

A bimonthly pharma refresh brought to you by Journal of Pharma Insights and Research (JOPIR)

ISSN No. 3048-5428 DOI: 10.5281/ZENODO.16743827

AUGUST 2025 VOL. 3, ISSUE 4

Contents

REVIEW ON CURRENT ADVANCES OF NANOTECHNOLOGY
Mrs. Bharathi Janakathotty, Mr. Harish K
PHARMA 5.0: THE INTERSECTION OF AI, PERSONALIZED MEDICINE, AND GREEN CHEMISTRY
Miss Asvitha Basker
COMPREHENSIVE REVIEW OF THE EVOLUTION OF ROBOTIC SURGERY
Miss Rajashri Sanjay Shinde, Mr. Kunal Sonawane
THE PSYCHEDELIC RENAISSANCE: EMERGING THERAPEUTICS IN MODERN PSYCHIATRY
Miss Siddhi Bhausaheb Dhole
REVIEW ON MODELS OF DEMENTIA AND ALZHEIMER'S DISEASE (MEMORY IMPAIRMENTS)
Mr. Sachin Kumar, Dr. Lubhan Singh
IMPACT OF CLINICAL DECISION SUPPORT SYSTEMS ON MEDICATION SAFETY IN HOSPITALS
Miss Vaishnavi Rajendra Sonawane4
AN ALTERNATIVE APPROACH FOR BIOLOGICAL SOURCE OF L-DOPA
Miss Arti Sandip Shinde
CIRCULAR RNA (circRNA) VACCINES: A NEW FRONTIER IN mRNA TECHNOLOGY
Miss Pathan S.M
UTILIZING THE TENT5A ENZYME TO BOOST mRNA STABILITY IN THERAPEUTIC APPLICATIONS
Miss Pathan S.M
AI AND GENERATIVE DRUG DISCOVERY
Miss Mayuri Shinde
TARGETING TAU PROTEIN IN ALZHEIMER'S DISEASE
Miss Kalyani Somase
BALANCING INNOVATION AND PATIENT PRIVACY: ETHICAL DILEMMAS IN PHARMACOGENOMICS
Miss Arseen Shakil Attar
REVIEW ON THE EXPANDING ROLE OF CAR-T THERAPY FROM HEMATOLOGICAL CANCER TO AUTO IMMUNITY
Dr. Monika P, Mr. Lingeshwar B, Mahalakshmi K
IMPLEMENTING PERSONALIZE MEDICINE UTILIZING PRINCIPLES OF PHARMACOGENOMICS
PHARMACOGENOMICS IN SICKLE CELL DISEASE
DIGITAL HEALTH AND ECOSYSTEM
Miss Rupali Sant
NANOPHARMACEUTICALS
Miss Mahek Altaf Inamdar
PHARMA 4.0: LEVERAGING IOT-DRIVEN AUTOMATION FOR RESILIENT ADAPTIVE PHARMACEUTICAL MANUFACTURING10
Miss Dipali Gaikwad

A bimonthly pharma refresh brought to you by Journal of Pharma Insights and Research (JOPIR)

AUGUST 2025 VOL. 3, ISSUE

ISSN No. 3048-5428

DOI: 10.5281/ZENODO.1674382

REVIEW ON CURRENT ADVANCES OF NANOTECHNOLOGY

Mrs. Bharathi Janakathotty*1, Mr. Harish K2

¹Associate Professor, Department of Pharmaceutics, Krishna Teja Pharmacy College, Chadalawada Nagar, Tirupati, India

²UG Scholar, Department of Pharmaceutics, Krishna Teja Pharmacy College, Chadalawada Nagar, Tirupati, India

bharujuly13@gmail.com

Abstract: Nanotechnology has emerged as a transformative force across diverse industrial sectors worldwide. This research investigates the practical applications of nanotechnology in modernizing various industries through analysis of recent scientific literature and industry reports. The findings show that nanotechnology's evolution from specialized laboratory research into a mainstream industrial tool with wide-ranging impacts. Current evidence indicates nanotechnology has expanded well beyond initial applications in nanomedicine to become integrated throughout the industrial ecosystem. Organizations globally now implement nanoscale innovations to enhance operational efficiency, product design, manufacturing processes, and overall productivity. The integration spans multiple scales—from specialized applications in food processing, pharmaceutical development, and agricultural enhancement to large-scale implementation in automotive manufacturing, structural engineering, and environmental remediation systems. Nanomaterials, including carbon nanotubes, quantum dots, and specialized nanoparticles, provide unprecedented capabilities in material strength, conductivity, reactivity, and functionality at minimal mass. These properties enable industries to develop products with superior performance characteristics while potentially reducing resource consumption. The research indicates future growth trajectories will depend on interdisciplinary collaboration among researchers, technologists, industrial engineers, environmental scientists, and educational institutions to ensure nanoscale innovations contribute to industrial advancement while addressing safety, regulatory, and sustainability considerations essential for long-term implementation

Keywords: Nanomaterials, Industrial Applications, Manufacturing Innovation, Nanoscale Engineering, Nanowires, Nanorods.

PHARMA 5.0: THE INTERSECTION OF AI, PERSONALIZED MEDICINE, AND GREEN CHEMISTRY

Miss Asvitha Basker

PG Scholar, Department of Pharmacy, DYP College of Pharmacy and Research, Pimpri, India asvithabasker76@gmail.com

Abstract: The pharmaceutical industry is advancing toward Pharma 5.0, characterized by the convergence of artificial intelligence technologies, precision medicine approaches, and environmentally responsible chemistry. While Pharma 4.0 centered primarily on automation and digital transformation, Pharma 5.0 represents a paradigm shift toward human-centered, ethically driven, and sustainable pharmaceutical innovation models. Recent technological advancements have produced significant improvements in drug development processes, with Al-augmented discovery platforms demonstrating capacity to reduce research and development timelines by 30-40%. Concurrently, biodegradable nanoformulations have shown potential to decrease environmental impacts through reduced manufacturing waste and improved drug delivery efficiency. Pharmacogenomic approaches now enable treatment customization based on individual genetic profiles, representing a fundamental shift toward patient-specific therapeutic interventions with improved efficacy and reduced adverse effects. India occupies a strategic position in this transition as an emerging pharmaceutical development hub, with notable growth in startup ecosystems and university-industry partnerships focused on transformation of clinical trial methodologies. These collaborations have advanced virtual clinical trial platforms and real-world evidence collection systems that enhance data quality while potentially reducing costs by 15-25%. The integration of these converging technologies and methodologies offers pathways toward pharmaceutical products and services that demonstrate enhanced speed to market, reduced environmental footprint, and improved accessibility across diverse patient populations. This transition provides a foundation for developing pharmaceutical systems with improved resilience and responsiveness to emerging health challenges.

Keywords: Pharmacogenomics, Al-Augmented Discovery, Sustainable Pharmaceuticals, Digital Clinical Trials, Personalized Therapeutics.

A bimonthly pharma refresh brought to you by Journal of Pharma Insights and Research (JOPIR)

ISSN No. 3048-5428

AUGUST 2025 VOL. 3, ISSUE

COMPREHENSIVE REVIEW OF THE EVOLUTION OF ROBOTIC SURGERY

Miss Rajashri Sanjay Shinde, Mr. Kunal Sonawane

PG Scholar, Department of Pharmacy, R.C.Patel Institute of Pharmacy, Shirpur, India

officialrajashrishinde@gmail.com

Abstract: Robotic-assisted surgery represents a significant advancement in minimally invasive surgical procedures, combining precisionengineered instrumentation with enhanced three-dimensional visualization systems. This analysis traces the developmental trajectory, technical architecture, clinical implementation, and future directions of surgical robotics in contemporary healthcare. The progression from early automated systems like Robodoc to the widespread adoption of the da Vinci platform demonstrates the maturation of this technology across multiple surgical specialties, including urology, gynecology, thoracic, and cardiac interventions. Current robotic systems feature articulated mechanical arms, master-console control interfaces, and advanced imaging capabilities that provide surgeons with enhanced manual dexterity and visual acuity, particularly valuable during procedures involving anatomically restricted access points. Comparative clinical outcome analyses indicate robotic approaches frequently result in reduced intraoperative blood loss, lower complication rates, and accelerated patient recovery timelines relative to traditional laparoscopic and open surgical techniques. These benefits must be considered alongside implementation challenges, including substantial capital investment requirements, extended training requirements, and technical limitations such as reduced tactile feedback. The field continues to advance through integration of artificial intelligence algorithms and virtual training environments, which show promise for improving intraoperative decision support and reducing surgeon learning curves. Newer platforms such as Versius and Hugo™ demonstrate increased modularity and cost-efficiency, potentially expanding access to robotic surgical capabilities across diverse healthcare environments. As the field progresses, research priorities are shifting toward partial automation, cost reduction strategies, and evidence-based implementation approaches that maximize clinical value while addressing practical deployment considerations across varied healthcare delivery systems.

Keywords: Minimally Invasive Techniques, Surgical Automation, Clinical Outcomes, Surgical Training, Healthcare Technology.

THE PSYCHEDELIC RENAISSANCE: EMERGING THERAPEUTICS IN MODERN PSYCHIATRY

Miss Siddhi Bhausaheb Dhole

UG Graduate, P.E.S. Modern College of Pharmacy (for ladies), Moshi, Maharashtra, India

siddhidhole26@gmail.com

Abstract: The resurgence of scientific interest in psychedelic compounds represents a significant shift in psychiatric therapeutic research. Substances including psilocybin, lysergic acid diethylamide (LSD), 3,4-methylenedioxymethamphetamine (MDMA), and ketamine—previously classified as Schedule I substances with no recognized medical applications—are now subject to rigorous clinical investigation for their therapeutic potential. These compounds show remarkable efficacy in addressing conditions historically resistant to conventional pharmacological interventions, including treatment-resistant depression, post-traumatic stress disorder, existential anxiety, and substance use disorders. Clinical trials have documented notable differences between psychedelic interventions and traditional psychopharmacology. While conventional antidepressants typically require weeks to achieve therapeutic effects and necessitate continuous administration, psychedelic-assisted therapies frequently produce rapid symptom reduction following limited dosing sessions, with benefits persisting for months in numerous participants. This response pattern challenges established neuropsychopharmacological paradigms and suggests novel mechanisms involving neuroplasticity, default mode network modulation, and enhanced emotional processing. The aim of this work is to discuss about the contemporary trends toward targeted psychiatric interventions, integrative treatment approaches, and exploration of alternative neurobiological pathways for addressing mental health conditions. This evolution represents a fundamental reconsideration of neuropsychopharmacology with potential implications for addressing the global mental health treatment gap.

Keywords: Psychedelic Medicine, Neuroplasticity, Treatment Resistance, Serotonergic Modulation, Psychiatric Innovation.

A bimonthly pharma refresh brought to you by Journal of Pharma Insights and Research (JOPIR)

ISSN No. 3048-5428

AUGUST 2025 VOL. 3, ISSUE

REVIEW ON MODELS OF DEMENTIA AND ALZHEIMER'S DISEASE (MEMORY IMPAIRMENTS)

Mr. Sachin Kumar¹, Dr. Lubhan Singh²

Research Scholar, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India

Professor and HOD, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India

sach.pharmacy.in@gmail.com

Abstract: Dementia represents a complex neurodegenerative syndrome characterized by progressive cerebrovascular insufficiency resulting in deterioration of cognitive functions, visual-spatial processing, and motor coordination. Epidemiological projections from the World Health Organization indicate that by 2025, approximately 75% of individuals aged 60 and older will reside in developing countries with significant dementia burden. The global prevalence of dementia demonstrates consistent doubling patterns every two decades, with estimates of 42.3 million cases in 2020 projected to reach 81.1 million by 2040, creating an urgent need for improved experimental models that accurately replicate clinical and pathological disease manifestations. This analysis evaluates multiple experimental dementia modeling approaches across in vivo and in vitro platforms, with particular focus on Alzheimer's disease pathology. The assessment encompasses naturally occurring models, chemically-induced cognitive impairment, pharmacological interventions, secondary disease-associated dementia, genetic manipulation models, transgenic animal systems, specific neurotoxin exposures, and cellular-based research platforms. Each model system is critically evaluated regarding its capacity to reproduce cardinal disease features including amyloid-beta aggregation, tau hyperphosphorylation, neuroinflammatory processes, oxidative stress mechanisms, synaptic dysfunction, progressive neuronal atrophy, and ultimately cellular degeneration in brain regions associated with cognitive function. While each model system offers specific advantages for investigating particular disease aspects, no single approach fully replicates the multifactorial nature of human dementia syndromes.

Keywords: Neurodegenerative Modeling, Cognitive Impairment, Amyloid Pathology, Tau Hyperphosphorylation, Experimental Neurodegeneration.

IMPACT OF CLINICAL DECISION SUPPORT SYSTEMS ON MEDICATION SAFETY IN HOSPITALS

Miss Vaishnavi Rajendra Sonawane

UG Scholar, SRES' Sanjivani Institute of Pharmacy and Research, Kopargaon, Maharashtra, India vaishnavisonawane70@gmail.com

Abstract: Medication-related iatrogenic injuries constitute a persistent clinical and economic challenge for healthcare institutions globally. Digital interventions including Computerized Physician Order Entry (CPOE) and Clinical Decision Support Systems (CDSS) have been developed and implemented specifically to mitigate medication errors and enhance patient safety. This analysis evaluates the current implementation status of medication-related CDSS, their demonstrated impact on clinical outcomes and safety parameters, and critically assesses the methodological approaches utilized in evaluating these systems. Multiple randomized controlled trials and systematic analyses provide substantial evidence that medication-focused CDSS implementations can positively influence clinical outcomes through significant reductions in prescription errors and improvements in medication selection appropriateness. These beneficial effects have been documented across diverse clinical environments, including both inpatient and ambulatory care settings. Implementation success factors include enhanced adherence to evidence-based prescribing guidelines, improved workflow efficiencies, and generally positive user acceptance metrics among healthcare providers. Despite documented benefits, the effectiveness of CDSS interventions demonstrates considerable variability across studies, with several investigations reporting minimal or undetectable clinical impact. Contributing factors to implementation limitations include alert fatigue phenomena resulting from excessive notifications, inadequate integration with established clinical workflows, suboptimal user interface design, and insufficient contextual relevance to immediate clinical decision-making requirements.

Keywords: Medication Error Prevention, Healthcare Informatics, Clinical Alerts, Prescribing Safety, Computerized Decision Support

A bimonthly pharma refresh brought to you by Journal of Pharma Insights and Research (JOPIR)

ISSN No. 3048-5428

AN ALTERNATIVE APPROACH FOR BIOLOGICAL SOURCE OF L-DOPA

Miss Arti Sandip Shinde

UG Scholar, SRES' Sanjivani Institute of Pharmacy and Research, Kopargaon, Maharashtra, India artishinde526@gmail.com

Abstract: L-3,4-dihydroxyphenylalanine (L-DOPA) represents a critical therapeutic agent in Parkinson's disease management, functioning as a dopamine precursor to address the neurotransmitter deficiency characteristic of this neurodegenerative disorder. Traditional L-DOPA production methodologies, including chemical synthesis and extraction from Mucuna pruriens seeds, face significant limitations including yield inconsistency, environmental impact concerns, and elevated production costs, necessitating exploration of alternative biological production systems. This analysis evaluates emerging biotechnological approaches for L-DOPA biosynthesis, focusing on plant tissue culture systems, metabolically engineered microorganisms, and endophytic fungal production platforms. Plant tissue culture techniques utilizing Mucuna species and Vicia faba demonstrate capacity for controlled L-DOPA biosynthesis with enhanced productivity through elicitation strategies and bioreactor cultivation systems. Parallel advancements in microbial engineering, particularly with Escherichia coli and Corynebacterium glutamicum, have established fermentation-based production platforms offering advantages in scalability, process control, and environmental sustainability. Additionally, endophytic fungi isolated from L-DOPA-accumulating plant species present a novel approach for sustainable biosynthesis, leveraging natural metabolic pathways while reducing dependence on plant cultivation. The integration of these biotechnological approaches with traditional pharmaceutical knowledge aligns with green pharmacy principles, potentially establishing production systems with enhanced stability, economic viability, and ethical sourcing. These biological production platforms collectively represent a promising direction for addressing the growing global demand for this essential neurological medication.

Keywords: Biotechnological Production, Microbial Fermentation, Plant Tissue Culture, Metabolic Engineering, Sustainable Pharmaceuticals.

CIRCULAR RNA (circRNA) VACCINES: A NEW FRONTIER IN mRNA TECHNOLOGY

Miss Pathan S.M

Lecturer, SRES' Sanjivani Institute of Pharmacy and Research, Kopargaon, Maharashtra, India shainpathandpharm@sanjivani.org.in

Abstract: Messenger RNA (mRNA) vaccine technology has revolutionized immunization strategies, particularly during the SARS-CoV-2 pandemic, demonstrating unprecedented development speed and efficacy profiles. Despite these advances, conventional linear mRNA vaccines face fundamental limitations including translation inefficiencies arising from suboptimal sequence elements, structural instability, and susceptibility to enzymatic degradation within cellular environments. These constraints necessitate exploration of alternative RNA architectures to enhance vaccine performance characteristics. Circular RNA (circRNA) represents a promising alternative vaccine platform characterized by covalently closed loop structures lacking free 5' and 3' termini typically targeted by cellular exonucleases. This distinctive structural configuration confers inherent resistance to degradative enzymatic pathways, resulting in significantly extended intracellular half-life compared to linear mRNA counterparts. Experimental evidence indicates that circRNA molecules show 8-10 fold greater stability in physiological conditions while maintaining translational capacity through cap-independent mechanisms. The advantageous properties of circRNA extend beyond enhanced stability to include improved translational efficiency, reduced immunogenicity through decreased activation of innate immune sensors, and design flexibility enabling incorporation of specialized translation initiation elements including internal ribosome entry sites (IRES) and synthetic cap-independent translational enhancers. The potential clinical significance of these findings is reflected in advancing development programs, with leading biopharmaceutical companies including Moderna, BioNTech, and Stemirna Therapeutics initiating early-phase human studies.

Keywords: Circular RNA, Translation Efficiency, RNA Stability, Synthetic Biology, Vaccine Development.

A bimonthly pharma refresh brought to you by Journal of Pharma Insights and Research (JOPIR)

ISSN No. 3048-5428

AUGUST 2025 VOL. 3, ISSUE

UTILIZING THE TENT5A ENZYME TO BOOST mRNA STABILITY IN THERAPEUTIC APPLICATIONS

Miss Pathan S.M

Lecturer, SRES' Sanjivani Institute of Pharmacy and Research, Kopargaon, Maharashtra, India shainpathandpharm@sanjivani.org.in

Abstract: Messenger RNA (mRNA) therapeutics have emerged as revolutionary platforms for vaccine development and gene therapy applications, demonstrating unprecedented versatility in addressing diverse medical conditions. Despite promising clinical outcomes, particularly evidenced by recent mRNA vaccine successes, a fundamental limitation constrains broader implementation—the inherent instability of mRNA molecules in biological environments. This instability results in rapid degradation following administration, creating a restricted therapeutic expression window and necessitating frequent dosing regimens to maintain clinical efficacy. The TENT5A enzyme (Terminal Nucleotidyltransferase 5A), a non-canonical poly(A) polymerase, has been identified as a potential solution to this critical challenge through its capacity to enhance mRNA stability post-transcriptionally. Mechanistically, TENT5A catalyzes the extension of poly(A) tails on target mRNAs, effectively protecting transcripts from exonucleolytic degradation and enhancing ribosomal engagement for translation. In experimental models, TENT5A-modified mRNAs demonstrate significantly extended half-lives and sustained protein expression profiles compared to conventional mRNA constructs. Integration of TENT5A-mediated stabilization strategies into therapeutic mRNA platforms offers multiple advantages, including potential dose reduction, extended intervals between administrations, and enhanced protein expression levels. These benefits have particular relevance for mRNA vaccines where prolonged antigen presentation may enhance immune response durability, cancer immunotherapies requiring sustained expression of therapeutic proteins, and gene replacement approaches dependent on consistent transgene expression.

Keywords: Post-transcriptional Modification, Poly(A) Polymerase, mRNA Therapeutics, Transcript Stability, Protein Expression.

AI AND GENERATIVE DRUG DISCOVERY

Miss Mayuri Shinde

UG Scholar, SRES' Sanjivani Institute of Pharmacy and Research, Kopargaon, Maharashtra, India ms0353516@gmail.com

Abstract: Conventional drug discovery methodologies rely predominantly on iterative structure-activity relationship optimization of existing pharmacophores or virtual screening of molecular libraries, complemented by de novo design approaches. These traditional paradigms aim to optimize pharmacokinetic and pharmacodynamic profiles but face substantial limitations including prohibitive development costs exceeding \$2.5 billion per approved compound, extended development timelines of 12-15 years, and high attrition rates when navigating the vast chemical space of potential therapeutic candidates. Generative artificial intelligence models, including generative adversarial networks (GANs), variational autoencoders (VAEs), transformer architectures, and diffusion models, are transforming pharmaceutical research through their capacity to rapidly generate novel molecular structures with tailored properties. These computational systems enable simultaneous optimization across multiple parameters including target binding affinity, synthetic accessibility, and ADME-Tox characteristics. Advanced platforms such as IDOL pro, utilizing diffusion-based multi-objective optimization, demonstrate significant advantages over conventional screening methodologies, achieving 10-20% improvements in binding scores and synthetic feasibility metrics while operating at over 100-fold greater efficiency in both time and resource utilization. Similarly, Recursion Pharmaceuticals has successfully advanced eight Al-generated drug candidates into clinical trials, demonstrating the technology's capacity to effectively narrow the drug discovery funnel. Integration of generative AI with digital twin technology—computational models simulating biological systems further enhances pharmaceutical development through in silico prediction of disease progression, biomarker dynamics, and drug interactions. While these technological advances demonstrate significant potential for transforming drug discovery, challenges persist regarding synthetic feasibility, model interpretability, and data quality requirements that necessitate continued research attention.

Keywords: Computational Drug Design, Artificial Intelligence, Molecular Optimization, Accelerated Development, In Silico Modeling.

A bimonthly pharma refresh brought to you by Journal of Pharma Insights and Research (JOPIR)

AUGUST 2025 VOL. 3, ISSUE

ISSN No. 3048-5428

TARGETING TAU PROTEIN IN ALZHEIMER'S DISEASE

Miss Kalyani Somase

UG Scholar, SRES' Sanjivani Institute of Pharmacy and Research, Kopargaon, Maharashtra, India kalyanisomase1304@gmail.com

Abstract: Alzheimer's disease (AD) represents a progressive neurodegenerative condition characterized by distinct neuropathological hallmarks including neurofibrillary tangles composed of hyperphosphorylated tau protein and extracellular amyloid-β (Aβ) plaque accumulation. While historically, Aβ pathology has been considered the primary pathogenic trigger in AD pathogenesis, accumulating evidence increasingly implicates tau-mediated neurodegeneration as a critical determinant in disease progression and symptomatic manifestation. Notably, tau pathology can develop independently of substantial Aβ deposition in several tauopathies, suggesting potentially distinct pathological mechanisms. The limited clinical efficacy observed in numerous Aβ-targeted therapeutic trials has prompted reconsideration of alternative pathological targets for intervention. Tau protein has emerged as a compelling therapeutic candidate due to the robust correlation between tau pathology distribution, neuronal loss patterns, and cognitive decline severity in AD patients. The pathological cascade involving tau protein encompasses abnormal hyperphosphorylation, conformational changes, aggregation into paired helical filaments, and ultimately formation of neurofibrillary tangles that disrupt neuronal function and viability. Experimental models of AD pathology have identified multiple potential tau-directed therapeutic strategies, including inhibition of tau hyperphosphorylation through modulation of specific kinase activities (GSK-3β, CDK5, MARK), enhancement of tau dephosphorylation via phosphatase activation, modification of tau post-translational modifications including glycosylation patterns, and promotion of pathological tau clearance through autophagy-lysosomal and proteasomal degradation pathways.

Keywords: Tau Hyperphosphorylation, Neurofibrillary Tangles, Neurodegeneration, Protein Aggregation, Tauopathies.

BALANCING INNOVATION AND PATIENT PRIVACY: ETHICAL DILEMMAS IN PHARMACOGENOMICS

Miss Arseen Shakil Attar

UG Scholar, SRES' Sanjivani Institute of Pharmacy and Research, Kopargaon, Maharashtra, India attararsheen619@gmail.com

Abstract: The emergence of pharmacogenomics represents a significant advancement in precision medicine, enabling the development and optimization of pharmaceutical interventions based on individual genetic profiles. This field offers unprecedented potential for enhancing therapeutic efficacy through personalized medication selection and dosing strategies tailored to specific genetic variants that influence drug metabolism, transport, and receptor interactions. However, the integration of genomic data into clinical pharmacy practice introduces complex ethical considerations regarding patient autonomy, privacy protection, and data security. Genomic information differs fundamentally from conventional medical data due to its immutable nature, predictive capacity, and implications for biological relatives. The collection, storage, and utilization of genetic information in pharmaceutical care creates tension between advancing medical knowledge for collective benefit and safeguarding individual privacy rights. Unauthorized disclosure or misuse of genetic information poses significant risks including potential discrimination, psychological distress, and erosion of patient trust in healthcare systems. Pharmacists occupy a critical position at the interface between genomic research and clinical application, serving as both data stewards and patient advocates. The pharmacist's responsibility extends to promoting genomic literacy among patients while simultaneously advancing beneficial applications of this technology. Establishing ethical frameworks for pharmacogenomic implementation requires balancing innovation imperatives with privacy protections through structured governance approaches, technical safeguards, and regulatory oversight. Sustainable advancement in this field necessitates maintaining public trust through demonstrated commitment to ethical principles including respect for persons, beneficence, non-maleficence, and justice.

Keywords: Genomic Privacy, Ethical Governance, Patient Autonomy, Data Protection, Precision Pharmacy.

A bimonthly pharma refresh brought to you by Journal of Pharma Insights and Research (JOPIR)

ISSN No. 3048-5428

AUGUST 2025 VOL. 3, ISSUE

DOI: 10.5281/ZENODO.16743827

REVIEW ON THE EXPANDING ROLE OF CAR-T THERAPY FROM HEMATOLOGICAL CANCER TO AUTO IMMUNITY

Dr. Monika P¹, Mr. Lingeshwar B², Mahalakshmi K²

¹Assistant Professor, Department of Pharmacy Practice, School of Pharmaceutical Sciences, VISTAS, Chennai, India

²Research Scholar, Department of Pharmacy Practice, School of Pharmaceutical Sciences, VISTAS, Chennai, India

lingedh973@gmail.com

Abstract: N Chimeric Antigen Receptor T-cell (CAR-T) therapy represents a significant advancement in cancer immunotherapy, utilizing genetically modified T lymphocytes that express synthetic receptors designed to recognize specific tumor-associated antigens. These engineered immune cells combine antibody-like specificity with T-cell cytotoxic functionality, enabling targeted elimination of malignant cells. The clinical significance of this approach has been validated through FDA approval of multiple CAR-T therapeutics, including tisagenlecleucel (Kymriah) for B-cell acute lymphoblastic leukemia (B-ALL) and axicabtagene ciloleucel (Yescarta) for diffuse large B-cell lymphoma (DLBCL). Current CAR-T applications predominantly target hematological malignancies through recognition of lineage-specific surface markers including CD19, CD20, CD22, and B-cell maturation antigen (BCMA). These targets have demonstrated clinical efficacy due to their restricted expression patterns and accessibility to circulating CAR-T cells. Recent investigational applications have expanded beyond oncology to address autoimmune pathologies, where CAR-T cells can be engineered to target autoreactive B-cells or pathogenic plasma cells implicated in conditions such as systemic lupus erythematosus, myasthenia gravis, and refractory autoimmune cytopenias. Despite promising clinical outcomes, CAR-T therapy faces substantial challenges including potentially severe immune-related adverse events such as cytokine release syndrome and neurotoxicity, which require specialized monitoring and management protocols. Additional limitations include manufacturing complexity, substantial production costs, and variable persistence of therapeutic cells, factors that collectively restrict broader clinical implementation.

Keywords: Immunotherapy, Engineered T-cells, Targeted Therapy, Cytokine Release Syndrome, Cellular Persistence.

IMPLEMENTING PERSONALIZE MEDICINE UTILIZING PRINCIPLES OF PHARMACOGENOMICS

Mr. Shivansh Singh

UG Scholar, Delhi College of Pharmacy, DIRD, Holambi Khurd, India

shivansh010104@gmail.com

Abstract: Pharmacogenomics represents the scientific discipline investigating how genetic variation influences individual drug responses, providing a foundational framework for implementing precision medicine approaches. The core objectives of pharmacogenomic implementation include optimization of therapeutic efficacy through genetically-informed medication selection and dosing, minimization of adverse drug reactions through identification of genetic risk factors, discovery of novel drug targets through elucidation of disease-related genetic pathways, and development of comprehensive genetic profiles that predict both disease susceptibility and treatment response patterns. Implementation of pharmacogenomic principles offers substantial potential benefits to healthcare systems through increased treatment success rates, reduced adverse event frequencies, and enhanced efficiency of pharmaceutical development pipelines. These improvements derive from the capacity to identify genetic determinants of drug metabolism, target engagement, and adverse effect susceptibility prior to treatment initiation. Tangible healthcare cost reductions may be realized through decreased medication failure rates, reduced hospitalization for adverse drug reactions, and streamlined clinical trial designs incorporating genetic stratification approaches. The advancement of pharmacogenomic implementation faces several challenges including standardization of testing methodologies, integration of genetic data into clinical decision support systems, provider education regarding interpretation of genetic information, and development of regulatory frameworks for genetic test validation.

Keywords: Precision Medicine, Genetic Variation, Drug Response, Therapeutic Optimization, Personalized Healthcare.

A bimonthly pharma refresh brought to you by Journal of Pharma Insights and Research (JOPIR)

ISSN No. 3048-5428

AUGUST 2025 VOL. 3, ISSUE

PHARMACOGENOMICS IN SICKLE CELL DISEASE

Miss Sonali Shinde

UG Scholar, SRES' Sanjivani Institute of Pharmacy and Research, Kopargaon, Maharashtra, India pshaeenmail@gmail.com

Abstract: Sickle cell disease (SCD) represents a monogenic hematological disorder characterized by a single nucleotide substitution in the β-globin gene, resulting in production of hemoglobin S and subsequent erythrocyte sickling under deoxygenated conditions. Despite its classification as a monogenic disorder, SCD demonstrates remarkable phenotypic heterogeneity in clinical manifestations, disease severity, and therapeutic response. This variability is increasingly attributed to polymorphisms within globin gene clusters and modifier genes that influence disease expression and treatment outcomes. Pharmacogenomic approaches provide critical insights into genetic determinants of drug response variability in SCD management, offering potential for therapeutic optimization through genetically-informed prescribing practices. Hydroxyurea, the primary disease-modifying therapy for SCD, exhibits significant inter-individual variability in efficacy and toxicity profiles, partially explained by polymorphisms in metabolic enzyme genes, drug transporters, and pharmacodynamic targets including BCL11A, SAR1, and ARG1/2 genes. Similarly, analgesic requirements and opioid responsiveness in SCD pain management demonstrate genetic influences through variations in cytochrome P450 enzymes, particularly CYP2D6 polymorphisms affecting codeine metabolism, and μ-opioid receptor gene (OPRM1) variants influencing pain perception and opioid sensitivity. Iron chelation therapy efficacy and tolerability correlate with genetic variants in iron metabolism pathways and drug-metabolizing enzymes, while emerging gene therapy approaches target both causative mutations and genetic modifiers of disease severity. Implementation of pharmacogenomic testing in SCD clinical care has potential to reduce adverse drug reactions, optimize dosing regimens, and improve therapeutic outcomes through personalized treatment strategies.

Keywords: Hemoglobinopathy, Genetic Modifiers, Drug Metabolism, Therapeutic Variability, Personalized Therapy.

DIGITAL HEALTH AND ECOSYSTEM

Miss Rupali Sant

UG Scholar, SRES' Sanjivani Institute of Pharmacy and Research, Kopargaon, Maharashtra, India santsujit43@gmail.com

Abstract: The digital health ecosystem represents a fundamental restructuring of healthcare delivery architecture, transitioning from traditional facility-centered models toward integrated patient-centered systems enabled by technological infrastructure. Central to this ecosystem is the Virtual Health Record (VHR), which serves as the authoritative longitudinal documentation of patient health status, accessible across care settings and provider organizations. The VHR transcends traditional electronic health record limitations through enhanced interoperability, comprehensive data integration, and real-time accessibility, enabling clinicians to make informed decisions based on complete patient information regardless of physical location or institutional boundaries. The practical implementation of digital health ecosystem principles is exemplified by Italy's LUMIR project in the Basilicata region, where diverse healthcare applications function within an integrated framework supporting coordinated regional healthcare delivery. This model maintains healthcare providers as the functional core while empowering them through digital tools, real-time data access, and enhanced communication capabilities that preserve care quality while improving diagnostic accuracy, treatment optimization, and administrative efficiency. Digital health ecosystem development demonstrates global momentum through various national initiatives. India's National Digital Health Mission is creating comprehensive digital infrastructure supporting universal health identification and record maintenance for its population. Finland's AMDA IPANO system provides specialized support for maternal health services through dedicated information management systems, while Sweden's 1177 portal enables direct citizen access to healthcare services through digital interfaces.

Keywords: Health Information Exchange, Care Coordination, Digital Infrastructure, Patient-Centered Technology, Interoperability.

A bimonthly pharma refresh brought to you by Journal of Pharma Insights and Research (JOPIR)

AUGUST 2025 VOL 3 ISSUE

ISSN No. 3048-5428

II: 10 5281/ZENODO 16743827

NANOPHARMACEUTICALS

Miss Mahek Altaf Inamdar

UG Scholar, SRES' Sanjivani Institute of Pharmacy and Research, Kopargaon, Maharashtra, India inamdarmahek60@gmail.com

Abstract: Nanopharmaceuticals represent a transformative advancement in therapeutic delivery and disease management through the application of nanoscale materials for targeted intervention and diagnostic capabilities. These nanotechnology-based systems significantly enhance treatment precision, therapeutic efficacy, and clinical safety profiles through site-specific drug delivery mechanisms that concentrate therapeutic agents at disease locations while minimizing exposure to healthy tissues. Recent developments in nanomedicine have enabled the creation of sophisticated delivery platforms capable of transporting diverse therapeutic payloads including conventional chemotherapeutic agents, biological macromolecules, and immunomodulatory compounds with substantially improved pharmacokinetic properties and reduced adverse effect profiles. These delivery systems, constructed from various biocompatible materials of both natural and synthetic origin, incorporate targeting mechanisms designed to interact with specific molecular entities associated with pathological conditions, particularly in oncology applications. Advanced targeting approaches include functionalization with monoclonal antibodies, aptamers, and small molecule ligands that selectively bind to disease-associated receptors or antigens, often requiring companion diagnostic testing for patient selection. While nanopharmaceuticals demonstrate considerable potential for advancing precision medicine approaches, they face implementation challenges including complex manufacturing requirements, potential for acquired resistance mechanisms, economic accessibility concerns, and patient selection limitations.

Keywords: Targeted Delivery, Nanocarriers, Theranostics, Drug Biodistribution, Molecular Targeting.

PHARMA 4.0: LEVERAGING IOT-DRIVEN AUTOMATION FOR RESILIENT AND ADAPTIVE PHARMACEUTICAL MANUFACTURING

Miss Dipali Gaikwad

UG Scholar, SRES' Sanjivani Institute of Pharmacy and Research, Kopargaon, Maharashtra, India

dipaligaikwad23@gmail.com

Abstract: The pharmaceutical manufacturing sector is undergoing fundamental transformation through implementation of Pharma 4.0 principles, an industry-specific adaptation of broader Industry 4.0 concepts tailored to pharmaceutical production requirements. This paradigm shift prioritizes enhanced manufacturing efficiency, product quality assurance, and regulatory compliance through systematic integration of Internet of Things (IoT) connectivity, advanced automation systems, and data-driven intelligence throughout production environments. This analysis examines the transition from conventional pharmaceutical manufacturing approaches to Pharma 4.0 methodologies, with particular emphasis on IoT-enabled sensing technologies, cyber-physical system integration, and autonomous manufacturing capabilities. These technological components establish enhanced connectivity between physical production systems and their virtual counterparts, enabling comprehensive process monitoring, predictive maintenance capabilities, and digital twin modeling for improved decision support, operational efficiency, and quality management through continuous process verification. Documented case studies demonstrate measurable improvements resulting from Pharma 4.0 implementation, including significant increases in manufacturing throughput efficiency, substantial reductions in unplanned equipment downtime, and enhanced end-to-end product traceability throughout supply chains. These operational advantages establish foundations for developing adaptive and resilient manufacturing ecosystems capable of supporting patient-centric production approaches, including advanced personalized medicine applications and sustainable healthcare product development.

Keywords: Smart Manufacturing, Digital Transformation, Process Analytics, Predictive Maintenance, Manufacturing Intelligence.