REVIEW ARTICLE

# A Review on Advances Computer-Aided Drug Design and Its Applications in Drug Discovery

Pavithra Adi Venakata Lakshmi S\*1, Govinda Rao Kamala², Saraswathi S³



<sup>1</sup>UG Scholar, Department of Pharmaceutical Chemistry, Koringa College of Pharmacy, Korangi, Kakinada, Andhra Pradesh, India
<sup>2</sup>Professor and Vice Principal, Department of Pharmaceutical Chemistry, Koringa College of Pharmacy, Korangi, Kakinada, Andhra Pradesh, India
<sup>3</sup>PG Scholar, Department of Computer Science and Technology, BVC Institute of Technology & Science, Bhatlapalem,, Amalapuram, Andhra Pradesh, India

Publication history: Received on 8th May 2025; Revised on 5th June 2025; Accepted on 14th June 2025

Article DOI: 10.69613/9b88sm25

Abstract: Computer-Aided Drug Design (CADD) is a revolutionary method in pharmaceutical research, combining computational chemistry, structural biology, and bioinformatics to accelerate drug discovery and development. The evolution of CADD has significantly reduced the time and resources required in conventional drug development pipelines, which typically span 10-15 years and cost billions of dollars. Modern CADD methodologies encompass structure-based drug design (SBDD), ligand-based drug design (LBDD), molecular dynamics simulations, and virtual screening techniques. These computational approaches enable precise prediction of drug-target interactions, optimization of lead compounds, and evaluation of pharmacokinetic properties. Recent applications of CADD have provided notable successes in developing therapeutics for various diseases, including COVID-19, cancer, and neurological disorders. The integration of artificial intelligence and machine learning algorithms has further enhanced CADD capabilities, particularly in predicting drug-protein interactions and optimizing molecular properties. Despite challenges in scoring functions and protein flexibility predictions, CADD continues to evolve, incorporating quantum mechanical calculations and improved sampling methods. The combination of computational tools and experimental validation has established CADD as an indispensable component in modern drug discovery, offering reduced costs, accelerated development timelines, and improved success rates in clinical trials.

**Keywords:** Computer-Aided Drug Design; Molecular Docking; Structure-Based Drug Design; Virtual Screening; Drug Development.

## 1. Introduction

Drug discovery and development represent complex, multifaceted processes requiring extensive resources, time, and interdisciplinary collaboration [1]. Traditional drug development typically spans 10-15 years from initial discovery to market approval, with estimated costs exceeding \$2.6 billion per successful drug. This process involves target identification, lead discovery, optimization, preclinical studies, and clinical trials, each phase demanding significant investment and expertise [1]. The traditional approach to drug development, primarily relying on experimental methods, faces significant challenges including high failure rates and substantial costs [2]. The attrition rate in conventional drug development is particularly concerning, with approximately 90% of drug candidates failing during clinical trials. These failures often occur due to unforeseen toxicity issues, poor pharmacokinetic properties, or lack of efficacy, highlighting the limitations of traditional experimental approaches [2].

Computer-Aided Drug Design emerged in 1981 as a revolutionary approach, implementing computational methods to streamline the drug discovery process [3]. This paradigm shift introduced systematic, rational approaches to drug design, moving away from serendipitous discoveries. The initial CADD methods focused on structure-activity relationships and molecular graphics, laying the foundation for more sophisticated computational techniques [3]. CADD integrates various computational techniques with experimental methods to identify, optimize, and evaluate potential drug candidates [4]. This integration encompasses multiple stages of drug discovery, from virtual screening of large compound libraries to lead optimization and prediction of drug-like properties. The synergy between computational and experimental approaches has revolutionized the efficiency of drug discovery pipelines [4].

The fundamental principle involves utilizing molecular modeling, computational chemistry, and bioinformatics to predict and analyze drug-target interactions at the atomic level [5]. These interactions are evaluated through sophisticated algorithms that consider molecular geometry, electronic properties, and thermodynamic parameters. Understanding these interactions helps in predicting binding affinities and potential biological activities [5].

<sup>\*</sup> Corresponding author: Pavithra Adi Venakata Lakshmi S

This technique has significantly reduced the time and resources required for drug development, while simultaneously increasing the success rate of candidate molecules [6]. CADD approaches can screen millions of compounds virtually, identifying the most promising candidates for experimental testing. This targeted approach substantially reduces the number of compounds requiring synthesis and biological evaluation [6]. The foundation of CADD rests on multiple computational approaches that analyze molecular structures and predict their interactions [7]. These approaches include structure-based methods that utilize three-dimensional protein structures and ligand-based methods that rely on known active compounds. The integration of these methods provides comprehensive insights into drug-target interactions [7].

| Method        | Primary Applications      | Computational    | Advantages              | Limitations                 |
|---------------|---------------------------|------------------|-------------------------|-----------------------------|
|               |                           | Requirements     |                         |                             |
| Molecular     | Protein-ligand binding    | Moderate         | Fast screening of large | Limited accuracy in         |
| Docking       | prediction                |                  | databases               | flexibility prediction      |
| Molecular     | Protein motion and        | High             | Detailed atomic-level   | Computationally intensive   |
| Dynamics      | binding kinetics          |                  | interactions            |                             |
| QSAR Analysis | Activity prediction       | Low to Moderate  | Rapid property          | Requires quality training   |
|               |                           |                  | prediction              | data                        |
| Quantum       | Electronic properties     | Very High        | Highest theoretical     | Limited to small systems    |
| Mechanics     | calculation               |                  | accuracy                | -                           |
| AI/Machine    | Multiple prediction tasks | Moderate to High | Can handle large        | Requires extensive training |
| Learning      |                           |                  | datasets                | data                        |

Table 1. Major Computational Methods in Drug Design and Their Applications

These methods incorporate quantum mechanics, molecular mechanics, and statistical mechanics to evaluate chemical and physical properties of molecules [8]. Quantum mechanical calculations provide detailed electronic structure information, while molecular mechanics enables rapid evaluation of conformational energies. Statistical mechanics bridges microscopic and macroscopic properties, offering insights into system behavior under various conditions [8]. The primary computational techniques include molecular docking, molecular dynamics simulations, and quantitative structure-activity relationship (QSAR) analyses [9]. Molecular docking predicts binding modes and affinities between drugs and targets, while molecular dynamics simulations reveal the dynamic behavior of these complexes. QSAR analyses establish mathematical relationships between molecular properties and biological activity, enabling activity prediction for novel compounds [9].

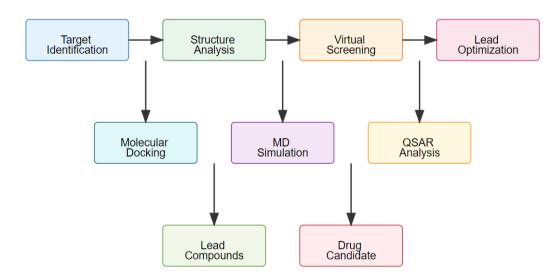


Figure 1: Pipeline of Computer-Aided Drug Design

Table 2. Evolution of CADD Techniques (2000-2024)

| Time Period | Technique                   | Major Breakthroughs  | Impact on Drug Discovery       |
|-------------|-----------------------------|----------------------|--------------------------------|
| 2000-2010   | Classical molecular docking | AutoDock, GOLD       | Virtual screening capabilities |
| 2011-2015   | Enhanced sampling methods   | Metadynamics         | Improved binding predictions   |
| 2016-2020   | Deep learning integration   | DeepMind's AlphaFold | Protein structure prediction   |
| 2021-2024   | AI-driven design            | Generative models    | Novel compound generation      |

# 2. CADD Based Drug-Design

#### 2.1. Structure-Based Drug Design

Structure-based drug design (SBDD) utilizes three-dimensional structural information of biological targets, typically obtained through X-ray crystallography, NMR spectroscopy, or cryo-electron microscopy [10]. This approach enables:

#### 2.1.1. Molecular Docking

Molecular docking predicts the optimal orientation and conformation of ligands within target protein binding sites [11]. Advanced docking algorithms incorporate protein flexibility and explicit solvent molecules to enhance prediction accuracy [12].

#### 2.1.2. De Novo Design

De novo design generates novel molecular structures based on the spatial and chemical constraints of the target binding site [13]. This method employs fragment-based approaches and growing algorithms to construct molecules with optimal binding properties [14].

### 2.2. Ligand-Based Drug Design

When target structural information is unavailable, ligand-based drug design (LBDD) relies on known active compounds to identify new potential drugs [15]. LBDD includes:

#### 2.2.1. Pharmacophore Modelling

Pharmacophore models identify essential structural features required for biological activity [16]. These models integrate spatial arrangements of key molecular features such as hydrogen bond donors/acceptors, aromatic rings, and charged groups [17].

## 2.2.2. QSAR Analysis

QSAR studies establish mathematical relationships between molecular descriptors and biological activity [18]. Modern QSAR approaches incorporate machine learning algorithms to improve prediction accuracy [19].

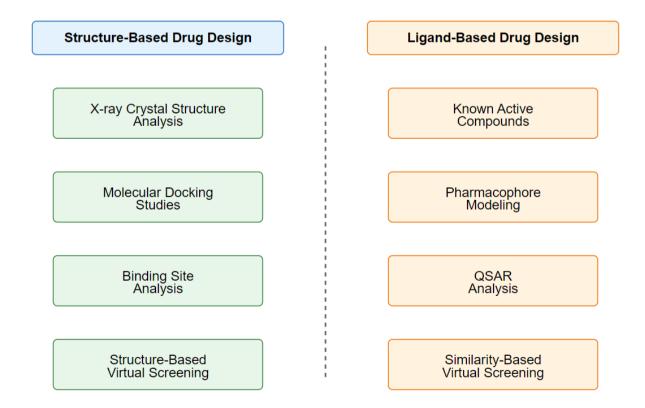


Figure 3: Structure-Based vs. Ligand-Based Drug Design Techniques

# 3. Advanced Computational Techniques

#### 3.1. Artificial Intelligence in Drug Design

The integration of artificial intelligence and machine learning has revolutionized CADD approaches [20]. Deep learning models can predict protein-ligand interactions, generate novel molecular structures, and optimize lead compounds [21].

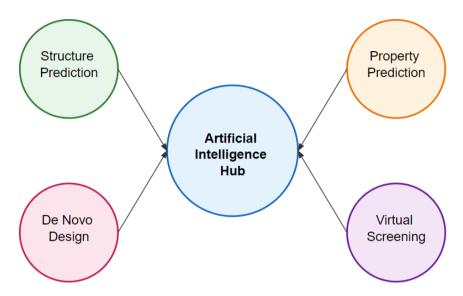


Figure 2: Use of AI in Modern CADD

#### 3.2. Quantum Mechanical Methods

Quantum mechanical calculations enable detailed analysis of reaction mechanisms at the molecular level, providing insights into transition states and energy barriers. The prediction of binding energies through quantum mechanical methods offers superior accuracy compared to classical force fields, particularly for metal-containing systems and covalent inhibitors [24]. Electronic property analysis of drug-target complexes through quantum mechanical calculations reveals crucial information about charge distributions, orbital interactions, and polarization effects that influence binding affinity [25].

# 4. Applications in Modern Drug Discovery

# 4.1. Cancer Therapy

CADD methodologies have significantly accelerated the development of targeted cancer therapeutics. Molecular docking studies have identified novel kinase inhibitors, leading to the development of drugs like imatinib and erlotinib [26]. Structure-based approaches have enabled the design of selective inhibitors targeting specific mutations in cancer cells, minimizing off-target effects [27]. Virtual screening campaigns have discovered new scaffolds for anticancer drug development, particularly for traditionally challenging targets like protein-protein interactions [28].

#### 4.2. Infectious Diseases

#### 4.2.1. Antiviral Drugs

The rapid response to viral outbreaks has been enhanced through CADD approaches. During the COVID-19 pandemic, computational methods facilitated the identification of potential inhibitors targeting viral proteins, particularly the main protease and spike protein [29]. Virtual screening and molecular dynamics simulations have guided the repurposing of existing drugs and the design of novel antiviral compounds [30].

## 4.2.2. Antibacterial Drugs

CADD has addressed the growing challenge of antibiotic resistance by identifying novel bacterial targets and designing new antibacterial compounds [31]. Structure-based approaches have enabled the development of inhibitors targeting essential bacterial proteins, while machine learning models have predicted antimicrobial activity and resistance mechanisms [32].

#### 4.3. Neurological Disorders

Computational approaches have advanced the development of drugs for neurological conditions. CADD methods have identified novel molecules targeting neurotransmitter receptors, ion channels, and protein aggregation in neurodegenerative diseases [33]. Virtual screening has discovered compounds capable of crossing the blood-brain barrier while maintaining therapeutic efficacy [34].

Disease Area Drug Name **CADD** Method Used Year Approved Target Cancer Imatinib Structure-based design 2001 BCR-ABL kinase HIV Raltegravir Molecular docking 2007 HIV integrase Boceprevir NS3 protease HCV Fragment-based design 2011 Venetoclax Structure-guided design 2016 BCL-2 Cancer COVID-19 Nirmatrelvir Structure-based design 2021 Main protease

Table 3: Success Stories in CADD-Assisted Drug Development

#### 5. Software Tools and Resources

# 5.1. Molecular Modeling

Modern CADD relies on sophisticated software platforms that integrate multiple computational tools. These platforms facilitate molecular visualization, conformational analysis, and energy calculations. Advanced modeling software incorporates quantum mechanical methods, molecular dynamics simulations, and machine learning algorithms to enhance prediction accuracy. Popular molecular modeling platforms include MOE, Schrödinger Suite, and Discovery Studio, which offer comprehensive toolsets for structure-based and ligand-based drug design approaches. These platforms provide intuitive graphical interfaces and powerful computational backends for tasks ranging from simple molecular visualization to complex binding free energy calculations [35].

| Category           | Software Name | Primary Functions       | License Type           | Features               |
|--------------------|---------------|-------------------------|------------------------|------------------------|
| Docking            | AutoDock Vina | Protein-ligand docking  | Open source            | Fast, accurate         |
| MD Simulation      | GROMACS       | Molecular dynamics      | Open source            | Highly parallelized    |
| Visualization      | PyMOL         | Structure visualization | Commercial/Educational | High-quality graphics  |
| AI/ML              | DeepChem      | ML for drug discovery   | Open source            | Multiple ML algorithms |
| Structure Analysis | BLAST         | Sequence analysis       | Free                   | Sequence comparison    |

Table 4: Common Software Tools in CADD

# 5.2. Database Management Systems

Effective drug discovery requires access to and management of vast chemical and biological databases. Structure databases like the Protein Data Bank (PDB) provide essential crystallographic information, while chemical databases such as ChEMBL and PubChem offer extensive collections of bioactive molecules. Modern database management systems integrate various components including chemical structure repositories, biological activity data, ADMET properties, literature references, and patent information. These systems employ sophisticated search algorithms and data mining tools to facilitate rapid information retrieval and analysis, enabling researchers to efficiently navigate through massive datasets and extract meaningful patterns and relationships [36].

## 5.3. Workflow Management Tools

Drug discovery workflows require seamless integration of multiple computational tools and data sources. Workflow management platforms like KNIME and Pipeline Pilot enable automated data processing and integration of different software tools, while ensuring standardization of protocols and reproducibility of analyses in collaborative research environments. These platforms support both predefined workflows for common tasks and custom workflow development for specialized applications. Cloud-based solutions have further enhanced accessibility and computational capacity, enabling distributed drug discovery efforts across multiple research sites and facilitating real-time collaboration between geographically dispersed teams [37].

#### 5.4. Visualization and Analysis Tools

Modern drug discovery relies heavily on sophisticated visualization tools that enable researchers to analyze protein-ligand interactions, examine conformational changes, evaluate surface properties, and generate publication-quality images. Programs like PyMOL, VMD, and Chimera provide powerful visualization capabilities combined with analysis tools for structural biology and drug design applications. These tools support various visualization modes, from simple wire-frame models to complex surface

representations and dynamic visualizations of molecular interactions, allowing researchers to gain deeper insights into molecular mechanisms and drug-target interactions [38].

#### 5.5. High-Performance Computing Resources

The computational demands of modern drug discovery require access to significant computing resources. High-performance computing solutions encompass GPU-accelerated workstations, computer clusters, cloud computing platforms, and distributed computing networks. These resources enable computationally intensive tasks such as large-scale virtual screening campaigns, extensive molecular dynamics simulations, complex quantum mechanical calculations, and training of sophisticated machine learning models. The availability of these computing resources has dramatically expanded the scope and scale of computational drug discovery efforts, allowing researchers to tackle increasingly complex problems and analyze larger datasets with greater accuracy and efficiency [39].

#### 6. Recent Trends in CADD

# 6.1. Artificial Intelligence and Deep Learning

Recent advances in artificial intelligence have revolutionized CADD methodologies. Deep neural networks now predict protein structures with unprecedented accuracy, as demonstrated by AlphaFold2 and RoseTTAFold [37]. Generative adversarial networks (GANs) enable the design of novel molecular structures with optimized properties, while graph neural networks improve prediction of molecular properties and drug-target interactions [38]. These AI-driven approaches have significantly enhanced virtual screening efficiency and lead optimization processes [39].

#### 6.2. Sampling Techniques

Enhanced sampling methods have improved the exploration of conformational space in molecular dynamics simulations. Techniques such as metadynamics and umbrella sampling provide detailed insights into protein-ligand binding mechanisms and free energy landscapes [40]. The development of adaptive sampling algorithms has enabled more efficient exploration of relevant conformational states, leading to better understanding of drug-target interactions [41].

#### 6.3. Fragment-Based Drug Design

Modern fragment-based approaches have evolved to incorporate computational methods more effectively. Advanced algorithms now identify and optimize fragment combinations, leading to more efficient lead generation [42]. The integration of machine learning with fragment-based design has improved the prediction of fragment binding modes and optimization strategies [43].

#### 6.4. Multi-Target Drug Design

Computational approaches for designing drugs that intentionally interact with multiple targets have advanced significantly. Network-based analyses and systems biology approaches help identify optimal target combinations and predict potential side effects [44]. Machine learning models now facilitate the design of balanced polypharmacological agents with desired selectivity profiles [45].

| Challenge Area         | Current Limitations              | Solutions                         | Impact                 |
|------------------------|----------------------------------|-----------------------------------|------------------------|
| Scoring Functions      | Accuracy in binding prediction   | Quantum mechanics integration     | Improved hit rates     |
| Protein Flexibility    | Limited conformational sampling  | Enhanced sampling methods         | Better pose prediction |
| Big Data Integration   | Data quality and standardization | AI-driven data curation           | More reliable models   |
| Computational Cost     | Resource requirements            | Cloud computing, GPU acceleration | Faster calculations    |
| Model Interpretability | Black-box AI models              | Explainable AI methods            | Better understanding   |

Table 5. Current limitations in CADD

# 7. Conclusion

Computer-Aided Drug Design helped in transforming the pharmaceutical research and development by accelerating the drug design and development process. The use of advanced computational methods with experimental approaches has accelerated drug discovery while reducing associated costs and risks. Modern CADD techniques use artificial intelligence algorithms, quantum mechanical calculations, and improved sampling techniques, enabling more accurate predictions of drug-target interactions and molecular properties. The success of CADD in developing treatments for various diseases, from cancer to COVID-19, shows its crucial role in modern medicine. Despite current limitations in scoring functions and protein flexibility predictions, CADD remains an indispensable tool in pharmaceutical research, offering a rational and systematic approach to drug discovery.

#### References

- [1] DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20-33.
- [2] Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov. 2010;9(3):203-14.
- [3] Kuntz ID. Structure-based strategies for drug design and discovery. Science. 1992;257(5073):1078-82.
- [4] Sliwoski G, Kothiwale S, Meiler J, Lowe EW. Computational methods in drug discovery. Pharmacol Rev. 2013;66(1):334-95.
- [5] Macalino SJ, Gosu V, Hong S, Choi S. Role of computer-aided drug design in modern drug discovery. Arch Pharm Res. 2015;38(9):1686-701.
- [6] Leelananda SP, Lindert S. Computational methods in drug discovery. Beilstein J Org Chem. 2016;12:2694-718.
- [7] Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3(11):935-49.
- [8] Durrant JD, McCammon JA. Molecular dynamics simulations and drug discovery. BMC Biol. 2011;9:71.
- [9] Wang T, Wu MB, Zhang RH, Chen ZJ, Hua C, Lin JP, et al. Advances in computational structure-based drug design and application in drug discovery. Curr Top Med Chem. 2016;16(9):901-16.
- [10] Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015;20(7):13384-421.
- [11] Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146-57.
- [12] Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophys Rev. 2017;9(2):91-102.
- [13] Wang L, Hou X, Fu Y, Chen W, Li Y, Chen J. Artificial intelligence in computer-aided drug design. Front Robot AI. 2022;9:866066.
- [14] Cole JC, Murray CW, Nissink JW, Taylor RD, Taylor R. Comparing protein-ligand docking programs is difficult. Proteins. 2005;60(3):325-32.
- [15] Yang SY. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today. 2010;15(11-12):444-50.
- [16] Wolber G, Langer T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model. 2005;45(1):160-9.
- [17] Qing X, Lee XY, De Raeymaecker J, Tame JR, Zhang KY, De Maeyer M, et al. Pharmacophore modeling: advances, limitations, and current utility in drug discovery. J Receptor Ligand Channel Res. 2014;7:81-92.
- [18] Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, et al. QSAR modeling: where have you been? Where are you going to? J Med Chem. 2014;57(12):4977-5010.
- [19] Lo YC, Rensi SE, Torng W, Altman RB. Machine learning in chemoinformatics and drug discovery. Drug Discov Today. 2018;23(8):1538-46.
- [20] Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23(6):1241-50.
- [21] Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, et al. A deep learning approach to antibiotic discovery. Cell. 2020;180(4):688-702.
- [22] Ryde U, Söderhjelm P. Ligand-binding affinity estimates supported by quantum-mechanical methods. Chem Rev. 2016;116(9):5520-66.
- [23] Vanommeslaeghe K, Guvench O, MacKerell AD Jr. Molecular mechanics. Curr Pharm Des. 2014;20(20):3281-92.
- [24] Åqvist J, Marelius J. The linear interaction energy method for predicting ligand binding free energies. Comb Chem High Throughput Screen. 2001;4(8):613-26.
- [25] Roncaglioni A, Toropov AA, Toropova AP, Benfenati E. In silico methods to predict drug toxicity. Curr Opin Pharmacol. 2013;13(5):802-6.

- [26] Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9(1):28-39.
- [27] Juchum M, Günther M, Laufer SA. Fighting cancer drug resistance: Opportunities and challenges for mutation-specific EGFR inhibitors. Drug Resist Updat. 2015;20:12-28.
- [28] Lu X, Smaill JB, Ding K. New promise and opportunities for allosteric kinase inhibitors. Angew Chem Int Ed Engl. 2020;59(32):13764-76.
- [29] Ton AT, Gentile F, Hsing M, Ban F, Cherkasov A. Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds. Mol Inform. 2020;39(8):2000028.
- [30] Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020;10(5):766-88
- [31] Hughes D, Karlén A. Discovery and preclinical development of new antibiotics. Ups J Med Sci. 2014;119(2):162-9.
- [32] Durrant JD, Amaro RE. Machine-learning techniques applied to antibacterial drug discovery. Chem Biol Drug Des. 2015;85(1):14-21.
- [33] Ghanemi A. Targeting neurological disorders by computer-aided drug design. Curr Top Med Chem. 2015;15(21):2186-92.
- [34] Ghose AK, Herbertz T, Hudkins RL, Dorsey BD, Mallamo JP. Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem Neurosci. 2012;3(1):50-68.
- [35] Huggins DJ, Sherman W, Tidor B. Rational approaches to improving selectivity in drug design. J Med Chem. 2012;55(4):1424-44.
- [36] Abel R, Wang L, Harder ED, Berne BJ, Friesner RA. Advancing drug discovery through enhanced free energy calculations. Acc Chem Res. 2017;50(7):1625-32.
- [37] Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583-9.
- [38] Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci. 2018;4(2):268-76.
- [39] Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev. 2019;119(18):10520-94.
- [40] Gioia D, Bertazzo M, Recanatini M, Masetti M, Cavalli A. Dynamic docking: a paradigm shift in computational drug discovery. Molecules. 2017;22(11):2029.
- [41] Bernardi RC, Melo MCR, Schulten K. Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim Biophys Acta. 2015;1850(5):872-7.
- [42] Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H. Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov. 2016;15(9):605-19.
- [43] de Souza Neto LR, Moreira-Filho JT, Neves BJ, Maidana RLBR, Guimarães ACR, Furnham N, et al. In silico strategies for the discovery of new drug targets and drug candidates in trypanosomatids. Front Chem. 2020;8:435.
- [44] Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682-90.
- [45] Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. J Med Chem. 2014;57(19):7874-87.