
REVIEW ARTICLE

A Review of Industrial Applications of Green Chemistry

Sai Laya Ch¹, Shanmukha Siva Naga Saroja K¹, Lakshmi Aswini V¹, Sameera M¹, Jayasree M¹, Usha Rani E², Govindarao Kamala³, Ravi Prakash Degala⁴

² Professor, Department of Pharmaceutics, Koringa College of Pharmacy, Korangi, Andhra Pradesh, India

Publication history: Received on 5th Jan 2025; Revised on 9th Jan 2025; Accepted on 11th Jan 2025

Article DOI: 10.69613/der2my50

Abstract: Green chemistry has emerged as a transformative approach in modern chemical practices, fundamentally altering how chemical processes and products are designed, manufactured, and implemented across industries. The field emphasizes minimizing environmental impact through waste reduction, energy efficiency, and renewable resource utilization. Recent advancements in catalysis, biomimicry, and sustainable synthesis methods have revolutionized industrial chemical processes. The integration of green chemistry principles has led to significant developments in pharmaceutical manufacturing, polymer production, and nanomaterial synthesis. These innovations have resulted in reduced toxic waste generation, improved energy efficiency, and enhanced product safety. The implementation of the twelve fundamental principles of green chemistry has guided the development of environmentally conscious methodologies across various sectors, including drug development, materials science, and industrial manufacturing. Notable achievements include the development of solvent-free reactions, bio-based catalysts, and environmentally benign synthetic routes. The pharmaceutical industry has particularly benefited from green chemistry applications, resulting in cleaner drug synthesis processes and reduced environmental impact. The economic viability of green chemistry approaches, coupled with their environmental benefits, positions this field as a crucial driver of sustainable industrial development.

Keywords: Sustainable synthesis; Environmental sustainability; Biocatalysis; Clean technology; Industrial transformation.

1. Introduction

Green chemistry represents a paradigm shift in chemical science and technology, fundamentally transforming the approach to chemical synthesis, processing, and manufacturing. The field emerged from growing environmental awareness and the necessity to develop sustainable chemical processes that minimize ecological impact while maintaining industrial efficiency [1]. The concept originated in the 1960s following heightened awareness of environmental hazards associated with traditional chemical processes. However, it wasn't until the 1990s that Paul Anastas and John Warner formalized the approach by establishing the twelve principles of green chemistry, which now serve as the cornerstone for sustainable chemical practices [2]. These principles extend beyond mere environmental protection, encompassing economic viability and social responsibility in chemical production [3]. Green chemistry differs from environmental chemistry in its preventive approach rather than remedial measures. While environmental chemistry focuses on understanding and cleaning up pollution, green chemistry aims to prevent pollution at its source by designing chemical processes that eliminate hazardous substance generation [4]. This preventive strategy has proven more cost-effective and environmentally beneficial than traditional end-of-pipe solutions [5].

The implementation of green chemistry principles has revolutionized various industrial sectors. In pharmaceutical manufacturing, for instance, the adoption of catalytic reactions and solvent-free processes has significantly reduced waste generation and energy consumption [6]. Similarly, the polymer industry has witnessed a transition toward bio-based materials and environmentally benign production methods [7]. Recent technological advances have further accelerated the development of green chemistry applications. Innovations in catalysis, particularly in biocatalysis and heterogeneous catalysis, have enabled more efficient and selective chemical transformations under milder conditions [8]. Additionally, the emergence of flow chemistry and continuous processing has enhanced reaction efficiency while reducing solvent usage and waste generation [9]. The economic implications of green chemistry extend beyond environmental benefits. Companies implementing green chemistry principles often report reduced production costs through

³ Professor, Department of Pharmaceutical Chemistry, Koringa College of Pharmacy, Korangi, Andhra Pradesh, India

⁴Associate Professor, Department of Pharmacy Practice, Koringa College of Pharmacy, Korangi, Andhra Pradesh, India

^{*} Corresponding author: Sai Laya Ch

improved atom economy, decreased energy consumption, and minimized waste treatment requirements [10]. These economic advantages, coupled with increasing regulatory pressure and consumer demand for sustainable products, have driven widespread adoption of green chemistry practices across industries.

2. Development of Green Chemistry

The evolution of green chemistry marks a significant transformation in chemical sciences, characterized by distinct developmental phases that shaped modern sustainable practices. During the 1980s, initial environmental concerns led to the establishment of regulatory frameworks, primarily focused on pollution control and waste management [11]. The United States Environmental Protection Agency (US EPA) played a pivotal role in transitioning from end-of-pipe solutions to pollution prevention strategies [12].

2.1. Early Development Phase (1980s-1990s)

The foundation of green chemistry emerged from growing recognition that traditional chemical processes were environmentally unsustainable. During this period, researchers began exploring alternative synthesis routes, catalytic processes, and waste minimization strategies. The concept of atom economy, introduced by Barry Trost, became fundamental in evaluating reaction efficiency and waste generation [13]. This period also witnessed the development of initial metrics for assessing environmental impact of chemical processes [14].

2.2. Establishment Phase (1991-1998)

In 1991, the US EPA launched the Alternative Synthetic Pathways for Pollution Prevention research program, marking the formal recognition of green chemistry. The Office of Pollution Prevention and Toxics established the Presidential Green Chemistry Challenge Awards in 1995, incentivizing innovation in sustainable chemical processes [15]. This phase culminated with the publication of Anastas and Warner's seminal work establishing the twelve principles of green chemistry [16].

2.3. Global Recognition Phase (1999-2008)

The field gained international momentum with the establishment of green chemistry networks worldwide. The Royal Society of Chemistry launched the journal "Green Chemistry" in 1999, providing a dedicated platform for research dissemination [17]. Major pharmaceutical companies began incorporating green chemistry principles into drug development processes, demonstrating the practical applicability of sustainable approaches [18].

2.4. Modern Development Phase (2009-Present)

Recent developments focus on integrating green chemistry with emerging technologies. Advanced catalytic systems, including metalorganic frameworks and enzyme mimics, have enabled more efficient and selective transformations [19]. The emergence of artificial intelligence and machine learning has accelerated the discovery of sustainable reaction pathways and optimization of green processes [20]. Emphasis has shifted toward circular economy principles, where waste products are viewed as potential raw materials for other processes.

3. Principles of green chemistry

The twelve principles of green chemistry establish a comprehensive framework for designing sustainable chemical processes and products. These principles, developed by Anastas and Warner, serve as fundamental guidelines for reducing environmental impact while maintaining industrial efficiency [21].

3.1. Prevention

Preventing waste generation supersedes waste treatment. Modern chemical processes incorporate in-process recycling systems and utilize atom-economical reactions to minimize byproduct formation. Advanced reaction engineering techniques, such as continuous flow systems and process intensification, enable significant waste reduction at the source [22].

3.2. Atom Economy

Maximizing the incorporation of reactant molecules into final products represents a cornerstone of sustainable synthesis. Modern synthetic strategies emphasize multicomponent reactions and tandem processes where multiple bonds form in a single operation. Catalytic processes have replaced traditional stoichiometric reagents, significantly improving atom utilization [23].

3.3. Safer Chemical Syntheses

Contemporary approaches focus on selecting reagents and conditions that minimize hazard potential. Water-based chemistry, solvent-free reactions, and ionic liquids have emerged as safer alternatives to traditional organic solvents. The development of bioorthogonal chemistry enables selective transformations under physiological conditions [24].

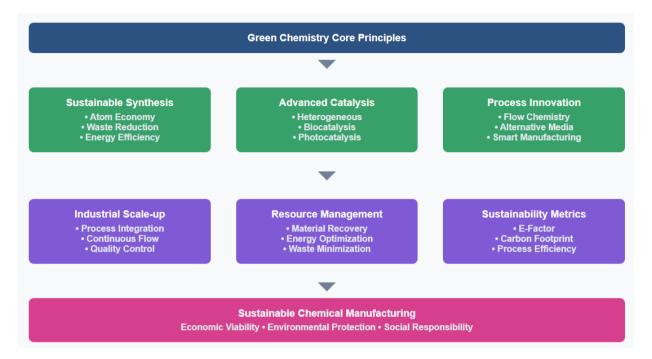


Figure 1. Core Principles of Green Chemistry

3.4. Safer Chemical Design

Molecular design now incorporates environmental impact considerations from inception. Structure-activity relationship studies guide the development of less toxic alternatives to existing chemicals. Computational methods predict environmental fate and toxicity, enabling informed design choices [25].

3.5. Safer Solvents and additives

The transition toward greener solvents encompasses supercritical fluids, deep eutectic solvents, and bio-derived alternatives. Solvent selection tools incorporate environmental, health, and safety metrics. Process modifications often eliminate auxiliary substances through innovative reactor designs [26].

3.6. Energy Efficiency

Energy-efficient processes utilize ambient conditions where possible. Microwave-assisted synthesis, photochemistry, and mechanochemistry offer energy-saving alternatives. The integration of heat exchange networks optimizes energy utilization across chemical plants [27].

3.7. Renewable Feedstocks

Bio-based starting materials increasingly replace petroleum-derived chemicals. Lignocellulosic biomass conversion, CO2 utilization, and waste valorization provide sustainable feedstock alternatives. Metabolic engineering enables the production of platform chemicals from renewable resources [28].

3.8. Derivative Minimization

Strategic synthesis planning reduces protection-deprotection sequences. Selective catalysis enables direct functionalization of complex molecules. One-pot multistep processes minimize intermediate isolation requirements [29].

3.9. Catalysis

Advanced catalytic systems, including artificial metalloenzymes and supported nanoparticles, enable selective transformations under mild conditions. Photocatalysis and electrocatalysis provide energy-efficient reaction pathways. Cascade catalysis combines multiple transformations in single processes [30].

3.10. Degradability

Products designed for biodegradability incorporate cleavable bonds and non-persistent structures. Environmental fate studies guide material selection. Novel polymers feature triggered degradation mechanisms responding to specific environmental conditions [31].

3.11. Real-time Analysis

In-line monitoring techniques enable process optimization and quality control. Advanced sensors and spectroscopic methods provide immediate feedback for process adjustment. Artificial intelligence assists in real-time decision-making for process control [32].

3.12. Prevention of Accident

Inherently safer design principles minimize risk potential. Risk assessment tools guide process development. Automated systems and containment strategies enhance operational safety [33]

4. Benefits of green chemistry

4.1. Environmental Impact

Green chemistry practices significantly reduce environmental pollution through multiple mechanisms. Industrial processes incorporating green chemistry principles demonstrate substantial reductions in hazardous waste generation, often achieving 50-90% decrease compared to traditional methods [34]. Advanced catalytic systems minimize side reactions and improve selectivity, reducing the environmental footprint of chemical manufacturing. Water quality benefits from reduced toxic effluent discharge, while air quality improves through decreased volatile organic compound emissions [35].

Parameters	Traditional Methods	Green Methods	Impact Factor
E-Factor	25-100	5-20	High
Atom Economy (%)	40-65	70-95	High
Energy Efficiency (kWh/kg)	15-30	5-15	Medium
Water Usage (L/kg)	100-200	20-50	High
Process Mass Intensity	80-120	20-40	Medium

Table 1. Green Chemistry Performance Indicators

The implementation of closed-loop systems and circular economy approaches enables resource conservation and waste minimization. Biodegradable materials developed through green chemistry principles reduce persistent environmental contamination. Carbon footprint reduction occurs through energy-efficient processes and renewable resource utilization [36].

4.2. Economic Advantages

Green chemistry drives economic benefits through multiple channels. Manufacturing costs decrease due to reduced raw material consumption, improved energy efficiency, and minimized waste treatment requirements. Companies report 15-40% cost savings through green chemistry implementation [37]. Process intensification and continuous manufacturing systems increase productivity while reducing operational expenses.

The development of bio-based alternatives creates new market opportunities and revenue streams. Improved worker safety reduces insurance costs and liability risks. Companies gain competitive advantages through enhanced corporate image and access to environmentally conscious markets [38].

4.3. Health and Safety

Worker safety improves significantly through the elimination or reduction of hazardous substances. Safer solvents and reaction conditions minimize exposure risks. Implementation of inherently safer design principles reduces accident potential in chemical facilities [39].

Consumer health benefits from reduced toxic residues in products and decreased environmental contamination. Green chemistry approaches in pharmaceutical manufacturing lead to purer products with fewer harmful impurities. Biodegradable packaging materials reduce exposure to persistent chemicals [40].

4.4. Industrial Applications

The pharmaceutical industry demonstrates substantial improvements through green chemistry implementation. Modern drug synthesis routes achieve higher yields with reduced environmental impact. Continuous manufacturing processes enable more efficient production with improved quality control [41].

The polymer industry benefits from bio-based materials and safer polymerization processes. Electronic manufacturing realizes improvements through less toxic processing chemicals and improved recycling methods. Agricultural chemical production becomes more sustainable through biological pest control agents and precision application technologies [42].

4.5. Process optimization

Green chemistry drives technological advancement across multiple sectors. Novel catalytic systems enable previously impossible transformations under mild conditions. Advanced materials development leads to improved products with enhanced environmental properties [43].

Process analytical technologies enable real-time optimization and quality control. Artificial intelligence and machine learning accelerate the discovery of sustainable solutions. Biotechnology advances provide new tools for sustainable chemical production [44].

5. Pharmaceutical green chemistry

5.1. Process Innovation

The pharmaceutical industry has embraced green chemistry principles to revolutionize drug development and manufacturing processes. Modern synthetic approaches emphasize catalytic methods over stoichiometric reactions, achieving higher yields while reducing waste generation. Continuous flow chemistry enables precise control over reaction conditions, improving product quality and reducing solvent consumption [45].

Biocatalytic processes utilizing engineered enzymes provide stereoselective transformations under mild conditions. These approaches eliminate the need for protecting groups and reduce the number of synthetic steps. Integration of process analytical technology enables real-time monitoring and control, optimizing reaction efficiency [46].

5.2. Solvent Innovation

Traditional organic solvents are being replaced with environmentally benign alternatives. Water-based processes, supercritical fluids, and ionic liquids offer safer alternatives while maintaining reaction efficiency. Solvent selection guides incorporate environmental impact assessments, enabling informed decisions in process development [47]. The implementation of solvent recycling systems reduces waste generation and operational costs. Novel extraction methods, including membrane technology and green extraction techniques, minimize solvent usage in downstream processing [48].

5.3. Raw Material Selection

Sustainable sourcing of starting materials emphasizes renewable resources and recyclable feedstocks. Bio-based building blocks replace petroleum-derived compounds where feasible. Waste valorization strategies convert manufacturing byproducts into valuable intermediates [49]. Green chemistry metrics guide raw material selection, considering factors such as:

- Environmental impact of production
- Resource sustainability
- Energy requirements
- Toxicity profiles
- Biodegradability

5.4. Process Optimization

Modern pharmaceutical manufacturing incorporates multiple green chemistry strategies:

Telescoping multiple steps to minimize intermediate isolation

- Implementing continuous crystallization processes
- Utilizing mechanochemical techniques for solid-state transformations
- Developing photoredox catalysis for selective functionalization
- Integrating automated process control systems [50].

5.5. Quality Considerations

Green chemistry approaches often lead to improved product quality through:

- Enhanced reaction selectivity
- Reduced impurity formation
- Improved process control
- Consistent product characteristics
- Reduced environmental impact [51].

6. Green synthesis

The evolution of green synthesis represents a fundamental shift in how chemists approach chemical transformations, emphasizing environmental sustainability while maintaining synthetic efficiency. Modern synthetic strategies have moved beyond traditional methodologies to embrace a more holistic approach that considers environmental impact at every stage of process development[52].

Reaction design has undergone significant transformation, with chemists now favoring multicomponent reactions that maximize atom economy and minimize waste generation. These approaches often combine multiple transformations in cascade processes, allowing complex molecules to be assembled in fewer steps. The implementation of selective catalysis has enabled direct functionalization of molecules, eliminating the need for wasteful protecting group strategies that were once commonplace in organic synthesis [53].

Recent advances in photochemical reactions have opened new avenues for green synthesis. Visible light photoredox catalysis has emerged as a powerful tool, enabling previously challenging transformations under mild conditions. Solar-driven processes harness renewable energy sources, while flow photochemistry systems optimize reaction efficiency and scalability. These developments represent a significant step toward more sustainable synthetic practices [54]. Mechanochemical processes have gained prominence as an alternative to solution-based chemistry. Through solvent-free grinding reactions and ball mill synthesis, chemists can now conduct many transformations without the need for environmentally harmful solvents. These approaches not only reduce waste but often lead to improved reaction outcomes and novel reactivity patterns.

Biocatalytic approaches have revolutionized green synthesis through the application of engineered enzymes and whole-cell biotransformations. These systems operate under mild conditions and often achieve levels of selectivity impossible with traditional chemical methods. Chemoenzymatic cascades combine the best of biological and chemical catalysis, creating highly efficient synthetic routes to complex molecules. [55]

Flow chemistry has emerged as a transformative technology in green synthesis. This approach enables precise control over reaction parameters, leading to enhanced mixing and heat transfer while significantly reducing solvent consumption. The continuous nature of flow processes improves safety profiles and enables scalable production of important chemicals and pharmaceuticals. The development of alternative reaction media has been crucial in advancing green synthesis. Water-based systems, including on-water reactions and micellar catalysis, provide environmentally benign alternatives to traditional organic solvents. Novel solvent systems, such as deep eutectic solvents and bio-derived alternatives, offer new possibilities for conducting chemical transformations in a more sustainable manner. [55]

Process metrics play a crucial role in evaluating the environmental impact of synthetic methods. The E-factor, measuring the ratio of waste to product, provides a quantitative assessment of process efficiency. Additional metrics such as atom economy, process mass intensity, and energy efficiency offer a comprehensive framework for assessing the sustainability of synthetic procedures. The integration of these various approaches has led to significant improvements in synthetic efficiency and environmental impact. Modern green synthesis continues to evolve, driven by advances in catalysis, reaction engineering, and process analytics. As our understanding of sustainable chemistry grows, new methodologies emerge that further reduce environmental impact while maintaining or improving synthetic capability [56]

7. Green catalysis

The field of green catalysis has undergone remarkable transformation in recent years, establishing itself as a cornerstone of sustainable chemistry. Modern catalytic systems represent the intersection of environmental consciousness and chemical efficiency, offering solutions that significantly reduce energy requirements and waste production while enhancing reaction selectivity. [57]

7.1. Heterogeneous Catalysis

Recent developments in heterogeneous catalysis have revolutionized industrial-scale chemical processes. Surface-modified nanoparticles and structured materials provide unprecedented control over reaction selectivity. The development of support materials with tailored porosity and surface chemistry has enabled more efficient catalyst recycling and improved stability under reaction conditions. These advances have particularly impacted petroleum refining and bulk chemical production, where catalyst efficiency directly correlates with environmental impact. [58]

7.2. Homogeneous Catalysis

In the realm of homogeneous catalysis, designer ligands and metal complexes continue to push the boundaries of what's possible in selective synthesis. Modern organometallic catalysts achieve previously impossible transformations under mild conditions, often operating at room temperature and atmospheric pressure. The development of air-stable catalysts has simplified handling requirements while maintaining high activity, making these systems more practical for industrial applications. [59]

Catalyst	Selectivity	Recyclability	Energy Input	Cost Factor
Homogeneous	Very High	Low	Low	High
Heterogeneous	Medium-High	Very High	Medium	Medium
Biocatalysts	Excellent	Medium	Very Low	Medium-High
Photocatalysts	High	High	Low	Medium
Electrocatalysts	Medium-High	High	Medium	Low

Table 2. Catalytic Systems Comparison

7.3. Biocatalysis and Hybrid Systems

Biocatalysis represents one of the most significant advances in green chemistry. Engineered enzymes now catalyze a broad range of chemical transformations with exceptional selectivity. The ability to optimize enzyme performance through directed evolution has expanded the scope of biocatalysis beyond natural reactions, enabling new synthetic possibilities that combine the selectivity of enzymes with the versatility of chemical catalysis. [60]

The development of artificial metalloenzymes bridges the gap between biological and chemical catalysis. These hybrid catalysts combine the selective protein environment of enzymes with the reactive capabilities of metal centers, enabling novel transformations that neither system could achieve independently. Recent advances in protein engineering have improved the stability and activity of these hybrid catalysts, making them increasingly practical for industrial applications. [61]

7.4. Photocatalysis and Electrocatalysis

The emergence of efficient photocatalytic systems has opened new pathways for solar-powered chemical synthesis. Modern photocatalysts harness visible light to drive chemical transformations, reducing energy requirements while enabling selective bond activation. These systems have found particular utility in organic synthesis and environmental remediation applications.

Electrocatalysis has emerged as a powerful tool for sustainable chemistry, enabling selective transformations using electrical energy. Modern electrocatalytic systems achieve efficient conversion of renewable electricity into chemical energy, supporting the transition toward sustainable chemical manufacturing. The development of selective electrode materials and optimized cell designs has improved the efficiency of these processes. [61]

7.5. Process Implementation

The translation of laboratory-scale catalytic systems to industrial processes presents unique challenges and opportunities. Modern process development emphasizes continuous flow systems and intensified reactor designs that maximize catalyst efficiency while minimizing resource consumption. The integration of real-time monitoring and control systems enables optimal catalyst performance under industrial conditions [61]

8. Industrial sustainability

8.1. Process Integration and Optimization

The transition from laboratory discovery to industrial implementation requires careful consideration of multiple factors affecting sustainability and efficiency. Modern manufacturing facilities increasingly adopt integrated approaches that combine multiple unit operations into streamlined processes. These integrated systems reduce energy consumption, minimize material handling, and optimize resource utilization across the entire production chain. [62]

8.2. Continuous Manufacturing Systems

The shift toward continuous processing represents a fundamental change in industrial chemical production. Continuous flow systems offer several advantages over traditional batch processes:

8.3. Smart Manufacturing Integration

Digital transformation has revolutionized process control and optimization in chemical manufacturing. Advanced process control systems utilize real-time data analytics to maintain optimal operating conditions. Machine learning algorithms predict maintenance requirements and identify opportunities for efficiency improvements, while digital twins enable process optimization without disrupting production. [63]

Parameter	Batch Process	Continuous Flow	Hybrid Systems
Capital Cost	Medium	High	Very High
Operating Cost	High	Low	Medium
Flexibility	High	Low	Medium
Scale-up Efficiency	Low	High	Medium
Quality Consistency	Medium	High	Very High
Resource Efficiency	Low	High	High

Table 3. Parameters involved in Industrial Implementation

8.4. Material Flow Optimization

Modern industrial facilities implement sophisticated material recovery systems that maximize resource efficiency. Solvent recovery units capture and purify process solvents for reuse, while waste heat recovery systems reduce overall energy consumption. The implementation of zero-liquid discharge systems minimizes water consumption and eliminates wastewater discharge. [64]

8.5. Circular Economy Implementation

Industrial sustainability increasingly embraces circular economy principles. Manufacturing processes are designed to incorporate recycled materials and generate recyclable products. Waste streams from one process become feedstocks for others, creating integrated industrial ecosystems that minimize environmental impact. [64]

8.6. Sustainable Power Systems

Industrial facilities are increasingly powered by renewable energy sources, including solar, wind, and biomass. Smart grid integration enables optimal utilization of renewable energy resources while maintaining reliable power supply. Energy storage systems help balance supply and demand, enabling more efficient use of intermittent renewable resources. [64]

8.7. Heat Integration Networks

Modern facilities employ sophisticated heat integration networks that minimize energy waste. Pinch analysis and process integration techniques optimize heat exchange between process streams. Advanced insulation materials and efficient heat exchange equipment reduce thermal losses throughout the system. [64]

8.8. Quality Control and Product Consistency

Quality control systems have evolved to incorporate real-time monitoring and advanced analytics. Process analytical technology (PAT) enables continuous quality verification without interrupting production. Spectroscopic methods and inline sensors provide immediate feedback on product quality and process performance. [65]

9. Conclusion

The transformation of pharmaceutical and chemical manufacturing through green chemistry principles represents a significant paradigm shift in industrial practice. The integration of innovative catalytic systems, sustainable process design, and advanced manufacturing technologies has created a framework for environmentally responsible production. The success of green chemistry initiatives demonstrates that environmental sustainability and economic viability are not mutually exclusive goals. The future of the chemical industry lies in the continued development and implementation of sustainable practices, driven by innovation in catalysis, process design, and manufacturing technology.

References

- [1] Sheldon RA. Green chemistry and resource efficiency: towards a green economy. Green Chem. 2016;18(11):3180-3183.
- [2] Anastas PT, Zimmerman JB. The United Nations sustainability goals: How can sustainable chemistry contribute? Curr Opin Green Sustain Chem. 2018;13:150-153.
- [3] Clark JH, Farmer TJ, Hunt AJ, Sherwood J. Opportunities for bio-based solvents created as petrochemical and fuel products transition towards renewable resources. Int J Mol Sci. 2015;16(8):17101-17159.
- [4] Lipshutz BH, Ghorai S. Transitioning organic synthesis from organic solvents to water. Green Chem. 2014;16(8):3660-3679.
- [5] MacMillan DWC. The advent and development of organocatalysis. Nature. 2008;455(7211):304-308.
- [6] König B. Photocatalysis in organic synthesis past, present, and future. Eur J Org Chem. 2017;2017(15):1979-1981.
- [7] Zu Y, Zhang Y, Fu Y. Visible-light photoredox catalysis. ChemCatChem. 2019;11(5):1525-1535.
- [8] James SL, Adams CJ, Bolm C, et al. Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev. 2012;41(1):413-447.
- [9] Bornscheuer UT, Huisman GW, Kazlauskas RJ, et al. Engineering the third wave of biocatalysis. Nature. 2012;485(7397):185-194.
- [10] Plutschack MB, Pieber B, Gilmore K, Seeberger PH. The Hitchhiker's guide to flow chemistry. Chem Rev. 2017;117(18):11796-11893.
- [11] Zhang Q, Zhang S, Deng Y. Recent advances in ionic liquid catalysis. Green Chem. 2011;13(10):2619-2637.
- [12] Constable DJC, Curzons AD, Cunningham VL. Metrics to 'green' chemistry. Green Chem. 2002;4(6):521-527.
- [13] Gallezot P. Conversion of biomass to selected chemical products. Chem Soc Rev. 2012;41(4):1538-1558.
- [14] Anastas P, Eghbali N. Green chemistry: principles and practice. Chem Soc Rev. 2010;39(1):301-312.
- [15] Busacca CA, Fandrick DR, Song JJ, Senanayake CH. The growing impact of catalysis in the pharmaceutical industry. Adv Synth Catal. 2011;353(11-12):1825-1864.
- [16] Wu XF, Anbarasan P, Neumann H, Beller M. From noble metal to nobel prize: palladium-catalyzed coupling reactions. Angew Chem Int Ed. 2010;49(48):9047-9050.
- [17] List B, Yang JW, Lerner RA. Asymmetric aminocatalysis. Angew Chem Int Ed. 2004;43(47):6660-6666.
- [18] Trost BM. Atom economy—a challenge for organic synthesis. Angew Chem Int Ed. 1995;34(3):259-281.
- [19] Sheldon RA. The E factor 25 years on: the rise of green chemistry and sustainability. Green Chem. 2017;19(1):18-43.
- [20] Climent MJ, Corma A, Iborra S. Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chem. 2011;13(3):520-540.
- [21] Tucker JW, Stephenson CRJ. Photoredox catalysis in organic chemistry. J Org Chem. 2012;77(4):1617-1622.
- [22] Roughley SD, Jordan AM. The medicinal chemist's toolbox: an analysis of reactions used in the pursuit of drug candidates. J Med Chem. 2011;54(10):3451-3479.
- [23] Reetz MT. Biocatalysis in organic chemistry and biotechnology: past, present, and future. J Am Chem Soc. 2013;135(34):12480-12496.
- [24] Jiménez-González C, Constable DJC, Ponder CS. Evaluating the "greenness" of chemical processes and products in the pharmaceutical industry. Chem Soc Rev. 2012;41(4):1485-1498.

- [25] Zakrzewski J, Smalley AP, Kabeshov MA, et al. Continuous-flow synthesis and derivatization of aziridines through palladium-catalyzed C(sp3)–H activation. Angew Chem Int Ed. 2016;55(31):8878-8883.
- [26] Wang D, Astruc D. The golden age of transfer hydrogenation. Chem Rev. 2015;115(13):6621-6686.
- [27] Lipshutz BH, Ghorai S, Cortes-Clerget M. The hydrophobic effect applied to organic synthesis: recent synthetic chemistry "in water". Chem Eur J. 2018;24(26):6672-6695.
- [28] Sheldon RA, Brady D. The limits to biocatalysis: pushing the envelope. Chem Commun. 2018;54(48):6088-6104.
- [29] Blaser HU, Pugin B, Spindler F. Progress in enantioselective catalysis assessed from an industrial point of view. J Mol Catal A: Chem. 2005;231(1-2):1-20.
- [30] Poliakoff M, Licence P. Green chemistry. Nature. 2007;450(7171):810-812.
- [31] Dunn PJ. The importance of green chemistry in process research and development. Chem Soc Rev. 2012;41(4):1452-1461.
- [32] Chen H, Wang J, Cheng Y, et al. Chemical manufacturing process intensification through continuous flow and microreactor technology. AIChE J. 2016;62(11):3870-3887.
- [33] Jessop PG. Searching for green solvents. Green Chem. 2011;13(6):1391-1398.
- [34] Bornscheuer UT. The fourth wave of biocatalysis is approaching. Philos Trans R Soc A. 2018;376(2110):20170063.
- [35] Straathof AJJ, Panke S, Schmid A. The production of fine chemicals by biotransformations. Curr Opin Biotechnol. 2002;13(6):548-556.
- [36] Hartwig JF. Carbon-heteroatom bond formation catalysed by organometallic complexes. Nature. 2008;455(7211):314-322.
- [37] Wang Z, Chen G, Ding K. Self-supported catalysts. Chem Rev. 2009;109(2):322-359.
- [38] Gallou F, Isley NA, Ganic A, et al. Surfactant technology applied toward an active pharmaceutical ingredient: more than a simple green chemistry advance. Green Chem. 2016;18(1):14-19.
- [39] Sheldon RA. Green solvents for sustainable organic synthesis: state of the art. Green Chem. 2005;7(5):267-278.
- [40] Anastas PT, Kirchhoff MM. Origins, current status, and future challenges of green chemistry. Acc Chem Res. 2002;35(9):686-694.
- [41] Constable DJC, Jimenez-Gonzalez C, Henderson RK. Perspective on solvent use in the pharmaceutical industry. Org Process Res Dev. 2007;11(1):133-137.
- [42] Cole-Hamilton DJ. Homogeneous catalysis--new approaches to catalyst separation, recovery, and recycling. Science. 2003;299(5613):1702-1706.
- [43] Polshettiwar V, Varma RS. Green chemistry by nano-catalysis. Green Chem. 2010;12(5):743-754.
- [44] Rogers RD, Seddon KR. Ionic liquids--solvents of the future? Science. 2003;302(5646):792-793.
- [45] Sheldon RA. E factors, green chemistry and catalysis: an odyssey. Chem Commun. 2008;(29):3352-3365.
- [46] Marvaniya HM, Modi NR, Sen DJ. Greener reactions under solvent free conditions. Int J Drug Dev & Res. 2011;3(2):34-43.
- [47] Clark JH. Green chemistry: challenges and opportunities. Green Chem. 1999;1(1):1-8.
- [48] Yoshida J, Nagaki A, Yamada T. Flash chemistry: fast chemical synthesis by using microreactors. Chemistry. 2008;14(25):7450-7459.
- [49] Walsh PJ, Li H, de Parrodi CA. A green chemistry approach to asymmetric catalysis. Chem Rev. 2007;107(6):2503-2545.
- [50] Studer A, Curran DP. Catalysis of radical reactions: a radical chemistry perspective. Angew Chem Int Ed. 2016;55(1):58-102.
- [51] Tang SY, Bourne RA, Smith RL, Poliakoff M. The 24 principles of green engineering and green chemistry. Green Chem. 2008;10(3):268-269.
- [52] Anastas PT, Warner JC. Green chemistry: theory and practice. Oxford University Press: New York, 1998.
- [53] Li CJ, Trost BM. Green chemistry for chemical synthesis. Proc Natl Acad Sci USA. 2008;105(36):13197-13202.
- [54] Sheldon RA, Woodley JM. Role of biocatalysis in sustainable chemistry. Chem Rev. 2018;118(2):801-838.
- [55] Wasserscheid P, Keim W. Ionic liquids—new "solutions" for transition metal catalysis. Angew Chem Int Ed. 2000;39(21):3772-3789.

- [56] Jiménez-González C, Poechlauer P, Broxterman QB, et al. Key green engineering research areas for sustainable manufacturing: a perspective from pharmaceutical and fine chemicals manufacturers. Org Process Res Dev. 2011;15(4):900-911.
- [57] Freakley SJ, He Q, Harrhy JH, et al. Palladium-tin catalysts for the direct synthesis of H₂O₂ with high selectivity. Science. 2016;351(6276):965-968.
- [58] Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev. 1999;99(8):2071-2084.
- [59] Yadav GD, Mehta PH. Heterogeneous catalysis in esterification reactions: preparation of phenethyl acetate and cyclohexyl acetate by using a variety of solid acidic catalysts. Ind Eng Chem Res. 1994;33(9):2198-2208.
- [60] Hawkins JM, Watson TJN. Asymmetric catalysis in the pharmaceutical industry. Angew Chem Int Ed. 2004;43(25):3224-3228.
- [61] Gallezot P. Process options for converting renewable feedstocks to bioproducts. Green Chem. 2007;9(4):295-302.
- [62] Curzons AD, Constable DJC, Mortimer DN, Cunningham VL. So you think your process is green, how do you know?—Using principles of sustainability to determine what is green—a corporate perspective. Green Chem. 2001;3(1):1-6.
- [63] Sheldon RA. Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev. 2012;41(4):1437-1451.
- [64] Clark JH, Luque R, Matharu AS. Green chemistry, biofuels, and biorefinery. Annu Rev Chem Biomol Eng. 2012;3:183-207.
- [65] Anastas PT, Kirchhoff MM, Williamson TC. Catalysis as a foundational pillar of green chemistry. Appl Catal A Gen. 2001;221(1-2):3-13..