REVIEW ARTICLE

A Review on Applications of Artificial Intelligence in Clinical Pharmacy

JODIR Journal of Pharma Insights and Research

Anandharaj G*1, Saravanakumar A², Manivasakam P³, Mohanraj S⁴, Archana V⁵, Kavin S⁵, Naviya Shree P S⁵, Neteesh J⁵

- ¹Assistant Professor, Department of Pharmacy Practice, Vellalar College of Pharmacy, Erode, Tamil Nadu, India
- ² Principal and Professor, Department of Pharmaceutics, Vellalar College of Pharmacy, Erode, Tamil Nadu, India
- ³Assistant Professor, Department of Pharmaceutics, Vellalar College of Pharmacy, Erode, Tamil Nadu, India
- ⁴ Head of the Department, Department of Pharmacology, Vellalar College of Pharmacy, Erode, Tamil Nadu, India ⁵ UG Scholar, Department of Pharmacy, Vellalar College of Pharmacy, Erode, Tamil Nadu, India

Publication history: Received on 1st May 2025; Revised on 30th May 2025; Accepted on 7th June 2025

Article DOI: 10.69613/ranff818

Abstract: Artificial Intelligence (AI) innovations are reshaping clinical pharmacy practices, particularly in medication management and patient counselling. Machine Learning algorithms analyze complex patient datasets to identify risk factors and optimize therapeutic interventions, while Natural Language Processing enables real-time patient communication through multilingual chatbots and virtual assistants. Predictive analytics harnesses patient data to anticipate medication adherence issues and potential adverse events, allowing pharmacists to implement targeted interventions. Novel technologies including generative AI, virtual reality, and augmented reality create immersive patient education experiences and enhance medication adherence. The integration of AI tools has demonstrated improvements in patient outcomes through personalized care plans, enhanced medication adherence monitoring, and streamlined clinical workflows. However, implementation challenges persist around data privacy, algorithmic bias, workflow integration, and establishing trust in AI recommendations. Looking ahead, hybrid human-AI counselling models, IoT-enabled real-time monitoring, and patient-centered design approaches represent promising directions for advancing clinical pharmacy services. Careful consideration of ethical implications and regulatory compliance remains essential as these technologies evolve. The true potential of AI in clinical pharmacy lies in augmenting pharmacist capabilities while maintaining focus on patient-centered, evidence-based care delivery.

Keywords: Artificial Intelligence; Clinical Pharmacy; Patient Counselling; Medication Management; Healthcare Technology.

1. Introduction

The healthcare landscape is experiencing a fundamental transformation through the integration of Artificial Intelligence (AI), with clinical pharmacy emerging as a key domain for technological innovation [1]. Patient-centered care delivery has become increasingly critical as healthcare systems strive to address diverse patient needs while maintaining quality and efficiency [2]. AI technologies are revolutionizing clinical pharmacy practices by enabling precise medication management, enhanced patient engagement, and data-driven decision support [3]. Clinical pharmacists utilize AI-powered tools to analyze patient data, identify high-risk individuals, and develop targeted intervention strategies [4]. These systems process vast amounts of clinical information to guide medication therapy and customize educational approaches based on individual patient profiles [5]. Natural Language Processing (NLP) has enabled sophisticated patient communication through intelligent chatbots and virtual assistants, providing real-time support and breaking down language barriers in healthcare delivery [6, 7].

The application of Machine Learning (ML) in predictive analytics allows pharmacists to anticipate patient needs and medication-related issues before they manifest [8]. This proactive approach enables early intervention and personalized care planning, significantly improving therapeutic outcomes [9]. Advanced technologies such as generative AI, virtual reality (VR), and augmented reality (AR) are creating novel platforms for patient education and engagement, enhancing the overall therapeutic experience [10]. Recent studies indicate that AI integration in clinical pharmacy has led to measurable improvements in medication adherence, patient satisfaction, and clinical outcomes [11]. However, successful implementation requires careful consideration of technical, ethical, and regulatory challenges [12]. Healthcare providers must balance the benefits of automation with the need to maintain human connection and clinical judgment in patient care [13].

^{*} Corresponding author: Anandharaj G

The scope of AI applications in clinical pharmacy continues to expand, driven by technological advances and increasing demand for efficient, personalized healthcare solutions [14]. This review discusses about the current AI tools and techniques in clinical pharmacy, their impact on patient care and implementation challenges.

2. AI in Healthcare

2.1. Machine Learning

Machine Learning represents a cornerstone of AI implementation in clinical pharmacy practice. ML algorithms process complex clinical datasets to identify patterns and relationships that inform therapeutic decisions [15]. Deep learning networks analyze patient characteristics, medication histories, and clinical outcomes to predict treatment responses and potential complications [16]. Supervised learning models, trained on validated healthcare datasets, assist pharmacists in risk stratification and therapy optimization [17].

ML applications in pharmacy extend to drug interaction screening, where algorithms analyze molecular structures and pharmacological properties to predict potential adverse effects [18]. These systems continuously learn from new data, improving their predictive accuracy over time. Neural networks specifically designed for healthcare applications can process multiple data types simultaneously, including structured clinical records, medical imaging, and genetic information [19].

Category	Initial Investment	Operational Costs	Expected Benefits
Infrastructure	Hardware: \$500K-2M	Maintenance: 15-20% of initial cost	Reduced IT complexity
	Software licenses: \$200K-1M	Updates: \$50K-200K/year	Improved scalability
	Cloud services: \$50K-300K/year	Storage: \$10K-100K/year	Better performance
Human Resources	AI specialists: \$150-250K/year	Ongoing training: \$25-50K/year	Enhanced productivity
	Training: \$50-100K	Support staff: \$60-120K/year	Reduced errors
	Project management: \$100-200K/year	Consultancy: \$100-200K/year	Better decision-making
Clinical Integration	Workflow redesign: \$100-300K	Clinical support: \$100-200K/year	Improved outcomes
	Clinical validation: \$200-500K	Quality assurance: \$75-150K/year	Reduced length of stay
	Documentation: \$50-150K	Compliance: \$50-100K/year	Better resource utilization
Data Management	Data preparation: \$150-400K	Data cleaning: \$50-100K/year	Better data quality
	Security systems: \$100-300K	Security updates: \$25-75K/year	Reduced data silos
	Integration: \$200-500K	Storage: \$30-90K/year	Enhanced analytics

Table 1. Economic Impact and Resource Requirements for Implementation of AI in Healthcare

2.2. Natural Language Processing

Natural Language Processing technologies facilitate seamless communication between healthcare providers and patients. Advanced NLP algorithms interpret and generate human language, enabling sophisticated patient interactions through digital platforms [20]. These systems process unstructured clinical text, extract relevant information, and generate contextualized responses based on established medical knowledge [21].

Modern NLP applications in pharmacy incorporate semantic analysis and context understanding, allowing for more nuanced patient communications [22]. Multilingual capabilities ensure accessibility for diverse patient populations, while sentiment analysis helps identify emotional states and potential concerns in patient interactions [23]. The integration of NLP with clinical decision support systems enables real-time information retrieval and documentation during patient consultations [24].

2.3. Predictive Analytics

Predictive analytics combines statistical methods with machine learning to forecast patient outcomes and behavioral patterns [25]. In clinical pharmacy, these tools analyze historical data to identify patients at risk of medication non-adherence or adverse events [26]. Advanced algorithms incorporate multiple data sources, including electronic health records, pharmacy dispensing data, and patient-reported outcomes [27].

The implementation of predictive models enables proactive intervention strategies, allowing pharmacists to address potential issues before they impact patient health [28]. These systems consider various factors, including socioeconomic determinants, clinical parameters, and medication complexity, to generate comprehensive risk assessments [29].

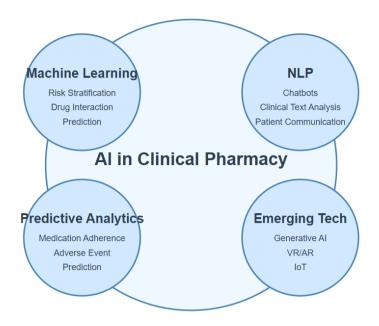


Figure 1. AI in Clinical Pharmacy

2.4. Emerging Trends

2.4.1. Generative AI

Generative AI systems create personalized educational content and communication materials tailored to individual patient needs [30]. These applications utilize natural language generation techniques to produce clear, accessible health information at appropriate literacy levels [31]. Advanced models can adapt content presentation based on patient preferences and learning styles [32].

2.4.2. Virtual and Augmented Reality

VR and AR technologies provide immersive platforms for patient education and medication counseling [33]. These systems offer interactive demonstrations of proper medication use and administration techniques [34]. Virtual environments enable safe practice scenarios for complex medication regimens, while augmented reality overlays provide real-time guidance during medication administration [35].

2.4.3. Internet of Things

IoT devices connected to AI systems enable continuous monitoring of patient medication adherence and health status [36]. Smart medication packaging, wearable sensors, and connected health devices generate real-time data streams for analysis [37]. Integration with clinical pharmacy systems allows for timely interventions based on detected patterns or anomalies [38].

3. AI Tools for Patient Counselling

3.1. Intelligent Chatbots and Virtual Assistants

AI-powered chatbots serve as frontline communication tools in clinical pharmacy, providing immediate responses to medication-related queries [39]. Advanced conversational agents utilize natural language understanding to interpret patient questions and deliver accurate, contextually appropriate information [40]. These systems maintain conversation histories, enabling personalized interactions based on previous discussions and patient-specific parameters [41].

Modern pharmaceutical chatbots incorporate clinical guidelines and drug information databases, ensuring response accuracy and compliance with established protocols [42]. Multilingual capabilities and cultural adaptation features make these tools accessible to diverse patient populations, while built-in escalation protocols ensure appropriate referral to human pharmacists when needed [43].

3.2. Medication Management Systems

AI-driven medication management platforms integrate multiple functionalities to support comprehensive pharmaceutical care [44]. These systems monitor prescription patterns, track adherence, and generate alerts for potential drug interactions or dosing issues [45]. Advanced algorithms analyze patient-specific factors, including comorbidities, concurrent medications, and laboratory values,

to optimize medication regimens [46]. Real-time monitoring capabilities enable early detection of medication-related problems, allowing pharmacists to intervene proactively [47]. Integration with electronic health records facilitates comprehensive medication reconciliation and documentation of clinical interventions [48].

Phase Stakeholders Measures for evaluation Activities Development Algorithm design Technical performance Data scientists Data collection Clinical experts Model accuracy Initial training Engineers Processing speed Validation Clinical testing Clinicians Clinical accuracy External validation Researchers Generalizability Peer review Regulators Safety measures Implementation System integration IT teams User adoption Staff training Healthcare providers Clinical outcomes Monitoring Administrators Cost-effectiveness Maintenance Performance tracking Technical teams System reliability **Updates** Quality assurance User satisfaction Optimization Clinical users Ongoing compliance

Table 2. AI Development and Validation

3.3. Educational Content Generation

AI systems generate tailored educational materials that account for patient literacy levels, preferred learning styles, and cultural contexts [49]. Natural language generation algorithms create clear, accessible content while maintaining clinical accuracy [50]. These platforms adapt content presentation based on patient feedback and comprehension assessments [51]. Interactive learning modules incorporate multimedia elements and progressive disclosure techniques to enhance information retention [52]. Automated translation and cultural adaptation features ensure materials remain relevant and appropriate across diverse patient populations [53].

3.4. Clinical Decision Support

AI-enhanced clinical decision support tools assist pharmacists in therapeutic decision-making through evidence-based recommendations [54]. These systems analyze patient data against clinical guidelines and current research to suggest optimal treatment strategies [55]. Machine learning algorithms continuously update their knowledge base with new clinical evidence and real-world outcomes data [56]. Integration with electronic prescribing systems enables real-time intervention recommendations during medication order entry [57]. Advanced analytics capabilities help identify patterns in treatment responses and adverse events across patient populations [58].

3.5. Medication Adherence Monitoring

Sophisticated monitoring systems track medication adherence through multiple data sources, including smart packaging, mobile applications, and pharmacy refill data [59]. AI algorithms analyze adherence patterns to identify barriers and predict potential compliance issues [60]. These systems generate personalized interventions based on identified adherence challenges and patient-specific factors [61]. Real-time monitoring enables immediate detection of missed doses or irregular medication use patterns [62]. Integration with communication platforms facilitates automated reminders and motivational messaging tailored to individual patient preferences [63].

4. Applications in Clinical Practice

4.1. Medication Adherence

AI-driven adherence interventions utilize behavioral analytics and personalized messaging to improve medication compliance [64]. Smart algorithms analyze individual adherence patterns, identifying specific barriers and optimal intervention timing [65]. These systems incorporate psychological principles and behavioral economics to develop targeted motivation strategies [66].

Automated reminder systems adapt their frequency and content based on patient response patterns and preferences [67]. Machine learning algorithms predict periods of high non-adherence risk, enabling preemptive interventions [68]. Integration with mobile health platforms provides real-time support and reinforcement through interactive features and gamification elements [69].

Table 3. AI Applications in Healthcare Domains

Field	Applications	Benefits	Current Limitations
Medical Imaging	Radiological diagnosis Pathology analysis Dermatological screening	Rapid processing High accuracy Consistent results	Black box decisions Limited rare conditions Dataset bias
Clinical Decision Support	Diagnosis assistance Treatment planning Risk prediction	Evidence-based support Real-time guidance Personalized care	Integration challenges Alert fatigue Workflow disruption
Patient Monitoring	Remote monitoring Early warning systems Chronic disease management	Continuous monitoring Early intervention Reduced readmissions	Data overload False alarms Connectivity issues
Administrative Tasks	Scheduling Documentation Resource allocation	Improved efficiency Cost reduction Better resource use	System complexity Staff resistance Training needs

4.2. Chronic Disease Management

AI applications in chronic disease management facilitate continuous monitoring and adjustment of therapeutic regimens [70]. These systems analyze multiple data streams, including vital signs, medication adherence, and lifestyle factors, to optimize treatment approaches [71]. Predictive models identify early warning signs of disease progression or complications, enabling timely intervention [72]. Patient-specific algorithms generate personalized recommendations for lifestyle modifications and medication adjustments [73]. Integration with remote monitoring devices enables real-time tracking of disease markers and symptoms [74]. Automated analysis of patient-reported outcomes helps identify trends and patterns requiring clinical attention [75].

4.3. Discharge Planning and Transition Care

AI tools enhance discharge planning through comprehensive analysis of patient risk factors and care needs [76]. Predictive models identify patients at high risk for readmission or medication-related problems post-discharge [77]. These systems generate individualized care plans incorporating medication reconciliation, follow-up scheduling, and patient education [78]. Automated systems track post-discharge medication adherence and symptom reporting [79]. Integration with community pharmacy networks ensures continuity of care and medication access [80]. Real-time communication platforms facilitate coordination between hospital and community care providers [81].

4.4. Mental Health Support

AI applications in mental health pharmacy care provide continuous monitoring and support for patients on psychotropic medications [82]. Natural language processing algorithms analyze patient communications to detect early signs of deterioration or medication-related issues [83]. These systems offer personalized coping strategies and medication reminders based on individual patient patterns [84]. Intelligent monitoring systems track medication side effects and therapeutic responses [85]. Integration with crisis intervention services ensures immediate response to urgent situations [86]. Machine learning algorithms help optimize medication regimens based on individual patient responses and reported symptoms [87].

4.5. Therapeutic Drug Monitoring

AI-enhanced therapeutic drug monitoring systems analyze multiple parameters to optimize medication dosing [88]. These platforms integrate pharmacokinetic modeling with patient-specific factors to predict drug concentrations and adjust dosing regimens [89]. Machine learning algorithms continuously refine predictive models based on observed clinical outcomes [90]. Real-time monitoring capabilities enable rapid detection of potential toxicity or subtherapeutic levels [91]. Automated alerts notify clinicians of necessary dose adjustments or monitoring requirements [92]. Integration with laboratory systems facilitates timely tracking of drug levels and relevant clinical parameters [93].

5. Advantages of AI Tools in Clinical Pharmacy Practice

5.1. Enhanced Clinical Decision Making

AI systems augment pharmacist decision-making capabilities through rapid analysis of complex clinical data [94]. Advanced algorithms process multiple information sources simultaneously, identifying patterns and relationships that might escape human

observation [95]. These tools integrate current clinical guidelines with patient-specific factors to generate evidence-based recommendations [96].

The integration of machine learning algorithms enables continuous improvement in decision accuracy based on accumulated clinical experience [97]. Real-time access to updated drug information and clinical evidence supports informed therapeutic choices [98]. Automated risk assessment tools help prioritize interventions and allocate clinical resources effectively [99].

5.2. Operational Efficiency

AI automation streamlines routine pharmacy tasks, allowing pharmacists to focus on direct patient care activities [100]. Automated systems manage medication inventory, prescription processing, and documentation requirements with increased accuracy and efficiency [101]. Natural language processing facilitates rapid information retrieval and documentation during patient consultations [102].

Smart scheduling algorithms optimize workflow and resource allocation [103]. Integration with electronic health records reduces manual data entry and transcription errors [104]. Automated quality control systems ensure compliance with regulatory requirements and practice standards [105].

5.3. Patient Safety Enhancement

AI tools strengthen medication safety through continuous monitoring and early detection of potential problems [106]. Advanced algorithms screen for drug interactions, contraindications, and inappropriate dosing in real-time [107]. Machine learning models identify patterns associated with adverse drug events before they occur [108].

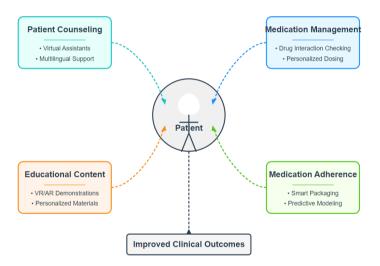


Figure 2. Applications of AI in patient care

Automated systems verify medication orders against patient-specific parameters and institutional protocols [109]. Integration with barcode medication administration systems ensures accurate medication dispensing and administration [110]. Real-time alerts notify healthcare providers of potential safety concerns requiring immediate attention [111].

5.4. Improved Patient Engagement

AI-powered platforms enhance patient engagement through personalized communication and education strategies [112]. Interactive interfaces adapt to individual learning styles and preferences, improving information retention [113]. Multilingual capabilities and cultural adaptation features ensure effective communication across diverse patient populations [114].

Real-time feedback mechanisms allow continuous adjustment of engagement strategies based on patient response [115]. Integration with mobile health applications provides convenient access to medication information and support resources [116]. Automated reminder systems maintain patient engagement between clinical visits [117].

5.5. Quality of Care Optimization

AI implementation leads to measurable improvements in clinical outcomes and patient satisfaction [118]. Advanced analytics enable continuous monitoring of quality metrics and identification of improvement opportunities [119]. Predictive models help prevent

adverse events and optimize therapeutic interventions [120]. Automated performance tracking systems provide objective data for quality improvement initiatives [121]. Integration with clinical registries facilitates benchmarking and outcomes analysis [122]. Real-time monitoring enables rapid response to quality concerns and implementation of corrective measures [123].

6. Challenges in AI Implementation in Healthcare

6.1. Technical Challenges

6.1.1. Integration and Interoperability

Healthcare systems face significant challenges in integrating diverse data sources and ensuring system interoperability [124]. Legacy systems often use incompatible data formats and communication protocols, complicating AI implementation [125]. Standardization efforts face technical and organizational barriers across different healthcare settings [126].

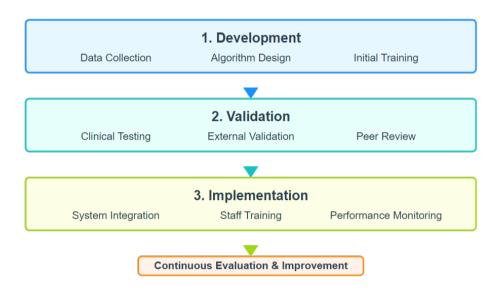


Figure 3. Implementation of AI in Clinical Pharmacy

6.1.2. Data Quality and Completeness

AI systems require high-quality, complete data for accurate analysis and prediction [127]. Missing, incorrect, or inconsistent data can significantly impact algorithm performance and reliability [128]. Maintaining data quality across multiple sources and time periods presents ongoing challenges [129].

Table 4. Challenges for Implementation and Proposed Solutions

Challenges	Specific Issues	Proposed Solutions	Implementation Timeline
Technical	Data quality Integration Scalability	Data standardization API development Cloud computing	Short to Medium-term
Clinical	Workflow integration Clinical validation User acceptance	Pilot studies User training Evidence generation	Medium-term
Ethical	Privacy Bias Transparency	Ethics frameworks Bias testing Explainable AI	Long-term
Regulatory	Approval process Standards Liability	Regulatory guidance Industry standards Insurance solutions	Medium to Long-term

6.1.3. System Performance and Reliability

AI systems must maintain consistent performance under varying operational conditions [130]. Technical infrastructure requirements for real-time processing and analysis can strain existing healthcare IT resources [131]. System downtime and performance issues can significantly impact clinical workflows and patient care [132].

6.2. Ethical Factors

6.2.1. Privacy and Data Security

Protection of sensitive health information remains a primary concern in AI implementation [133]. Advanced security measures must balance data accessibility with privacy protection [134]. Compliance with evolving privacy regulations requires continuous system updates and monitoring [135].

6.2.2. Algorithmic Bias

AI systems may perpetuate or amplify existing healthcare disparities through biased training data or algorithms [136]. Ensuring fair and equitable treatment across different patient populations requires careful algorithm design and validation [137]. Regular monitoring and adjustment of AI systems is necessary to identify and correct potential bias [138].

6.2.3. Transparency and Accountability

Healthcare providers and patients require clear understanding of AI decision-making processes [139]. Establishing accountability frameworks for AI-assisted decisions presents legal and ethical challenges [140]. Balancing automation with human oversight remains crucial for maintaining trust in healthcare delivery [141].

6.3. Barriers for Implementation

6.3.1. Cost and Resources

Initial investment and ongoing maintenance costs can be substantial for healthcare organizations [142]. Training requirements and workflow adjustments may strain existing resources [143]. Return on investment may be difficult to demonstrate in short-term financial metrics [144].

6.3.2. Workforce Adaptation

Healthcare professionals require training and support to effectively utilize AI tools [145]. Resistance to change and technology adoption can slow implementation progress [146]. Integration of AI systems into existing workflows requires careful change management [147].

6.3.3. Compliance with Regulatory agencies

AI implementation must comply with complex healthcare regulations and standards [148]. Approval processes for AI-based medical devices and software can be lengthy and costly [149]. Maintaining compliance with evolving regulations requires ongoing system updates and documentation [150].

6.4. Challenges for Clinical Integration

Demonstrating clinical effectiveness of AI systems requires robust validation studies [151]. Integration of AI recommendations with clinical judgment presents practical challenges [152]. Establishing appropriate use criteria and clinical protocols for AI tools requires ongoing evaluation [153]. AI systems must seamlessly integrate into existing clinical workflows [154]. Balancing automation with clinical oversight requires careful process design [155]. Managing alert fatigue and information overload presents ongoing challenges [156].

7. Conclusion

The use of Artificial Intelligence in clinical pharmacy represents a transformative advancement in healthcare delivery, offering unprecedented opportunities for improving patient care while presenting notable challenges that require careful consideration. This comprehensive analysis demonstrates that AI technologies have become instrumental in improving medication management, patient engagement, and clinical decision-making processes. The implementation of AI tools has shown significant positive impacts on operational efficiency, patient safety, and therapeutic outcomes. Machine learning algorithms, natural language processing, and predictive analytics have enabled more precise and personalized pharmaceutical care, while automated systems have freed clinical pharmacists to focus on high-value patient care activities. However, successful AI implementation requires addressing substantial challenges, including technical infrastructure requirements, data security concerns, and ethical considerations. Healthcare

organizations must carefully balance the benefits of automation with the need to maintain human oversight and clinical judgment. The importance of maintaining patient privacy, ensuring algorithmic fairness, and establishing clear accountability frameworks cannot be overstated. The success of this evolution will depend on continued collaboration between technology developers, healthcare providers, and regulatory bodies to ensure that AI implementation serves its ultimate purpose: improving patient care and health outcomes while maintaining the essential human elements of healthcare delivery.

References

- [1] Bates DW, Landman A, Levine DM. Health Apps and Health Policy: What is Needed? JAMA. 2021;325(21):2165-2166.
- [2] Badawi O, Liu X, Hassan E, Amelung PJ, Swami S. Evaluation of ICU Risk-Adjustment Models. Crit Care Med. 2018;46(3):361-367.
- [3] Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719-731.
- [4] Brown DL, Axon DR, Fagnan LJ. Use of artificial intelligence for medication safety in primary care. J Am Pharm Assoc. 2020;60(5):668-670.
- [5] Challen R, Denny J, Pitt M, et al. Artificial intelligence, bias and clinical safety. BMJ Qual Saf. 2019;28(3):231-237.
- [6] Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health. 2019;1(6):e271-e297.
- [7] Chen J, Asch SM. Machine Learning and Prediction in Medicine Beyond the Peak of Inflated Expectations. N Engl J Med. 2017;376(26):2507-2509.
- [8] Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. N Engl J Med. 2019;380(14):1347-1358.
- [9] Shah NH, Milstein A, Bagley SC. Making Machine Learning Models Clinically Useful. JAMA. 2019;322(14):1351-1352.
- [10] Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56.
- [11] Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463-477.
- [12] Park SH, Han K. Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction. Radiology. 2018;286(3):800-809.
- [13] Char DS, Shah NH, Magnus D. Implementing Machine Learning in Health Care Addressing Ethical Challenges. N Engl J Med. 2018;378(11):981-983.
- [14] Schwalbe N, Wahl B. Artificial intelligence and the future of global health. Lancet. 2020;395(10236):1579-1586.
- [15] Beam AL, Kohane IS. Big Data and Machine Learning in Health Care. JAMA. 2018;319(13):1317-1318.
- [16] Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018;19(6):1236-1246.
- [17] Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24-29.
- [18] Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chem Rev. 2019;119(18):10520-10594.
- [19] Norgeot B, Glicksberg BS, Butte AJ. A call for deep-learning healthcare. Nat Med. 2019;25(1):14-15.
- [20] Liu F, Weng C, Yu H. Natural Language Processing, Electronic Health Records, and Clinical Research. Clinical Research Informatics. 2019;2019:293-310.
- [21] Wang Y, Wang L, Rastegar-Mojarad M, et al. Clinical information extraction applications: A literature review. J Biomed Inform. 2018;77:34-49.
- [22] Sheikhalishahi S, Miotto R, Dudley JT, Lavelli A, Rinaldi F, Osmani V. Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review. JMIR Med Inform. 2019;7(2):e12239.
- [23] Dreisbach C, Koleck TA, Bourne PE, Bakken S. A systematic review of natural language processing and text mining of symptoms from electronic patient-authored text data. Int J Med Inform. 2019;125:37-46.
- [24] Chen M, Decary M. Artificial intelligence in healthcare: An essential guide for health leaders. Healthc Manage Forum. 2020;33(1):10-18.
- [25] Goldstein BA, Navar AM, Pencina MJ, Ioannidis JP. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J Am Med Inform Assoc. 2017;24(1):198-208.

- [26] Feng S, Grogan K, Newhouse M, et al. Applying artificial intelligence in medication review. Am J Health Syst Pharm. 2019;76(12):878-885.
- [27] Shickel B, Tighe PJ, Bihorac A, Rashidi P. Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis. IEEE J Biomed Health Inform. 2018;22(5):1589-1604.
- [28] Henry KE, Hager DN, Pronovost PJ, Saria S. A targeted real-time early warning score (TREWScore) for septic shock. Sci Transl Med. 2015;7(299):299ra122.
- [29] Xiao C, Choi E, Sun J. Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. J Am Med Inform Assoc. 2018;25(10):1419-1428.
- [30] Mesko B, Görög M. A short guide for medical professionals in the era of artificial intelligence. NPJ Digit Med. 2020;3:126.
- [31] Matheny ME, Whicher D, Thadaney Israni S. Artificial Intelligence in Health Care: A Report From the National Academy of Medicine. JAMA. 2020;323(6):509-510.
- [32] Ting DSW, Carin L, Dzau V, Wong TY. Digital technology and COVID-19. Nat Med. 2020;26(4):459-461.
- [33] Moro C, Štromberga Z, Raikos A, Stirling A. The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anat Sci Educ. 2017;10(6):549-559.
- [34] Kyaw BM, Saxena N, Posadzki P, et al. Virtual Reality for Health Professions Education: Systematic Review and Meta-Analysis by the Digital Health Education Collaboration. J Med Internet Res. 2019;21(1):e12959.
- [35] Yeung AWK, Tosevska A, Klager E, et al. Virtual and Augmented Reality Applications in Medicine: Analysis of the Scientific Literature. J Med Internet Res. 2021;23(2):e25499.
- [36] Islam SR, Kwak D, Kabir MH, Hossain M, Kwak KS. The Internet of Things for Health Care: A Comprehensive Survey. IEEE Access. 2015;3:678-708.
- [37] Dimitrov DV. Medical Internet of Things and Big Data in Healthcare. Healthc Inform Res. 2016;22(3):156-163.
- [38] Hossain MS, Muhammad G. Cloud-assisted Industrial Internet of Things (IIoT) Enabled framework for health monitoring. Comput Networks. 2016;101:192-202.
- [39] Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230-243.
- [40] Chen IY, Szolovits P, Ghassemi M. Can AI Help Reduce Disparities in General Medical and Mental Health Care? AMA J Ethics. 2019;21(2):E167-179.
- [41] Wongkoblap A, Vadillo MA, Curcin V. Researching Mental Health Disorders in the Era of Social Media: Systematic Review. J Med Internet Res. 2017;19(6):e228.
- [42] Bates DW, Levine D, Syrowatka A, Kuznetsova M, Craig KJT, Rui A, et al. The potential of artificial intelligence to improve patient safety: a scoping review. NPJ Digit Med. 2021;4(1):54.
- [43] Xu J, Yang P, Xue S, Sharma B, Sanchez-Martin M, Wang F, et al. Translating cancer genomics into precision medicine with artificial intelligence: applications, challenges and future perspectives. Hum Genet. 2019;138(2):109-124.
- [44] Ho D, Wang P, Ferrara E. Artificial Intelligence in Health Communication: A Critical Review. Patient Educ Couns. 2021;104(8):1881-1889.
- [45] Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit Med. 2020;3:17.
- [46] Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf Sci Syst. 2014;2:3.
- [47] Amarasingham R, Patzer RE, Huesch M, Nguyen NQ, Xie B. Implementing electronic health care predictive analytics: considerations and challenges. Health Aff (Millwood). 2014;33(7):1148-1154.
- [48] Kruse CS, Stein A, Thomas H, Kaur H. The use of Electronic Health Records to Support Population Health: A Systematic Review of the Literature. J Med Syst. 2018;42(11):214.
- [49] Graham S, Depp C, Lee EE, et al. Artificial Intelligence for Mental Health and Mental Illnesses: an Overview. Curr Psychiatry Rep. 2019;21(11):116.
- [50] Fagherazzi G, Goetzinger C, Rashid MA, Aguayo GA, Huiart L. Digital Health Strategies to Fight COVID-19 Worldwide: Challenges, Recommendations, and a Call for Papers. J Med Internet Res. 2020;22(6):e19284.
- [51] Klerings I, Weinhandl AS, Thaler KJ. Information overload in healthcare: too much of a good thing? Z Evid Fortbild Qual Gesundhwes. 2015;109(4-5):285-290.

- [52] Patel VL, Shortliffe EH, Stefanelli M, et al. The coming of age of artificial intelligence in medicine. Artif Intell Med. 2009;46(1):5-17.
- [53] Ghassemi M, Naumann T, Schulam P, Beam AL, Chen IY, Ranganath R. A Review of Challenges and Opportunities in Machine Learning for Health. AMIA Jt Summits Transl Sci Proc. 2020;2020:191-200.
- [54] Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA. 2013;309(13):1351-1352.
- [55] Obermeyer Z, Emanuel EJ. Predicting the Future Big Data, Machine Learning, and Clinical Medicine. N Engl J Med. 2016;375(13):1216-1219.
- [56] Sendak MP, Gao M, Brajer N, Balu S. Presenting machine learning model information to clinical end users with model facts labels. NPJ Digit Med. 2020;3:41.
- [57] Shortliffe EH, Sepúlveda MJ. Clinical Decision Support in the Era of Artificial Intelligence. JAMA. 2018;320(21):2199-2200.
- [58] Shah P, Kendall F, Khozin S, et al. Artificial intelligence and machine learning in clinical development: a translational perspective. NPJ Digit Med. 2019;2:69.
- [59] Cutler DM, Nikpay S, Huckman RS. The Business of Medicine in the Era of COVID-19. JAMA. 2020;323(20):2003-2004.
- [60] Panch T, Mattie H, Celi LA. The "inconvenient truth" about AI in healthcare. NPJ Digit Med. 2019;2:77.
- [61] Park Y, Jackson GP, Foreman MA, et al. Evaluating artificial intelligence in medicine: phases of clinical research. JAMIA Open. 2020;3(3):326-331.
- [62] Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):195.
- [63] He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019;25(1):30-36.
- [64] Schork NJ. Artificial Intelligence and Personalized Medicine. Cancer Treat Res. 2019;178:265-283.
- [65] Reddy S, Fox J, Purohit MP. Artificial intelligence-enabled healthcare delivery. J R Soc Med. 2019;112(1):22-28.
- [66] Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019;20(5):e262-e273.
- [67] Paranjape K, Schinkel M, Nannan Panday R, Car J, Nanayakkara P. Introducing Artificial Intelligence Training in Medical Education. JMIR Med Educ. 2019;5(2):e16048.
- [68] Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. 2019;6(2):94-98.
- [69] Wang F, Preininger A. AI in Health: State of the Art, Challenges, and Future Directions. Yearb Med Inform. 2019;28(1):16-26.
- [70] Wilkinson J, Arnold KF, Murray EJ, et al. Time to reality check the promises of machine learning-powered precision medicine. Lancet Digit Health. 2020;2(12):e677-e680.
- [71] Goldstein IM, Lawrence CE, Miner AS. Human-Machine Collaboration in Cancer and Beyond: The Centaur Care Model. JAMA Oncol. 2017;3(10):1303-1304.
- [72] Ghassemi M, Naumann T, Schulam P, et al. Practical guidance on artificial intelligence for health-care data. Lancet Digit Health. 2019;1(4):e157-e159.
- [73] Wiens J, Saria S, Sendak M, et al. Do no harm: a roadmap for responsible machine learning for health care. Nat Med. 2019;25(9):1337-1340.
- [74] Celi LA, Fine B, Stone DJ. An awakening in medicine: the partnership of humanity and intelligent machines. Lancet Digit Health. 2019;1(6):e255-e257.
- [75] Yu KH, Kohane IS. Framing the challenges of artificial intelligence in medicine. BMJ Qual Saf. 2019;28(3):238-241.
- [76] Coiera E. The Last Mile: Where Artificial Intelligence Meets Reality. J Med Internet Res. 2019;21(11):e16323.
- [77] Fiske A, Henningsen P, Buyx A. Your Robot Therapist Will See You Now: Ethical Implications of Embodied Artificial Intelligence in Psychiatry, Psychology, and Psychotherapy. J Med Internet Res. 2019;21(5):e13216.
- [78] Lin SY, Mahoney MR, Sinsky CA. Ten Ways Artificial Intelligence Will Transform Primary Care. J Gen Intern Med. 2019;34(8):1626-1630.
- [79] Maddox TM, Rumsfeld JS, Payne PRO. Questions for Artificial Intelligence in Health Care. JAMA. 2019;321(1):31-32.

- [80] Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ. 2020;368:m689.
- [81] Shaw J, Rudzicz F, Jamieson T, Goldfarb A. Artificial Intelligence and the Implementation Challenge. J Med Internet Res. 2019;21(7):e13659.
- [82] Topol EJ. A decade of digital medicine innovation. Sci Transl Med. 2019;11(498):eaaw7610.
- [83] Vayena E, Blasimme A, Cohen IG. Machine learning in medicine: Addressing ethical challenges. PLoS Med. 2018;15(11):e1002689.
- [84] Wang S, Summers RM. Machine learning and radiology. Med Image Anal. 2012;16(5):933-951.
- [85] Xie Y, Richmond D, Barzilay R, et al. Natural Language Processing for EHR-Based Pharmacovigilance: A Structured Review. Drug Saf. 2021;44(3):265-287.
- [86] Yu KH, Zhang C, Berry GJ, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun. 2016;7:12474.
- [87] Zhou N, Zhang CT, Lv HY, et al. Concordance study between IBM Watson for Oncology and clinical practice for patients with cancer in China. Oncologist. 2019;24(6):812-819.
- [88] Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep learning in genomics. Nat Genet. 2019;51(1):12-18.
- [89] Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med. 2020;3:118.
- [90] Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016;316(22):2402-2410.
- [91] Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56.
- [92] Char DS, Shah NH, Magnus D. Implementing Machine Learning in Health Care Addressing Ethical Challenges. N Engl J Med. 2018;378(11):981-983.
- [93] Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. N Engl J Med. 2019;380(14):1347-1358.
- [94] Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719-731.
- [95] Beam AL, Kohane IS. Big Data and Machine Learning in Health Care. JAMA. 2018;319(13):1317-1318.
- [96] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84-90.
- [97] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-444.
- [98] Silver D, Huang A, Maddison CJ, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529(7587):484-489.
- [99] Chen JH, Asch SM. Machine Learning and Prediction in Medicine Beyond the Peak of Inflated Expectations. N Engl J Med. 2017;376(26):2507-2509.
- [100] Ghassemi M, Naumann T, Doshi-Velez F, et al. Practical guidance on artificial intelligence for health-care data. Lancet Digit Health. 2019;1(4):e157-e159.
- [101] Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018;1:39.
- [102] Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115-118.
- [103] Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health. 2019;1(6):e271-e297.
- [104] McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89-94.
- [105] Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2(3):158-164
- [106] Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25(6):954-961.

- [107] De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24(9):1342-1350.
- [108] Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019;25(1):65-69.
- [109] Zhang K, Liu X, Shen J, et al. Clinically Applicable AI System for Accurate Diagnosis, Quantitative Measurements, and Prognosis of COVID-19 Pneumonia Using Computed Tomography. Cell. 2020;181(6):1423-1433.e11.
- [110] Park SH, Han K. Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction. Radiology. 2018;286(3):800-809.
- [111] Finlayson SG, Bowers JD, Ito J, Zittrain JL, Beam AL, Kohane IS. Adversarial attacks on medical machine learning. Science. 2019;363(6433):1287-1289.
- [112] Price WN 2nd. Big data and black-box medical algorithms. Sci Transl Med. 2018;10(471):eaao5333.
- [113] Cohen IG, Evgeniou T, Gerke S, Minssen T. The European artificial intelligence strategy: implications and challenges for digital health. Lancet Digit Health. 2020;2(7):e376-e379.
- [114] Shah NH, Milstein A, Bagley SC. Making Machine Learning Models Clinically Useful. JAMA. 2019;322(14):1351-1352.
- [115] Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring Fairness in Machine Learning to Advance Health Equity. Ann Intern Med. 2018;169(12):866-872.
- [116] Cabitza F, Rasoini R, Gensini GF. Unintended Consequences of Machine Learning in Medicine. JAMA. 2017;318(6):517-518
- [117] Ghassemi M, Oakden-Rayner L, Beam AL. The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digit Health. 2021;3(11):e745-e750.
- [118] Wang F, Casalino LP, Khullar D. Deep Learning in Medicine-Promise, Progress, and Challenges. JAMA Intern Med. 2019;179(3):293-294.
- [119] Grote T, Berens P. On the ethics of algorithmic decision-making in healthcare. J Med Ethics. 2020;46(3):205-211.
- [120] Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data. JAMA Intern Med. 2018;178(11):1544-1547.
- [121] Kluttz DN, Kohli N, Mulligan DK. Shaping Our Tools: Contestability as a Means to Promote Responsible Algorithmic Decision Making in the Professions. SSRN Electronic Journal. 2020.
- [122] Liu X, Rivera SC, Moher D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI Extension. BMJ. 2020;370:m3164.
- [123] Parikh RB, Teeple S, Navathe AS. Addressing Bias in Artificial Intelligence in Health Care. JAMA. 2019;322(24):2377-2378.
- [124] Zou J, Schiebinger L. AI can be sexist and racist it's time to make it fair. Nature. 2018;559(7714):324-326.
- [125] Park Y, Hu J, Singh M, et al. Comparison of Methods to Reduce Bias From Clinical Prediction Models of Postpartum Depression. JAMA Netw Open. 2021;4(4):e213909.
- [126] Babic B, Gerke S, Evgeniou T, Cohen IG. Algorithms on regulatory lockdown in medicine. Science. 2019;366(6470):1202-1204.
- [127] Geis JR, Brady AP, Wu CC, et al. Ethics of Artificial Intelligence in Radiology: Summary of the Joint European and North American Multisociety Statement. Radiology. 2019;293(2):436-440.
- [128] Ibrahim H, Liu X, Zariffa N, Morris AD, Denniston AK. Health data poverty: an assailable barrier to equitable digital health care. Lancet Digit Health. 2021;3(4):e260-e265.
- [129] Larson DB, Magnus DC, Lungren MP, Shah NH, Langlotz CP. Ethics of Using and Sharing Clinical Imaging Data for Artificial Intelligence: A Proposed Framework. Radiology. 2020;295(3):675-682.
- [130] Leslie D, Mazumder A, Peppin A, Wolters MK, Hagerty A. Does "AI" stand for augmenting inequality in the era of covid-19 healthcare? BMJ. 2021;372:n304.
- [131] Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447-453.
- [132] Panch T, Szolovits P, Atun R. Artificial intelligence, machine learning and health systems. J Glob Health. 2018;8(2):020303.
- [133] Roberts LW, Torous J. Preparing Psychiatry for the Future: The Promise of Digital Health Technology. Psychiatr Serv. 2019;70(12):1135.

- [134] Sendak M, Gao M, Nichols M, Lin A, Balu S. Machine Learning in Health Care: A Critical Appraisal of Challenges and Opportunities. EGEMS (Wash DC). 2019;7(1):1.
- [135] Shachar C, Gerke S, Adashi EY. AI Surveillance during Pandemics: Ethical Implementation Imperatives. Hastings Cent Rep. 2020;50(3):18-21.
- [136] Sun TQ, Medaglia R. Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare. Gov Inf Q. 2019;36(2):368-383.
- [137] Tadavarthi Y, Vey B, Krupinski E, et al. The State of Radiology AI: Considerations for Purchase Decisions and Current Market Offerings. Radiol Artif Intell. 2020;2(6):e200004.
- [138] Tang A, Tam R, Cadrin-Chênevert A, et al. Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology. Can Assoc Radiol J. 2018;69(2):120-135.
- [139] Thompson RF, Valdes G, Fuller CD, et al. Artificial intelligence in radiation oncology: A specialty-wide disruptive transformation? Radiother Oncol. 2018;129(3):421-426.
- [140] Tran BX, Vu GT, Ha GH, et al. Global Evolution of Research in Artificial Intelligence in Health and Medicine: A Bibliometric Study. J Clin Med. 2019;8(3):360.
- [141] Vayena E, Blasimme A, Cohen IG. Machine learning in medicine: Addressing ethical challenges. PLoS Med. 2018;15(11):e1002689.
- [142] Vollmer S, Mateen BA, Bohner G, et al. Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ. 2020;368:l6927.
- [143] Wang F, Kaushal R, Khullar D. Should Health Care Demand Interpretable Artificial Intelligence or Accept "Black Box" Medicine? Ann Intern Med. 2020;172(1):59-60.
- [144] Wilkinson J, Brison DR, Duffy JMN, et al. Don't abandon randomised trials in health artificial intelligence. BMJ. 2020;369:m1578.
- [145] Wong A, Otles E, Donnelly JP, et al. External Validation of a Widely Implemented Proprietary Sepsis Prediction Model in Hospitalized Patients. JAMA Intern Med. 2021;181(8):1065-1070.
- [146] Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ. 2020;369:m1328.
- [147] Yang G, Ye Q, Xia J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond. Information Fusion. 2022;77:29-52.
- [148] Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719-731.
- [149] Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. PLoS Med. 2018;15(11):e1002683.
- [150] Zhou N, Zhang CT, Lv HY, et al. Concordance Study Between IBM Watson for Oncology and Clinical Practice for Patients With Cancer in China. Oncologist. 2019;24(6):812-819.
- [151] Zheng Y, Pemberton H, Ball R, et al. High-throughput, AI-driven prediction of clinical trial outcomes. Nat Biomed Eng. 2021;5(7):737-747.
- [152] Zittrain J. The Hidden Costs of Automated Thinking. The New Yorker. 2019 Jul 23.
- [153] Norori N, Hu Q, Aellen FM, Faraci FD, Tzovara A. Addressing bias in big data and AI for health care: A systematic review. Pattern Recognition. 2021;122:104271.
- [154] Park Y, Jackson GP, Foreman MA, et al. Evaluating artificial intelligence in medicine: phases of clinical research. JAMIA Open. 2020;3(3):326-331.
- [155] Panch T, Mattie H, Atun R. Artificial intelligence and algorithmic bias: implications for health systems. J Glob Health. 2019;9(2):020318.
- [156] Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring Fairness in Machine Learning to Advance Health Equity. Ann Intern Med. 2018;169(12):866-872.