. 2012;1824(1):68-88.
- [27] Vernet T, Tessier DC, Chatellier J, Plouffe C, Lee TS, Thomas DY, et al. Structural and functional roles of asparagine 175 in the cysteine protease papain. J Biol Chem. 1995;270(28):16645-52.
- [28] Polgar L. Mechanisms of protease action. CRC Press; 1989.
- [29] Sajid M, McKerrow JH. Cysteine proteases of parasitic organisms. Mol Biochem Parasitol. 2002;120(1):1-21.
- [30] Barrett AJ, Rawlings ND, Woessner JF. Handbook of proteolytic enzymes. Academic Press; 2012.
- [31] Sarker MMR, Gohda E. Promotion of anti-dengue virus immune responses by *C. papaya* leaf extract in mice. Sci Rep. 2020;10(1):15468.
- [32] Patil S, Shetty S, Bhide R, Narayanan S. Evaluation of platelet augmentation activity of *C. papaya* leaf aqueous extract in rats. J Pharmacogn Phytochem. 2013;1(5):57-60.
- [33] Saran PL, Choudhary R. Drug bioavailability and traditional medicaments of commercially available papaya: a review. African J Agric Res. 2013;8(25):3216-23.
- [34] Azarkan M, El Moussaoui A, van Wuytswinkel D, Dehon G, Looze Y. Fractionation and purification of the enzymes stored in the latex of *C. papaya*. J Chromatogr B. 2003;790(1-2):229-38.
- [35] Krishna KL, Paridhavi M, Patel JA. Review on nutritional, medicinal and pharmacological properties of Papaya (*C. papaya* Linn.). Nat Prod Radiance. 2008;7(4):364-73.
- [36] Nguyen TT, Shaw PN, Parat MO, Hewavitharana AK. Anticancer activity of *C. papaya*: A review. Mol Nutr Food Res. 2013;57(1):153-64.
- [37] Anuar NS, Zahari SS, Taib IA, Rahman MT. Effect of green and ripe *C. papaya* epicarp extracts on wound healing and during pregnancy. Food Chem Toxicol. 2008;46(7):2384-9.
- [38] Aravind G, Bhowmik D, Duraivel S, Harish G. Traditional and medicinal uses of *C. papaya*. J Med Plants Stud. 2013;1(1):7-15.
- [39] Menard R, Khouri HE, Plouffe C, Dupras R, Ripoll D, Vernet T, et al. A protein engineering study of the role of aspartate 158 in the catalytic mechanism of papain. Biochemistry. 1990;29(28):6706-13.
- [40] Buttle DJ, Barrett AJ. Chymopapain. Activity and stability. Biochem J. 1984;223(1):81-8.
- [41] Gadhwal AK, Ankit BS, Chahar C, Tantia P, Sirohi P, Agrawal RP. Effect of *C. papaya* leaf extract capsule on platelet count in patients of dengue fever with thrombocytopenia. J Assoc Physicians India. 2016;64(6):22-6.
- [42] Kasture PN, Nagabhushan KH, Kumar A. A multi-centric, double-blind, placebo-controlled, randomized, prospective study to evaluate the efficacy and safety of *C. papaya* leaf extract, as empirical therapy for thrombocytopenia associated with dengue fever. J Assoc Physicians India. 2016;64(6):15-20.
- [43] Charan J, Saxena D, Goyal JP, Yasobant S. Efficacy and safety of *C. papaya* leaf extract in the dengue: A systematic review and meta-analysis. Int J Appl Basic Med Res. 2016;6(4):249-54.