REVIEW ARTICLE

Phytochemistry, Traditional Uses, and Pharmacological Properties of *Polyalthia longifolia*

Preethi B H*1, Balasubramanian T2, Suresh B S2, Ahalya Devi K H3

¹PG Scholar, Department of Pharmacology, Bharathi College of Pharmacy, Bharathinagara, Mandya, Karnataka, India
² Associate Professor, Department of Pharmacology, Bharathi College of Pharmacy, Bharathinagara, Mandya, Karnataka, India
³ Assistant Professor, Department of Pharmacology, Bharathi College of Pharmacy, Bharathinagara, Mandya, Karnataka, India

Publication history: Received on 3rd May 2025; Revised on 31st May 2025; Accepted on 8th June 2025

Article DOI: 10.69613/a6bqex46

Abstract: *Polyalthia longifolia* (Annonaceae) is a valuable medicinal plant widely distributed across South and Southeast Asia. The plant exhibits distinct morphological characteristics, including a tall, evergreen habit with a pyramidal crown and pendulous branches. Various parts of P. *longifolia* contain bioactive compounds such as alkaloids, flavonoids, terpenoids, and phenolic compounds. Traditional medicine systems have utilized P. *longifolia* for treating fever, skin diseases, diabetes, hypertension, and helminthiasis. Recent pharmacological studies demonstrate its potential in managing various health conditions. The leaves exhibit anti-ulcer, antiplasmodial, and anti-inflammatory properties, while the bark shows promising results in wound healing and antimicrobial applications. The main therapeutic effects include antihyperglycemic activity through α -amylase and α -glucosidase inhibition, anticancer properties against prostate cancer cells, and immunomodulatory effects on B and T lymphocytes. The plant also demonstrates antiviral activity against paramyxoviruses and antileishmanial properties through DNA topoisomerase inhibition. Modern scientific investigations validate many traditional uses while revealing new therapeutic applications. Various studies related to pharmacological activities of P. *longifolia* proves it as a valuable source for developing novel therapeutic agents.

Keywords: Annonaceae; Medicinal plant; Phytoconstituents; Pharmacological activities; Traditional medicine.

1. Introduction

Medicinal plants continue to serve as invaluable resources in healthcare systems worldwide, particularly in developing nations where traditional medicine remains a primary source of healthcare [1]. Plant-based medicines have demonstrated significant therapeutic potential while often presenting fewer side effects compared to synthetic drugs [2]. The growing interest in natural products has led to increased scientific investigation of traditional medicinal plants, aiming to validate their therapeutic properties and identify novel bioactive compounds [3]. *Polyalthia longifolia*, belonging to the family Annonaceae, stands out as a significant medicinal plant with diverse therapeutic applications [4]. The genus Polyalthia encompasses approximately 120 species distributed across tropical and subtropical regions [5]. The etymology of Polyalthia derives from Greek, meaning "many cures," while longifolia refers to its characteristic long leaves [6]. The species is native to Sri Lanka and has naturalized across South Asia, particularly in India, where it grows at elevations up to 1500 meters [7].

Morphologically, *P. longifolia* presents as a tall evergreen tree reaching heights of 12-15 meters, characterized by a distinctive symmetrical pyramidal crown [8]. The tree exhibits either short branches measuring 1-2 meters or long, glabrous, pendulous branches [9]. The leaves are lanceolate, measuring 13-20 cm in length and 4-6 cm in width, with distinctive wavy margins [10]. The flowers appear in clusters, while the fruits develop in groups of 10-20, transitioning from green to purple-black upon ripening [11]. The species holds significant economic importance beyond its medicinal applications. The lightweight wood has historically been utilized for manufacturing masts in sailing vessels, earning it the common name "Indian Mast Tree" [12]. In urban landscapes, *P. longifolia* serves as an effective noise barrier and popular ornamental species due to its symmetric crown and dense foliage [13].

Phytochemical analyses have revealed a complex profile of bioactive compounds across different plant parts [14]. The leaves contain alkaloids, steroids, phenolic compounds, tannins, and flavonoids, while the bark yields terpenoids, flavonoids, and various alkaloid derivatives [15]. These compounds contribute to the plant's diverse pharmacological activities, including antimicrobial, anti-inflammatory, and antidiabetic properties [16]. Traditional medicine systems across South Asia have employed various parts of *P. longifolia* for centuries [17]. The bark has been used to treat fever, skin diseases, and diabetes, while the leaves have shown efficacy against hypertension and helminthiasis [18]. Modern scientific investigations continue to validate these traditional applications while

^{*} Corresponding author: Preethi B H

uncovering new therapeutic potential [19]. This review provides current knowledge regarding *P. longifolia*'s botanical characteristics, phytochemical constituents, traditional applications, and pharmacological properties, supported by recent scientific investigations.

Figure 1. Fruits and Leaves of P. longifolia

2. Taxonomy and Botanical Description

2.1. Taxonomical Classification

P. longifolia's systematic position in plant kingdom taxonomy follows a clear hierarchical structure. The species belongs to the kingdom Plantae, division Magnoliophyta, and class Magnoliopsida [20]. Within the order Magnoliales, it is classified under family Annonaceae, genus Polyalthia, with the specific epithet longifolia [21].

•	Tabl	e 1.	Taxonom	ical (Classifi	cation	of Polyalthia longifolia	ı
	_	-		~-				

Rank	Classification
Kingdom	Plantae
Division	Magnoliophyta
Class	Magnoliopsida
Order	Magnoliales
Family	Annonaceae
Genus	Polyalthia
Species	P. longifolia
Botanical name	Polyalthia longifolia (Sonn.) Thwaites

2.2. Synonyms and Vernacular Names

The species has several botanical synonyms including Uvaria longifolia Sonn., Guatteria longifolia (Sonn.) Wallich, and Unona longifolia (Sonn.) [22]. The plant is recognized by various vernacular names across different regions: 'Devdar' in Marathi, 'Asoka' in Hindi, 'Naramamidi' in Telugu, and 'Asopalov' in Gujarati [23]. These diverse names reflect its widespread distribution and cultural significance across different linguistic regions.

2.3. Morphological Characteristics

The tree exhibits a characteristic straight trunk with symmetrically arranged branches forming a compact, pyramidal crown [24]. The bark appears gray-brown, smooth in young trees, developing shallow fissures with age [25]. Leaves are arranged alternately, displaying lanceolate shape with undulate margins, glossy surface, and prominent venation patterns [26]. Flowers emerge in axillary clusters, appearing greenish-yellow with three sepals and six petals arranged in two whorls [27]. The androecium consists of numerous stamens, while the gynoecium comprises multiple free carpels [28]. Fruits develop as aggregate structures, with individual drupes measuring 2.5-3.0 cm, turning purple-black upon maturation [29].

3. Geographical Distribution and Habitat

3.1. Natural Distribution

P. longifolia shows a natural distribution across tropical and subtropical regions of South and Southeast Asia [30]. The species occurs naturally in Sri Lanka and various parts of India, extending to Malaysia, Indonesia, and the Philippines [31]. In India, it is found across diverse ecological zones from coastal regions to elevations of 1500 meters in the Western Ghats and Eastern Himalayas [32].

3.2. Cultivated Range

Beyond its natural range, *P. longifolia* has been successfully introduced to numerous tropical countries [33]. It is extensively cultivated in urban areas across Asia and Africa, particularly in Nigeria, Ghana, and East African nations [34]. The species demonstrates remarkable adaptability to various soil types and climatic conditions, contributing to its successful establishment in new regions [35].

4. Phytochemical Composition

4.1. Alkaloids

The plant contains diverse alkaloids including liriodenine, anonaine, and asimilobine [36]. Notable compounds like (+)-isoboldine and hordenine have been isolated from leaves, while the bark yields berberine derivatives and N-trans-feruloyldopamine [37].

4.2. Terpenoids

Significant terpenoid compounds include clerodane diterpenoids, particularly 16α-hydroxy-cleroda-3,13(14)Z-dien-15,16-olide and kolavenic acid [38]. The leaves contain essential oil components such as caryophyllene, longifolene, and various sesquiterpenes [39].

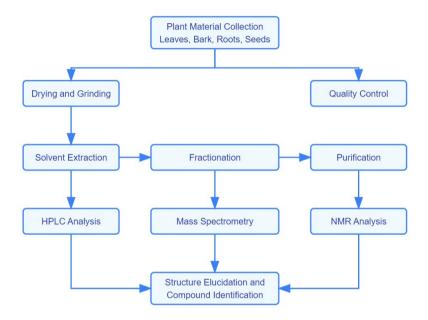


Figure 1. Extraction of Bioactive Compounds from P. longifolia

4.3. Flavonoids and Phenolics

Various flavonoids have been identified, including quercetin derivatives, kaempferol glycosides, and rutin [40]. Phenolic compounds such as proanthocyanidins and gallic acid contribute to the plant's antioxidant properties [41].

 Table 2. Major Phytochemical Constituents Isolated from Different Parts of P. longifolia

Plant Part	Class of Compounds	Major Constituents
Leaves	Alkaloids	Liriodenine, Oliveroline, Hordenine
	Diterpenes	Clerodane diterpenes, 16α-hydroxycleroda-3,13(14)Z-dien-15,16-olide
	Flavonoids	Quercetin, Kaempferol glycosides, Rutin
Bark	Alkaloids	Berberine derivatives, N-trans-feruloyldopamine
	Terpenoids	Longifolene, β-caryophyllene
	Phenolics	Proanthocyanidins, Gallic acid
Seeds	Diterpenes	Kolavenic acid, 16-oxo-cleroda-3,13(14)E-dien-15-oic acid
	Steroids	β-sitosterol, Stigmasterol
Roots	Alkaloids	Azafluorene alkaloids, Aporphine alkaloids
	Phenolics	Tannins, Proanthocyanidins

5. Traditional Applications

Traditional medicine practitioners across different regions have utilized *P. longifolia* extensively [42]. Various plant parts serve distinct therapeutic purposes, reflecting deep cultural knowledge of their medicinal properties [43].

5.1. Bark

The stem bark holds particular significance in traditional medicine systems. Fresh bark juice traditionally addresses digestive disorders and pyrexia [44]. In West African traditional medicine, particularly in Côte d'Ivoire, bark preparations treat hemorrhoids and fever-related pain [45]. Indigenous communities in Gujarat, India, employ dried bark powder combined with butter for treating gonorrhea, while bark decoctions address mouth ulcers [46].

5.2. Leaf

Traditional healers utilize leaf preparations for various therapeutic purposes. In Nigerian traditional medicine, leaves treat skin diseases, diabetes, and hypertension [47]. The leaves also find application in treating microbial infections and inflammatory conditions [48]. Decoctions of leaves serve as febrifuge and possess antimalarial properties in traditional systems [49].

5.3. Root and Seed

Root preparations, often combined with other medicinal plants like Morinda citrifolia and Curcuma longa, form traditional snake bite remedies [50]. Seeds traditionally serve as febrifuge in certain regions of India, particularly in Orissa [51].

Region	Plant Part Used	Traditional Uses	Mode of Administration	
India	Bark	Fever, Diabetes, Skin diseases	Decoction, Powder	
	Leaves	Hypertension, Helminthiasis	Infusion, Fresh juice	
Sri Lanka	Bark	Digestive disorders, Fever	Fresh bark juice	
	Leaves	Wounds, Skin infections	Poultice	
Nigeria	Leaves	Malaria, Diabetes	Decoction	
	Roots	Snake bite	Root paste	
West Africa	Bark	Hemorrhoids, Pain	Decoction	
	Seeds	Fever	Powder	

Table 3. Traditional Medicinal Applications of P. longifolia in Different Regions

6. Pharmacological Properties

6.1. Gastrointestinal Effects

6.1.1. Anti-ulcer Activity

Experimental studies demonstrate significant gastroprotective effects of *P. longifolia* leaf extracts against ethanol-induced ulcers in rat models [52]. The protective mechanism involves strengthening of gastric mucosal defense and reduction of oxidative stress [53].

6.2. Antimicrobial Activities

6.2.1. Antiplasmodial Properties

Stem bark extracts exhibit potent antiplasmodial activity against chloroquine-resistant strains [54]. The activity relates to specific compounds, supporting traditional antimalarial applications [55].

6.2.2. Antileishmanial Effects

The compound 16α-hydroxycleroda-3,13(14)Z-dien-15,16-olide demonstrates significant antileishmanial activity through specific targeting of parasite DNA topoisomerase [56]. This activity shows both *in vitro* and *in vivo* efficacy without cytotoxicity [57].

6.3. Metabolic Effects

P. longifolia exhibits glucose-lowering properties through multiple mechanisms [58]. The ethanol and chloroform extracts inhibit α -amylase and α -glucosidase enzymes, thereby reducing glucose absorption [59]. This activity provides scientific validation for traditional antidiabetic applications [60].

6.4. Immunological and Anti-inflammatory Effects

6.4.1. Immunomodulatory Properties

Ethanolic extracts of *P. longifolia* leaves demonstrate significant effects on immune system function [61]. Studies reveal modulation of both B and T lymphocyte activities, suggesting potential applications in immunodeficiency disorders [62]. The immunomodulatory effects appear dose-dependent and show minimal toxicity [63].

6.4.2. Anti-inflammatory Activity

Multiple studies confirm the anti-inflammatory properties using various experimental models [64]. Cotton pellet granuloma studies demonstrate reduced tissue formation and inflammation [65]. Both ethanolic and aqueous extracts show significant anti-inflammatory effects, attributed to flavonoids and phenolic compounds [66]. Carrageenan-induced paw edema models validate these properties at different time intervals [67].

6.5. Wound Healing Properties

Ethanolic leaf extracts promote wound healing in excision wound models [68]. The healing mechanism involves enhanced epithelialization and accelerated myofibroblast contraction [69]. Various solvent extracts of bark, including methanol, n-hexane, and ethyl acetate, contain active compounds contributing to wound healing activity [70].

6.6. Antiviral and Anticancer Properties

6.6.1. Antiviral Activity

Leaf extracts demonstrate significant activity against paramyxoviruses through dual mechanisms [71]. The extract inhibits both viral entry and budding processes, suggesting potential development as an antiviral agent [72].

6.6.2. Anticancer Effects

Methanolic extracts show promising activity against prostate cancer cells [73]. The mechanism involves cell cycle arrest at G1/S phase and activation of the intrinsic apoptotic pathway [74]. These findings suggest potential applications in cancer therapy [75].

6.7. Antihyperuricemic Effects

Studies demonstrate significant xanthine oxidase inhibitory activity in leaf extracts [76]. This property suggests potential applications in managing hyperuricemia and related conditions [77].

6.8. Antipyretic Properties

Methanol extracts from various plant parts show dose-dependent antipyretic activity [78]. Root extracts demonstrate superior antipyretic effects compared to leaf and stem bark extracts in LPS-induced models [79, 80].

Activity	Part Used/Extract Type	Study Model	Major Findings	Reference
Antimicrobial	Leaf/Methanol	In vitro	Active against S. aureus, E. coli	[28]
Anti- inflammatory	Leaf/Ethanol	Carrageenan-induced edema	Significant reduction in inflammation	[64]
Antidiabetic	Bark/Aqueous	Streptozotocin-induced diabetes	Reduced blood glucose levels	[11]
Anticancer	Leaf/Methanol	Human cancer cell lines	Cytotoxic against prostate cancer cells	[73]
Wound hooling	Loof/Ethanol	Excision wound model	Enhanced epithelialization	[69]

Table 4. Pharmacological Activities of *P. longifolia* Extracts

7. Conclusion

P. longifolia represents a valuable medicinal plant with diverse therapeutic applications. Phytochemical investigations reveal a complex profile of bioactive compounds contributing to its pharmacological properties. Scientific studies validate many traditional uses while uncovering new therapeutic potential. The plant demonstrates significant activities including anti-inflammatory, antihyperglycemic, anticancer, and immunomodulatory effects. Various extracts show promising results in managing conditions ranging from microbial infections to metabolic disorders. The documented safety profile supports its therapeutic use, though additional research regarding

long-term effects remains necessary. The accumulated evidence establishes *P. longifolia* as a significant source for developing new therapeutic agents. Future research directions should focus on mechanism elucidation, standardization of preparations, and clinical validation of promising applications.

References

- [1] Jamshidi-Kia F, Lorigooini Z, Amini-Khoei H. Medicinal plants: Past history and future perspective. J Herbmed Pharmacol. 2018;7(1):1-7.
- [2] Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF, Tang MK, et al. New perspectives on how to discover drugs from herbal medicines: CAM's outstanding contribution to modern therapeutics. Evid Based Complement Alternat Med. 2013;2013:627375.
- [3] Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv. 2015;33(8):1582-614.
- [4] Katkar KV, Suthar AC, Chauhan VS. The chemistry, pharmacologic, and therapeutic applications of *Polyalthia longifolia*. Pharmacogn Rev. 2010;4(7):62-8.
- [5] Slik JWF, Poulsen AD, Ashton PS, Cannon CH, Eichhorn KAO, Kartawinata K, et al. A floristic analysis of the Annonaceae of East Malesia. Blumea. 2018;63(2):167-98.
- [6] Ghosh G, Kar DM, Subudhi BB, Mishra SK. Anti-hyperglycemic and antioxidant activity of stem bark of *Polyalthia longifolia* var. angustifolia. Der Pharmacia Lettre. 2010;2(2):206-16.
- [7] Raghunathan M, Thyagarajan SP. Polyalthia longifolia A review. Anc Sci Life. 1982;2(2):97-102.
- [8] Chen J, Thomas DC, Saunders RMK. Geographic range and habitat reconstructions shed light on palaeotropical intercontinental disjunction and regional diversification patterns in Polyalthia (Annonaceae). J Biogeogr. 2019;46(12):2690-705.
- [9] Mitra S, Mukherjee SK. Ethnomedicinal usages of some wild plants of North Bengal plain for gastro-intestinal problems. Indian J Tradit Know. 2010;9(4):705-12.
- [10] Jothy SL, Zakaria Z, Chen Y, Lau YL, Latha LY, Sasidharan S. Acute oral toxicity of methanolic seed extract of *Polyalthia longifolia* in rats. Molecules. 2011;16(6):4525-34.
- [11] Kumar D, Kumar S, Kumar S. Evaluation of antidiabetic activity of *Polyalthia longifolia* (Sonn.) Thw. leaves in streptozotocin induced diabetic rats. Digests J Nanomater Biostruct. 2010;5(2):377-83.
- [12] Agrawal S, Sharma K. Antidiabetic activity of stem bark of *Polyalthia longifolia* on alloxan induced diabetic rats. Global J Pharmacol. 2013;7(2):196-200.
- [13] Rashid M, Shamsi S, Zaman R, Ilahi A. Medicinal plant diversity utilized in the treatment of gastrointestinal disorders by the Gujjar-Bakerwal tribe of District Rajouri of Jammu and Kashmir State. J Ethnopharmacol. 2015;4(1):52-9.
- [14] Sashidhara KV, Singh SP, Shukla PK. Antimicrobial evaluation of clerodane diterpenes from *Polyalthia longifolia* var. pendula. Nat Prod Commun. 2009;4(3):327-30.
- [15] Chen CY, Chang FR, Wu YC. The constituents from the stems of Annona cherimola. J Chin Chem Soc. 1997;44(3):313-9.
- [16] Sundaresan S, Senthilkumar B. A survey of traditional medicinal plants from the Vellore district, Tamil Nadu, India. Int J Ayurvedic Herb Med. 2013;3(5):1347-55.
- [17] Patel JD, Kumar V. Annona squamosa L.: Phytochemical analysis and antimicrobial screening. J Pharm Res. 2008;1(1):34-
- [18] Sampath M, Vasanthi M. Isolation, structural elucidation of flavonoids from *Polyalthia longifolia* (Sonn.) Thawaites and evaluation of antibacterial, antioxidant and anticancer potential. Int J Pharm Pharm Sci. 2013;5(1):336-41.
- [19] Wu YC, Duth CY, Wang SK, Chen KS, Yang TH. Two new natural azafluorene alkaloids and a cytotoxic aporphine alkaloid from *Polyalthia longifolia*. J Nat Prod. 1990;53(5):1327-31.
- [20] Anand T, Gokulakrishnan K. Phytochemical analysis of Hybanthus enneaspermus using UV, FTIR and GC-MS. IOSR J Pharm. 2012;2(3):520-4.
- [21] Marthanda Murthy M, Subramanyam M, Hima Bindu M, Annapurna J. Antimicrobial activity of clerodane diterpenoids from *Polyalthia longifolia* seeds. Fitoterapia. 2005;76(3-4):336-9.

- [22] Chakrabarty M, Nath AC. A new clerodane type butenolide diterpene from the bark of *Polyalthia longifolia* var. pendula. Indian J Chem. 1992;31B:108-10.
- [23] Gbeassor M, Kedjagni AY, Koumaglo K, De Souza C, Agbo K, Aklikokou K, et al. *In vitro* antimalarial activity of six medicinal plants. Phytother Res. 1990;4(3):115-7.
- [24] Kumar V, Prasad AK, Parmar VS. Naturally occurring aristolactams, aristolochic acids and dioxoaporphines and their biological activities. Nat Prod Rep. 2003;20(6):565-83.
- [25] Faizi S, Khan RA, Mughal NR, Malik MS, Sajjadi KE, Ahmad A. Antimicrobial activity of various parts of *Polyalthia longifolia* var. pendula: isolation of active principles from the leaves and the berries. Phytother Res. 2008;22(7):907-12.
- [26] Chen CY, Chang FR, Shih YC, Hsieh TJ, Chia YC, Tseng HY, et al. Cytotoxic constituents of *Polyalthia longifolia* var. pendula. J Nat Prod. 2000;63(11):1475-8.
- [27] Zhao GX, Jung JH, Smith DL, Wood KV, McLaughlin JL. Cytotoxic clerodane diterpenes from *Polyalthia longifolia*. Planta Med. 1991;57(4):380-3.
- [28] Nair R, Chanda S. Antimicrobial activity of *Polyalthia longifolia* (Sonn.) Thw. var. pendula leaf extracts against 91 clinically important pathogenic microbial strains. Chin Med. 2007;2:30.
- [29] Saleem R, Ahmed M, Ahmed SI, Azeem M, Khan RA, Rasool N, et al. Hypotensive activity and toxicology of constituents from root bark of *Polyalthia longifolia* var. pendula. Phytother Res. 2005;19(10):881-4.
- [30] Subramanion JL, Zakaria Z, Chen Y, Lau YL, Latha LY, Sasidharan S. Acute oral toxicity of methanolic seed extract of *Polyalthia longifolia* in rats. Molecules. 2011;16(6):4525-34.
- [31] Annan K, Houghton PJ. Antibacterial, antioxidant and fibroblast growth stimulation of aqueous extracts of Ficus asperifolia Miq. and Gossypium arboreum L., wound-healing plants of Ghana. J Ethnopharmacol. 2008;119(1):141-4.
- [32] Mishra DD, Srivastava SK, Chaturvedi SC. Analgesic and anti-inflammatory activities of clerodane diterpenoids from *Polyalthia longifolia* var. pendula. Pharm Biol. 2010;48(1):45-8.
- [33] Chakrabarty M, Nath AC, Khasnobis S, Chakrabarty M, Konda Y, Harigaya Y, et al. Clerodane diterpenes from *Polyalthia longifolia* var. pendula. Phytochemistry. 1997;46(4):751-5.
- [34] Kumar A, Rajkumar V, Guha G, Mathew L. Therapeutic potentials of *Polyalthia longifolia* A review. J Pharm Res. 2011;4(12):4418-20.
- [35] Kavitha D, Niranjali S. Inhibition of enteropathogenic Escherichia coli adhesion on host epithelial cells by *Polyalthia longifolia* leaf extracts. Pharm Biol. 2009;47(10):957-63.
- [36] Sashidhara KV, Singh SP, Singh SV, Srivastava RK, Srivastava K, Saxena JK, et al. Isolation and identification of β-sitosterol-3-O-β-D-glucopyranoside from *Polyalthia longifolia* var. pendula leaf. Nat Prod Res. 2009;23(18):1719-23.
- [37] Chang FR, Hwang TL, Yang YL, Li CE, Wu CC, Issa HH, et al. Anti-inflammatory and cytotoxic diterpenes from formosan *Polyalthia longifolia* var. pendula. Planta Med. 2006;72(14):1344-7.
- [38] Ghosh G, Subudhi BB, Mishra SK. Antioxidant properties of bark extracts from *Polyalthia longifolia* var. angustifolia. Int J Pharmacol. 2011;7(4):555-8.
- [39] Verma M, Singh SK, Bhushan S, Sharma VK, Datt P, Kapahi BK, et al. *In vitro* cytotoxic potential of *Polyalthia longifolia* on human cancer cell lines and induction of apoptosis through mitochondrial-dependent pathway in HL-60 cells. Chem Biol Interact. 2008;171(1):45-56.
- [40] Wu YC, Hung YC, Chang FR, Cosentino M, Wang HK, Lee KH. Identification of ent-16β,17-dihydroxykauran-19-oic acid as an anti-HIV principle and isolation of the new diterpenoids annosquamosins A and B from *Polyalthia longifolia*. J Nat Prod. 1996;59(6):635-7.
- [41] Agrawal SS, Saraswati S, Mathur R, Pandey M. Antitumor properties of Boswellic acid against Ehrlich ascites cells bearing mouse. Food Chem Toxicol. 2011;49(9):1924-34.
- [42] Chen CY, Wu HM, Chao WY, Lee CH. Review on pharmacological activities of liriodenine. Nat Prod Res Dev. 2013;25:1166-71.
- [43] Jothy SL, Chen Y, Kanwar JR, Sasidharan S. Evaluation of the genotoxic potential against H2O2-radical-mediated DNA damage and acute oral toxicity of standardized extract of *Polyalthia longifolia* leaf. Evid Based Complement Alternat Med. 2013;2013:925380.
- [44] Manjula SN, Kenganora M, Parihar VK, Kumar S, Nayak PG, Kumar N, et al. Antitumor and antioxidant activity of *Polyalthia longifolia* stem bark ethanol extract. Pharm Biol. 2010;48(6):690-6.

- [45] Saleem R, Ahmed M, Ahmed SI, Azeem M, Khan RA, Rasool N, et al. Hypotensive activity and toxicology of constituents from root bark of *Polyalthia longifolia* var. pendula. Phytother Res. 2005;19(10):881-4.
- [46] Sari DP, Ninomiya M, Efdi M, Santoni A, Ibrahim S, Tanaka K, et al. Clerodane diterpenes isolated from *Polyalthia longifolia* induce apoptosis in human leukemia HL-60 cells. J Oleo Sci. 2013;62(10):843-8.
- [47] Tanna A, Nair R, Chanda S. Assessment of anti-inflammatory and hepatoprotective potency of *Polyalthia longifolia* var. pendula leaf in Wistar albino rats. J Nat Med. 2009;63(1):80-5.
- [48] Ogunwande IA, Olawore NO, Ekundayo O, Walker TM, Schmidt JM, Setzer WN. Studies on the essential oils composition, antibacterial and cytotoxicity of Eugenia uniflora L. Int J Aromather. 2005;15(3):147-52.
- [49] Ravikumar YS, Ray U, Nandhitha M, Perween A, Raja Naika H, Khanna N, et al. Inhibition of hepatitis C virus replication by herbal extract: Phyllanthus amarus as potent natural source. Virus Res. 2011;158(1-2):89-97.
- [50] Chang FR, Wei JL, Teng CM, Wu YC. Two new 7-dehydroaporphine alkaloids and antiplatelet action from the leaves of Annona purpurea. Phytochemistry. 1998;49(7):2015-8.
- [51] Stévigny C, Bailly C, Quetin-Leclercq J. Cytotoxic and antitumor potentialities of aporphinoid alkaloids. Curr Med Chem Anticancer Agents. 2005;5(2):173-82.
- [52] Subramanion LJ, Zuraini Z, Yeng C, Yee LL, Lachimanan YL, Sreenivasan S. Acute oral toxicity of methanolic seed extract of *Polyalthia longifolia* in rats. Molecules. 2011;16(6):4525-34.
- [53] Yang YL, Chang FR, Wu CC, Wang WY, Wu YC. New ent-kaurane diterpenoids with anti-platelet aggregation activity from Annona squamosa. J Nat Prod. 2002;65(10):1462-7.
- [54] Phadnis AP, Patwardhan SA, Dhaneshwar NN, Tavale SS, Row TNG. Clerodane diterpenoids from *Polyalthia longifolia*. Phytochemistry. 1988;27(9):2899-901.
- [55] Chen CY, Chang FR, Pan WB, Wu YC. Four alkaloids from Annona cherimola. Phytochemistry. 2001;56(7):753-7.
- [56] Faizi S, Mughal NR, Khan RA, Khan SA, Ahmad A, Bibi N, et al. Evaluation of the antimicrobial property of *Polyalthia longifolia* var. pendula: isolation of a lactone as the active antibacterial agent from the ethanol extract of the stem. Phytother Res. 2003;17(10):1177-81.
- [57] Marthanda Murthy M, Subramanyam M, Hima Bindu M, Annapurna J. Antimicrobial activity of clerodane diterpenoids from *Polyalthia longifolia* seeds. Fitoterapia. 2005;76(3-4):336-9.
- [58] Chang FR, Wei JL, Teng CM, Wu YC. Antiplatelet aggregation constituents from Annona purpurea. J Nat Prod. 1998;61(12):1457-61.
- [59] Chakrabarty M, Nath AC. A new clerodane-type butenolide diterpene from the bark of *Polyalthia longifolia* var. pendula. J Nat Prod. 1992;55(2):256-8.
- [60] Wu YC, Chang GY, Ko FN, Teng CM. Bioactive constituents from the stems of Annona montana. Planta Med. 1995;61(2):146-9.
- [61] Bhattacharya AK, Chand HR, John J, Deshpande MV. Clerodane type diterpene as a novel antifungal agent from *Polyalthia longifolia* var. pendula. Eur J Med Chem. 2015;94:1-7.
- [62] Chen JJ, Chang YL, Teng CM, Chen IS. Anti-platelet aggregation alkaloids and lignans from Hernandia nymphaeifolia. Planta Med. 2000;66(3):251-6.
- [63] Kumar A, Kumar S, Kumar D, Agnihotri VK. UPLC/MS/MS method for quantification and identification of two potential anti-inflammatory and analgesic compounds from *Polyalthia longifolia*. J Pharm Biomed Anal. 2014;100:132-9.
- [64] Sashidhara KV, Singh SP, Sarkar J, Sinha S. Cytotoxic clerodane diterpenoids from *Polyalthia longifolia*. Nat Prod Res. 2010;24(18):1687-94.
- [65] Thirugnanasampandan R, Jayakumar R. Protection of human erythrocytes against oxidative stress by extract of *Polyalthia longifolia*. Res J Med Plant. 2011;5(2):113-20.
- [66] Chang FR, Wei JL, Teng CM, Wu YC. Antiplatelet aggregation constituents from Annona purpurea. J Nat Prod. 1998;61(12):1457-61.
- [67] Rashid MA, Hossain MA, Hasan CM, Reza MS. Antimicrobial diterpenes from *Polyalthia longifolia* var. pendula. Phytother Res. 1996;10(1):79-81.
- [68] Phadnis AP, Patwardhan SA, Dhaneshwar NN, Tavale SS, Row TNG. Clerodane diterpenoids from *Polyalthia longifolia*. Phytochemistry. 1988;27(9):2899-901.

- [69] Marthanda Murthy M, Subramanyam M, Hima Bindu M, Annapurna J. Antimicrobial activity of clerodane diterpenoids from *Polyalthia longifolia* seeds. Fitoterapia. 2005;76(3-4):336-9.
- [70] Chen CY, Chang FR, Shih YC, Hsieh TJ, Chia YC, Tseng HY, et al. Cytotoxic constituents of *Polyalthia longifolia* var. pendula. J Nat Prod. 2000;63(11):1475-8.
- [71] Zhao GX, Jung JH, Smith DL, Wood KV, McLaughlin JL. Cytotoxic clerodane diterpenes from *Polyalthia longifolia*. Planta Med. 1991;57(4):380-3.
- [72] Faizi S, Khan RA, Azher S, Khan SA, Tauseef S, Ahmad A. New antimicrobial alkaloids from the roots of *Polyalthia longifolia* var. pendula. Planta Med. 2003;69(4):350-5.
- [73] Chang FR, Hwang TL, Yang YL, Li CE, Wu CC, Issa HH, et al. Anti-inflammatory and cytotoxic diterpenes from formosan *Polyalthia longifolia* var. pendula. Planta Med. 2006;72(14):1344-7.
- [74] Wu YC, Chang GY, Ko FN, Teng CM. Bioactive constituents from the stems of Annona montana. Planta Med. 1995;61(2):146-9.
- [75] Chakrabarty M, Nath AC. A new clerodane-type butenolide diterpene from the bark of *Polyalthia longifolia* var. pendula. J Nat Prod. 1992;55(2):256-8.
- [76] Chen CY, Wu HM, Chao WY, Lee CH. Anti-inflammatory effects of *Polyalthia longifolia* var. pendula leaf extract in lipopolysaccharide-stimulated RAW 264.7 cells. J Ethnopharmacol. 2012;140(1):98-104.
- [77] Tanna A, Nair R, Chanda S. Assessment of anti-inflammatory and hepatoprotective potency of *Polyalthia longifolia* var. pendula leaf in Wistar albino rats. J Nat Med. 2009;63(1):80-5.
- [78] Saleem R, Ahmed M, Ahmed SI, Azeem M, Khan RA, Rasool N, et al. Hypotensive activity and toxicology of constituents from root bark of *Polyalthia longifolia* var. pendula. Phytother Res. 2005;19(10):881-4.
- [79] Jothy SL, Zakaria Z, Chen Y, Lau YL, Latha LY, Sasidharan S. Acute oral toxicity of methanolic seed extract of *Polyalthia longifolia* in rats. Molecules. 2011;16(6):4525-34.
- [80] Nair R, Chanda S. Antimicrobial activity of *Polyalthia longifolia* (Sonn.) Thw. var. pendula leaf extracts against 91 clinically important pathogenic microbial strains. Chin Med. 2007;2:30.